mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-12 05:56:41 +07:00
23f839816c
1754 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Andrey Ignatov
|
7bb09c69f3 |
bpf: Fix possible out of bound write in narrow load handling
[ Upstream commit d7af7e497f0308bc97809cc48b58e8e0f13887e1 ]
Fix a verifier bug found by smatch static checker in [0].
This problem has never been seen in prod to my best knowledge. Fixing it
still seems to be a good idea since it's hard to say for sure whether
it's possible or not to have a scenario where a combination of
convert_ctx_access() and a narrow load would lead to an out of bound
write.
When narrow load is handled, one or two new instructions are added to
insn_buf array, but before it was only checked that
cnt >= ARRAY_SIZE(insn_buf)
And it's safe to add a new instruction to insn_buf[cnt++] only once. The
second try will lead to out of bound write. And this is what can happen
if `shift` is set.
Fix it by making sure that if the BPF_RSH instruction has to be added in
addition to BPF_AND then there is enough space for two more instructions
in insn_buf.
The full report [0] is below:
kernel/bpf/verifier.c:12304 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array
kernel/bpf/verifier.c:12311 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array
kernel/bpf/verifier.c
12282
12283 insn->off = off & ~(size_default - 1);
12284 insn->code = BPF_LDX | BPF_MEM | size_code;
12285 }
12286
12287 target_size = 0;
12288 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12289 &target_size);
12290 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Bounds check.
12291 (ctx_field_size && !target_size)) {
12292 verbose(env, "bpf verifier is misconfigured\n");
12293 return -EINVAL;
12294 }
12295
12296 if (is_narrower_load && size < target_size) {
12297 u8 shift = bpf_ctx_narrow_access_offset(
12298 off, size, size_default) * 8;
12299 if (ctx_field_size <= 4) {
12300 if (shift)
12301 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
^^^^^
increment beyond end of array
12302 insn->dst_reg,
12303 shift);
--> 12304 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
^^^^^
out of bounds write
12305 (1 << size * 8) - 1);
12306 } else {
12307 if (shift)
12308 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12309 insn->dst_reg,
12310 shift);
12311 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
^^^^^^^^^^^^^^^
Same.
12312 (1ULL << size * 8) - 1);
12313 }
12314 }
12315
12316 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12317 if (!new_prog)
12318 return -ENOMEM;
12319
12320 delta += cnt - 1;
12321
12322 /* keep walking new program and skip insns we just inserted */
12323 env->prog = new_prog;
12324 insn = new_prog->insnsi + i + delta;
12325 }
12326
12327 return 0;
12328 }
[0] https://lore.kernel.org/bpf/20210817050843.GA21456@kili/
v1->v2:
- clarify that problem was only seen by static checker but not in prod;
Fixes:
|
||
He Fengqing
|
5bdb6366f3 |
bpf: Fix potential memleak and UAF in the verifier.
[ Upstream commit 75f0fc7b48ad45a2e5736bcf8de26c8872fe8695 ]
In bpf_patch_insn_data(), we first use the bpf_patch_insn_single() to
insert new instructions, then use adjust_insn_aux_data() to adjust
insn_aux_data. If the old env->prog have no enough room for new inserted
instructions, we use bpf_prog_realloc to construct new_prog and free the
old env->prog.
There have two errors here. First, if adjust_insn_aux_data() return
ENOMEM, we should free the new_prog. Second, if adjust_insn_aux_data()
return ENOMEM, bpf_patch_insn_data() will return NULL, and env->prog has
been freed in bpf_prog_realloc, but we will use it in bpf_check().
So in this patch, we make the adjust_insn_aux_data() never fails. In
bpf_patch_insn_data(), we first pre-malloc memory for the new
insn_aux_data, then call bpf_patch_insn_single() to insert new
instructions, at last call adjust_insn_aux_data() to adjust
insn_aux_data.
Fixes:
|
||
Yonghong Song
|
408eaead52 |
bpf: Fix potentially incorrect results with bpf_get_local_storage()
commit a2baf4e8bb0f306fbed7b5e6197c02896a638ab5 upstream. Commit b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") fixed a bug for bpf_get_local_storage() helper so different tasks won't mess up with each other's percpu local storage. The percpu data contains 8 slots so it can hold up to 8 contexts (same or different tasks), for 8 different program runs, at the same time. This in general is sufficient. But our internal testing showed the following warning multiple times: [...] warning: WARNING: CPU: 13 PID: 41661 at include/linux/bpf-cgroup.h:193 __cgroup_bpf_run_filter_sock_ops+0x13e/0x180 RIP: 0010:__cgroup_bpf_run_filter_sock_ops+0x13e/0x180 <IRQ> tcp_call_bpf.constprop.99+0x93/0xc0 tcp_conn_request+0x41e/0xa50 ? tcp_rcv_state_process+0x203/0xe00 tcp_rcv_state_process+0x203/0xe00 ? sk_filter_trim_cap+0xbc/0x210 ? tcp_v6_inbound_md5_hash.constprop.41+0x44/0x160 tcp_v6_do_rcv+0x181/0x3e0 tcp_v6_rcv+0xc65/0xcb0 ip6_protocol_deliver_rcu+0xbd/0x450 ip6_input_finish+0x11/0x20 ip6_input+0xb5/0xc0 ip6_sublist_rcv_finish+0x37/0x50 ip6_sublist_rcv+0x1dc/0x270 ipv6_list_rcv+0x113/0x140 __netif_receive_skb_list_core+0x1a0/0x210 netif_receive_skb_list_internal+0x186/0x2a0 gro_normal_list.part.170+0x19/0x40 napi_complete_done+0x65/0x150 mlx5e_napi_poll+0x1ae/0x680 __napi_poll+0x25/0x120 net_rx_action+0x11e/0x280 __do_softirq+0xbb/0x271 irq_exit_rcu+0x97/0xa0 common_interrupt+0x7f/0xa0 </IRQ> asm_common_interrupt+0x1e/0x40 RIP: 0010:bpf_prog_1835a9241238291a_tw_egress+0x5/0xbac ? __cgroup_bpf_run_filter_skb+0x378/0x4e0 ? do_softirq+0x34/0x70 ? ip6_finish_output2+0x266/0x590 ? ip6_finish_output+0x66/0xa0 ? ip6_output+0x6c/0x130 ? ip6_xmit+0x279/0x550 ? ip6_dst_check+0x61/0xd0 [...] Using drgn [0] to dump the percpu buffer contents showed that on this CPU slot 0 is still available, but slots 1-7 are occupied and those tasks in slots 1-7 mostly don't exist any more. So we might have issues in bpf_cgroup_storage_unset(). Further debugging confirmed that there is a bug in bpf_cgroup_storage_unset(). Currently, it tries to unset "current" slot with searching from the start. So the following sequence is possible: 1. A task is running and claims slot 0 2. Running BPF program is done, and it checked slot 0 has the "task" and ready to reset it to NULL (not yet). 3. An interrupt happens, another BPF program runs and it claims slot 1 with the *same* task. 4. The unset() in interrupt context releases slot 0 since it matches "task". 5. Interrupt is done, the task in process context reset slot 0. At the end, slot 1 is not reset and the same process can continue to occupy slots 2-7 and finally, when the above step 1-5 is repeated again, step 3 BPF program won't be able to claim an empty slot and a warning will be issued. To fix the issue, for unset() function, we should traverse from the last slot to the first. This way, the above issue can be avoided. The same reverse traversal should also be done in bpf_get_local_storage() helper itself. Otherwise, incorrect local storage may be returned to BPF program. [0] https://github.com/osandov/drgn Fixes: b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210810010413.1976277-1-yhs@fb.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Yonghong Song
|
7ae1b1c07f |
bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper
commit b910eaaaa4b89976ef02e5d6448f3f73dc671d91 upstream. Jiri Olsa reported a bug ([1]) in kernel where cgroup local storage pointer may be NULL in bpf_get_local_storage() helper. There are two issues uncovered by this bug: (1). kprobe or tracepoint prog incorrectly sets cgroup local storage before prog run, (2). due to change from preempt_disable to migrate_disable, preemption is possible and percpu storage might be overwritten by other tasks. This issue (1) is fixed in [2]. This patch tried to address issue (2). The following shows how things can go wrong: task 1: bpf_cgroup_storage_set() for percpu local storage preemption happens task 2: bpf_cgroup_storage_set() for percpu local storage preemption happens task 1: run bpf program task 1 will effectively use the percpu local storage setting by task 2 which will be either NULL or incorrect ones. Instead of just one common local storage per cpu, this patch fixed the issue by permitting 8 local storages per cpu and each local storage is identified by a task_struct pointer. This way, we allow at most 8 nested preemption between bpf_cgroup_storage_set() and bpf_cgroup_storage_unset(). The percpu local storage slot is released (calling bpf_cgroup_storage_unset()) by the same task after bpf program finished running. bpf_test_run() is also fixed to use the new bpf_cgroup_storage_set() interface. The patch is tested on top of [2] with reproducer in [1]. Without this patch, kernel will emit error in 2-3 minutes. With this patch, after one hour, still no error. [1] https://lore.kernel.org/bpf/CAKH8qBuXCfUz=w8L+Fj74OaUpbosO29niYwTki7e3Ag044_aww@mail.gmail.com/T [2] https://lore.kernel.org/bpf/20210309185028.3763817-1-yhs@fb.com Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Link: https://lore.kernel.org/bpf/20210323055146.3334476-1-yhs@fb.com Cc: <stable@vger.kernel.org> # 5.10.x Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
9e9076db5c |
bpf: Fix ringbuf helper function compatibility
commit 5b029a32cfe4600f5e10e36b41778506b90fd4de upstream. Commit |
||
Ilya Leoshkevich
|
a687a4733b |
bpf: Clear zext_dst of dead insns
[ Upstream commit 45c709f8c71b525b51988e782febe84ce933e7e0 ] "access skb fields ok" verifier test fails on s390 with the "verifier bug. zext_dst is set, but no reg is defined" message. The first insns of the test prog are ... 0: 61 01 00 00 00 00 00 00 ldxw %r0,[%r1+0] 8: 35 00 00 01 00 00 00 00 jge %r0,0,1 10: 61 01 00 08 00 00 00 00 ldxw %r0,[%r1+8] ... and the 3rd one is dead (this does not look intentional to me, but this is a separate topic). sanitize_dead_code() converts dead insns into "ja -1", but keeps zext_dst. When opt_subreg_zext_lo32_rnd_hi32() tries to parse such an insn, it sees this discrepancy and bails. This problem can be seen only with JITs whose bpf_jit_needs_zext() returns true. Fix by clearning dead insns' zext_dst. The commits that contributed to this problem are: 1. |
||
Tatsuhiko Yasumatsu
|
730fc2411b |
bpf: Fix integer overflow involving bucket_size
[ Upstream commit c4eb1f403243fc7bbb7de644db8587c03de36da6 ]
In __htab_map_lookup_and_delete_batch(), hash buckets are iterated
over to count the number of elements in each bucket (bucket_size).
If bucket_size is large enough, the multiplication to calculate
kvmalloc() size could overflow, resulting in out-of-bounds write
as reported by KASAN:
[...]
[ 104.986052] BUG: KASAN: vmalloc-out-of-bounds in __htab_map_lookup_and_delete_batch+0x5ce/0xb60
[ 104.986489] Write of size 4194224 at addr ffffc9010503be70 by task crash/112
[ 104.986889]
[ 104.987193] CPU: 0 PID: 112 Comm: crash Not tainted 5.14.0-rc4 #13
[ 104.987552] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
[ 104.988104] Call Trace:
[ 104.988410] dump_stack_lvl+0x34/0x44
[ 104.988706] print_address_description.constprop.0+0x21/0x140
[ 104.988991] ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60
[ 104.989327] ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60
[ 104.989622] kasan_report.cold+0x7f/0x11b
[ 104.989881] ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60
[ 104.990239] kasan_check_range+0x17c/0x1e0
[ 104.990467] memcpy+0x39/0x60
[ 104.990670] __htab_map_lookup_and_delete_batch+0x5ce/0xb60
[ 104.990982] ? __wake_up_common+0x4d/0x230
[ 104.991256] ? htab_of_map_free+0x130/0x130
[ 104.991541] bpf_map_do_batch+0x1fb/0x220
[...]
In hashtable, if the elements' keys have the same jhash() value, the
elements will be put into the same bucket. By putting a lot of elements
into a single bucket, the value of bucket_size can be increased to
trigger the integer overflow.
Triggering the overflow is possible for both callers with CAP_SYS_ADMIN
and callers without CAP_SYS_ADMIN.
It will be trivial for a caller with CAP_SYS_ADMIN to intentionally
reach this overflow by enabling BPF_F_ZERO_SEED. As this flag will set
the random seed passed to jhash() to 0, it will be easy for the caller
to prepare keys which will be hashed into the same value, and thus put
all the elements into the same bucket.
If the caller does not have CAP_SYS_ADMIN, BPF_F_ZERO_SEED cannot be
used. However, it will be still technically possible to trigger the
overflow, by guessing the random seed value passed to jhash() (32bit)
and repeating the attempt to trigger the overflow. In this case,
the probability to trigger the overflow will be low and will take
a very long time.
Fix the integer overflow by calling kvmalloc_array() instead of
kvmalloc() to allocate memory.
Fixes:
|
||
Daniel Borkmann
|
682f75d35f |
bpf: Fix pointer arithmetic mask tightening under state pruning
commit e042aa532c84d18ff13291d00620502ce7a38dda upstream. In 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") we narrowed the offset mask for unprivileged pointer arithmetic in order to mitigate a corner case where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of- bounds in order to leak kernel memory via side-channel to user space. The verifier's state pruning for scalars leaves one corner case open where in the first verification path R_x holds an unknown scalar with an aux->alu_limit of e.g. 7, and in a second verification path that same register R_x, here denoted as R_x', holds an unknown scalar which has tighter bounds and would thus satisfy range_within(R_x, R_x') as well as tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3: Given the second path fits the register constraints for pruning, the final generated mask from aux->alu_limit will remain at 7. While technically not wrong for the non-speculative domain, it would however be possible to craft similar cases where the mask would be too wide as in 7fedb63a8307. One way to fix it is to detect the presence of unknown scalar map pointer arithmetic and force a deeper search on unknown scalars to ensure that we do not run into a masking mismatch. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Lorenz Bauer
|
068191af8f |
bpf: verifier: Allocate idmap scratch in verifier env
commit c9e73e3d2b1eb1ea7ff068e05007eec3bd8ef1c9 upstream. func_states_equal makes a very short lived allocation for idmap, probably because it's too large to fit on the stack. However the function is called quite often, leading to a lot of alloc / free churn. Replace the temporary allocation with dedicated scratch space in struct bpf_verifier_env. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Edward Cree <ecree.xilinx@gmail.com> Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
94b18c25d5 |
bpf: Remove superfluous aux sanitation on subprog rejection
commit 59089a189e3adde4cf85f2ce479738d1ae4c514d upstream. Follow-up to fe9a5ca7e370 ("bpf: Do not mark insn as seen under speculative path verification"). The sanitize_insn_aux_data() helper does not serve a particular purpose in today's code. The original intention for the helper was that if function-by-function verification fails, a given program would be cleared from temporary insn_aux_data[], and then its verification would be re-attempted in the context of the main program a second time. However, a failure in do_check_subprogs() will skip do_check_main() and propagate the error to the user instead, thus such situation can never occur. Given its interaction is not compatible to the Spectre v1 mitigation (due to comparing aux->seen with env->pass_cnt), just remove sanitize_insn_aux_data() to avoid future bugs in this area. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
AuxXxilium
|
5fa3ea047a |
init: add dsm gpl source
Signed-off-by: AuxXxilium <info@auxxxilium.tech> |
||
Daniel Borkmann
|
39f1735c81 |
bpf: Fix tail_call_reachable rejection for interpreter when jit failed
[ Upstream commit 5dd0a6b8582ffbfa88351949d50eccd5b6694ade ] During testing of f263a81451c1 ("bpf: Track subprog poke descriptors correctly and fix use-after-free") under various failure conditions, for example, when jit_subprogs() fails and tries to clean up the program to be run under the interpreter, we ran into the following freeze: [...] #127/8 tailcall_bpf2bpf_3:FAIL [...] [ 92.041251] BUG: KASAN: slab-out-of-bounds in ___bpf_prog_run+0x1b9d/0x2e20 [ 92.042408] Read of size 8 at addr ffff88800da67f68 by task test_progs/682 [ 92.043707] [ 92.044030] CPU: 1 PID: 682 Comm: test_progs Tainted: G O 5.13.0-53301-ge6c08cb33a30-dirty #87 [ 92.045542] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014 [ 92.046785] Call Trace: [ 92.047171] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.047773] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.048389] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.049019] ? ktime_get+0x117/0x130 [...] // few hundred [similar] lines more [ 92.659025] ? ktime_get+0x117/0x130 [ 92.659845] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.660738] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.661528] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.662378] ? print_usage_bug+0x50/0x50 [ 92.663221] ? print_usage_bug+0x50/0x50 [ 92.664077] ? bpf_ksym_find+0x9c/0xe0 [ 92.664887] ? ktime_get+0x117/0x130 [ 92.665624] ? kernel_text_address+0xf5/0x100 [ 92.666529] ? __kernel_text_address+0xe/0x30 [ 92.667725] ? unwind_get_return_address+0x2f/0x50 [ 92.668854] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.670185] ? ktime_get+0x117/0x130 [ 92.671130] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.672020] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.672860] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.675159] ? ktime_get+0x117/0x130 [ 92.677074] ? lock_is_held_type+0xd5/0x130 [ 92.678662] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.680046] ? ktime_get+0x117/0x130 [ 92.681285] ? __bpf_prog_run32+0x6b/0x90 [ 92.682601] ? __bpf_prog_run64+0x90/0x90 [ 92.683636] ? lock_downgrade+0x370/0x370 [ 92.684647] ? mark_held_locks+0x44/0x90 [ 92.685652] ? ktime_get+0x117/0x130 [ 92.686752] ? lockdep_hardirqs_on+0x79/0x100 [ 92.688004] ? ktime_get+0x117/0x130 [ 92.688573] ? __cant_migrate+0x2b/0x80 [ 92.689192] ? bpf_test_run+0x2f4/0x510 [ 92.689869] ? bpf_test_timer_continue+0x1c0/0x1c0 [ 92.690856] ? rcu_read_lock_bh_held+0x90/0x90 [ 92.691506] ? __kasan_slab_alloc+0x61/0x80 [ 92.692128] ? eth_type_trans+0x128/0x240 [ 92.692737] ? __build_skb+0x46/0x50 [ 92.693252] ? bpf_prog_test_run_skb+0x65e/0xc50 [ 92.693954] ? bpf_prog_test_run_raw_tp+0x2d0/0x2d0 [ 92.694639] ? __fget_light+0xa1/0x100 [ 92.695162] ? bpf_prog_inc+0x23/0x30 [ 92.695685] ? __sys_bpf+0xb40/0x2c80 [ 92.696324] ? bpf_link_get_from_fd+0x90/0x90 [ 92.697150] ? mark_held_locks+0x24/0x90 [ 92.698007] ? lockdep_hardirqs_on_prepare+0x124/0x220 [ 92.699045] ? finish_task_switch+0xe6/0x370 [ 92.700072] ? lockdep_hardirqs_on+0x79/0x100 [ 92.701233] ? finish_task_switch+0x11d/0x370 [ 92.702264] ? __switch_to+0x2c0/0x740 [ 92.703148] ? mark_held_locks+0x24/0x90 [ 92.704155] ? __x64_sys_bpf+0x45/0x50 [ 92.705146] ? do_syscall_64+0x35/0x80 [ 92.706953] ? entry_SYSCALL_64_after_hwframe+0x44/0xae [...] Turns out that the program rejection from |
||
John Fastabend
|
a9f36bf361 |
bpf: Track subprog poke descriptors correctly and fix use-after-free
commit f263a81451c12da5a342d90572e317e611846f2c upstream. Subprograms are calling map_poke_track(), but on program release there is no hook to call map_poke_untrack(). However, on program release, the aux memory (and poke descriptor table) is freed even though we still have a reference to it in the element list of the map aux data. When we run map_poke_run(), we then end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run(): [...] [ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e [ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337 [ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ #399 [ 402.824715] Call Trace: [ 402.824719] dump_stack+0x93/0xc2 [ 402.824727] print_address_description.constprop.0+0x1a/0x140 [ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824744] kasan_report.cold+0x7c/0xd8 [ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824757] prog_array_map_poke_run+0xc2/0x34e [ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0 [...] The elements concerned are walked as follows: for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; [...] The access to size_poke_tab is a 4 byte read, verified by checking offsets in the KASAN dump: [ 402.825004] The buggy address belongs to the object at ffff8881905a7800 which belongs to the cache kmalloc-1k of size 1024 [ 402.825008] The buggy address is located 320 bytes inside of 1024-byte region [ffff8881905a7800, ffff8881905a7c00) The pahole output of bpf_prog_aux: struct bpf_prog_aux { [...] /* --- cacheline 5 boundary (320 bytes) --- */ u32 size_poke_tab; /* 320 4 */ [...] In general, subprograms do not necessarily manage their own data structures. For example, BTF func_info and linfo are just pointers to the main program structure. This allows reference counting and cleanup to be done on the latter which simplifies their management a bit. The aux->poke_tab struct, however, did not follow this logic. The initial proposed fix for this use-after-free bug further embedded poke data tracking into the subprogram with proper reference counting. However, Daniel and Alexei questioned why we were treating these objects special; I agree, its unnecessary. The fix here removes the per subprogram poke table allocation and map tracking and instead simply points the aux->poke_tab pointer at the main programs poke table. This way, map tracking is simplified to the main program and we do not need to manage them per subprogram. This also means, bpf_prog_free_deferred(), which unwinds the program reference counting and kfrees objects, needs to ensure that we don't try to double free the poke_tab when free'ing the subprog structures. This is easily solved by NULL'ing the poke_tab pointer. The second detail is to ensure that per subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do this, we add a pointer in the poke structure to point at the subprogram value so JITs can easily check while walking the poke_tab structure if the current entry belongs to the current program. The aux pointer is stable and therefore suitable for such comparison. On the jit_subprogs() error path, we omit cleaning up the poke->aux field because these are only ever referenced from the JIT side, but on error we will never make it to the JIT, so its fine to leave them dangling. Removing these pointers would complicate the error path for no reason. However, we do need to untrack all poke descriptors from the main program as otherwise they could race with the freeing of JIT memory from the subprograms. Lastly, |
||
Rustam Kovhaev
|
a61af01141 |
bpf: Fix false positive kmemleak report in bpf_ringbuf_area_alloc()
[ Upstream commit ccff81e1d028bbbf8573d3364a87542386c707bf ] kmemleak scans struct page, but it does not scan the page content. If we allocate some memory with kmalloc(), then allocate page with alloc_page(), and if we put kmalloc pointer somewhere inside that page, kmemleak will report kmalloc pointer as a false positive. We can instruct kmemleak to scan the memory area by calling kmemleak_alloc() and kmemleak_free(), but part of struct bpf_ringbuf is mmaped to user space, and if struct bpf_ringbuf changes we would have to revisit and review size argument in kmemleak_alloc(), because we do not want kmemleak to scan the user space memory. Let's simplify things and use kmemleak_not_leak() here. For posterity, also adding additional prior analysis from Andrii: I think either kmemleak or syzbot are misreporting this. I've added a bunch of printks around all allocations performed by BPF ringbuf. [...] On repro side I get these two warnings: [vmuser@archvm bpf]$ sudo ./repro BUG: memory leak unreferenced object 0xffff88810d538c00 (size 64): comm "repro", pid 2140, jiffies 4294692933 (age 14.540s) hex dump (first 32 bytes): 00 af 19 04 00 ea ff ff c0 ae 19 04 00 ea ff ff ................ 80 ae 19 04 00 ea ff ff c0 29 2e 04 00 ea ff ff .........)...... backtrace: [<0000000077bfbfbd>] __bpf_map_area_alloc+0x31/0xc0 [<00000000587fa522>] ringbuf_map_alloc.cold.4+0x48/0x218 [<0000000044d49e96>] __do_sys_bpf+0x359/0x1d90 [<00000000f601d565>] do_syscall_64+0x2d/0x40 [<0000000043d3112a>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff88810d538c80 (size 64): comm "repro", pid 2143, jiffies 4294699025 (age 8.448s) hex dump (first 32 bytes): 80 aa 19 04 00 ea ff ff 00 ab 19 04 00 ea ff ff ................ c0 ab 19 04 00 ea ff ff 80 44 28 04 00 ea ff ff .........D(..... backtrace: [<0000000077bfbfbd>] __bpf_map_area_alloc+0x31/0xc0 [<00000000587fa522>] ringbuf_map_alloc.cold.4+0x48/0x218 [<0000000044d49e96>] __do_sys_bpf+0x359/0x1d90 [<00000000f601d565>] do_syscall_64+0x2d/0x40 [<0000000043d3112a>] entry_SYSCALL_64_after_hwframe+0x44/0xae Note that both reported leaks (ffff88810d538c80 and ffff88810d538c00) correspond to pages array bpf_ringbuf is allocating and tracking properly internally. Note also that syzbot repro doesn't close FD of created BPF ringbufs, and even when ./repro itself exits with error, there are still two forked processes hanging around in my system. So clearly ringbuf maps are alive at that point. So reporting any memory leak looks weird at that point, because that memory is being used by active referenced BPF ringbuf. It's also a question why repro doesn't clean up its forks. But if I do a `pkill repro`, I do see that all the allocated memory is /properly/ cleaned up [and the] "leaks" are deallocated properly. BTW, if I add close() right after bpf() syscall in syzbot repro, I see that everything is immediately deallocated, like designed. And no memory leak is reported. So I don't think the problem is anywhere in bpf_ringbuf code, rather in the leak detection and/or repro itself. Reported-by: syzbot+5d895828587f49e7fe9b@syzkaller.appspotmail.com Signed-off-by: Rustam Kovhaev <rkovhaev@gmail.com> [ Daniel: also included analysis from Andrii to the commit log ] Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: syzbot+5d895828587f49e7fe9b@syzkaller.appspotmail.com Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/CAEf4BzYk+dqs+jwu6VKXP-RttcTEGFe+ySTGWT9CRNkagDiJVA@mail.gmail.com Link: https://lore.kernel.org/lkml/YNTAqiE7CWJhOK2M@nuc10 Link: https://lore.kernel.org/lkml/20210615101515.GC26027@arm.com Link: https://syzkaller.appspot.com/bug?extid=5d895828587f49e7fe9b Link: https://lore.kernel.org/bpf/20210626181156.1873604-1-rkovhaev@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
2e66c36f13 |
bpf: Fix up register-based shifts in interpreter to silence KUBSAN
[ Upstream commit 28131e9d933339a92f78e7ab6429f4aaaa07061c ] syzbot reported a shift-out-of-bounds that KUBSAN observed in the interpreter: [...] UBSAN: shift-out-of-bounds in kernel/bpf/core.c:1420:2 shift exponent 255 is too large for 64-bit type 'long long unsigned int' CPU: 1 PID: 11097 Comm: syz-executor.4 Not tainted 5.12.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x141/0x1d7 lib/dump_stack.c:120 ubsan_epilogue+0xb/0x5a lib/ubsan.c:148 __ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:327 ___bpf_prog_run.cold+0x19/0x56c kernel/bpf/core.c:1420 __bpf_prog_run32+0x8f/0xd0 kernel/bpf/core.c:1735 bpf_dispatcher_nop_func include/linux/bpf.h:644 [inline] bpf_prog_run_pin_on_cpu include/linux/filter.h:624 [inline] bpf_prog_run_clear_cb include/linux/filter.h:755 [inline] run_filter+0x1a1/0x470 net/packet/af_packet.c:2031 packet_rcv+0x313/0x13e0 net/packet/af_packet.c:2104 dev_queue_xmit_nit+0x7c2/0xa90 net/core/dev.c:2387 xmit_one net/core/dev.c:3588 [inline] dev_hard_start_xmit+0xad/0x920 net/core/dev.c:3609 __dev_queue_xmit+0x2121/0x2e00 net/core/dev.c:4182 __bpf_tx_skb net/core/filter.c:2116 [inline] __bpf_redirect_no_mac net/core/filter.c:2141 [inline] __bpf_redirect+0x548/0xc80 net/core/filter.c:2164 ____bpf_clone_redirect net/core/filter.c:2448 [inline] bpf_clone_redirect+0x2ae/0x420 net/core/filter.c:2420 ___bpf_prog_run+0x34e1/0x77d0 kernel/bpf/core.c:1523 __bpf_prog_run512+0x99/0xe0 kernel/bpf/core.c:1737 bpf_dispatcher_nop_func include/linux/bpf.h:644 [inline] bpf_test_run+0x3ed/0xc50 net/bpf/test_run.c:50 bpf_prog_test_run_skb+0xabc/0x1c50 net/bpf/test_run.c:582 bpf_prog_test_run kernel/bpf/syscall.c:3127 [inline] __do_sys_bpf+0x1ea9/0x4f00 kernel/bpf/syscall.c:4406 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae [...] Generally speaking, KUBSAN reports from the kernel should be fixed. However, in case of BPF, this particular report caused concerns since the large shift is not wrong from BPF point of view, just undefined. In the verifier, K-based shifts that are >= {64,32} (depending on the bitwidth of the instruction) are already rejected. The register-based cases were not given their content might not be known at verification time. Ideas such as verifier instruction rewrite with an additional AND instruction for the source register were brought up, but regularly rejected due to the additional runtime overhead they incur. As Edward Cree rightly put it: Shifts by more than insn bitness are legal in the BPF ISA; they are implementation-defined behaviour [of the underlying architecture], rather than UB, and have been made legal for performance reasons. Each of the JIT backends compiles the BPF shift operations to machine instructions which produce implementation-defined results in such a case; the resulting contents of the register may be arbitrary but program behaviour as a whole remains defined. Guard checks in the fast path (i.e. affecting JITted code) will thus not be accepted. The case of division by zero is not truly analogous here, as division instructions on many of the JIT-targeted architectures will raise a machine exception / fault on division by zero, whereas (to the best of my knowledge) none will do so on an out-of-bounds shift. Given the KUBSAN report only affects the BPF interpreter, but not JITs, one solution is to add the ANDs with 63 or 31 into ___bpf_prog_run(). That would make the shifts defined, and thus shuts up KUBSAN, and the compiler would optimize out the AND on any CPU that interprets the shift amounts modulo the width anyway (e.g., confirmed from disassembly that on x86-64 and arm64 the generated interpreter code is the same before and after this fix). The BPF interpreter is slow path, and most likely compiled out anyway as distros select BPF_JIT_ALWAYS_ON to avoid speculative execution of BPF instructions by the interpreter. Given the main argument was to avoid sacrificing performance, the fact that the AND is optimized away from compiler for mainstream archs helps as well as a solution moving forward. Also add a comment on LSH/RSH/ARSH translation for JIT authors to provide guidance when they see the ___bpf_prog_run() interpreter code and use it as a model for a new JIT backend. Reported-by: syzbot+bed360704c521841c85d@syzkaller.appspotmail.com Reported-by: Kurt Manucredo <fuzzybritches0@gmail.com> Signed-off-by: Eric Biggers <ebiggers@kernel.org> Co-developed-by: Eric Biggers <ebiggers@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Tested-by: syzbot+bed360704c521841c85d@syzkaller.appspotmail.com Cc: Edward Cree <ecree.xilinx@gmail.com> Link: https://lore.kernel.org/bpf/0000000000008f912605bd30d5d7@google.com Link: https://lore.kernel.org/bpf/bac16d8d-c174-bdc4-91bd-bfa62b410190@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
John Fastabend
|
f97b9c4c07 |
bpf: Fix null ptr deref with mixed tail calls and subprogs
[ Upstream commit 7506d211b932870155bcb39e3dd9e39fab45a7c7 ]
The sub-programs prog->aux->poke_tab[] is populated in jit_subprogs() and
then used when emitting 'BPF_JMP|BPF_TAIL_CALL' insn->code from the
individual JITs. The poke_tab[] to use is stored in the insn->imm by
the code adding it to that array slot. The JIT then uses imm to find the
right entry for an individual instruction. In the x86 bpf_jit_comp.c
this is done by calling emit_bpf_tail_call_direct with the poke_tab[]
of the imm value.
However, we observed the below null-ptr-deref when mixing tail call
programs with subprog programs. For this to happen we just need to
mix bpf-2-bpf calls and tailcalls with some extra calls or instructions
that would be patched later by one of the fixup routines. So whats
happening?
Before the fixup_call_args() -- where the jit op is done -- various
code patching is done by do_misc_fixups(). This may increase the
insn count, for example when we patch map_lookup_up using map_gen_lookup
hook. This does two things. First, it means the instruction index,
insn_idx field, of a tail call instruction will move by a 'delta'.
In verifier code,
struct bpf_jit_poke_descriptor desc = {
.reason = BPF_POKE_REASON_TAIL_CALL,
.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
.tail_call.key = bpf_map_key_immediate(aux),
.insn_idx = i + delta,
};
Then subprog start values subprog_info[i].start will be updated
with the delta and any poke descriptor index will also be updated
with the delta in adjust_poke_desc(). If we look at the adjust
subprog starts though we see its only adjusted when the delta
occurs before the new instructions,
/* NOTE: fake 'exit' subprog should be updated as well. */
for (i = 0; i <= env->subprog_cnt; i++) {
if (env->subprog_info[i].start <= off)
continue;
Earlier subprograms are not changed because their start values
are not moved. But, adjust_poke_desc() does the offset + delta
indiscriminately. The result is poke descriptors are potentially
corrupted.
Then in jit_subprogs() we only populate the poke_tab[]
when the above insn_idx is less than the next subprogram start. From
above we corrupted our insn_idx so we might incorrectly assume a
poke descriptor is not used in a subprogram omitting it from the
subprogram. And finally when the jit runs it does the deref of poke_tab
when emitting the instruction and crashes with below. Because earlier
step omitted the poke descriptor.
The fix is straight forward with above context. Simply move same logic
from adjust_subprog_starts() into adjust_poke_descs() and only adjust
insn_idx when needed.
[ 82.396354] bpf_testmod: version magic '5.12.0-rc2alu+ SMP preempt mod_unload ' should be '5.12.0+ SMP preempt mod_unload '
[ 82.623001] loop10: detected capacity change from 0 to 8
[ 88.487424] ==================================================================
[ 88.487438] BUG: KASAN: null-ptr-deref in do_jit+0x184a/0x3290
[ 88.487455] Write of size 8 at addr 0000000000000008 by task test_progs/5295
[ 88.487471] CPU: 7 PID: 5295 Comm: test_progs Tainted: G I 5.12.0+ #386
[ 88.487483] Hardware name: Dell Inc. Precision 5820 Tower/002KVM, BIOS 1.9.2 01/24/2019
[ 88.487490] Call Trace:
[ 88.487498] dump_stack+0x93/0xc2
[ 88.487515] kasan_report.cold+0x5f/0xd8
[ 88.487530] ? do_jit+0x184a/0x3290
[ 88.487542] do_jit+0x184a/0x3290
...
[ 88.487709] bpf_int_jit_compile+0x248/0x810
...
[ 88.487765] bpf_check+0x3718/0x5140
...
[ 88.487920] bpf_prog_load+0xa22/0xf10
Fixes:
|
||
Daniel Borkmann
|
8c82c52d1d |
bpf: Do not mark insn as seen under speculative path verification
[ Upstream commit fe9a5ca7e370e613a9a75a13008a3845ea759d6e ] ... in such circumstances, we do not want to mark the instruction as seen given the goal is still to jmp-1 rewrite/sanitize dead code, if it is not reachable from the non-speculative path verification. We do however want to verify it for safety regardless. With the patch as-is all the insns that have been marked as seen before the patch will also be marked as seen after the patch (just with a potentially different non-zero count). An upcoming patch will also verify paths that are unreachable in the non-speculative domain, hence this extension is needed. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
e9d271731d |
bpf: Inherit expanded/patched seen count from old aux data
[ Upstream commit d203b0fd863a2261e5d00b97f3d060c4c2a6db71 ] Instead of relying on current env->pass_cnt, use the seen count from the old aux data in adjust_insn_aux_data(), and expand it to the new range of patched instructions. This change is valid given we always expand 1:n with n>=1, so what applies to the old/original instruction needs to apply for the replacement as well. Not relying on env->pass_cnt is a prerequisite for a later change where we want to avoid marking an instruction seen when verified under speculative execution path. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
5fc6ed1831 |
bpf: Fix leakage under speculation on mispredicted branches
[ Upstream commit 9183671af6dbf60a1219371d4ed73e23f43b49db ]
The verifier only enumerates valid control-flow paths and skips paths that
are unreachable in the non-speculative domain. And so it can miss issues
under speculative execution on mispredicted branches.
For example, a type confusion has been demonstrated with the following
crafted program:
// r0 = pointer to a map array entry
// r6 = pointer to readable stack slot
// r9 = scalar controlled by attacker
1: r0 = *(u64 *)(r0) // cache miss
2: if r0 != 0x0 goto line 4
3: r6 = r9
4: if r0 != 0x1 goto line 6
5: r9 = *(u8 *)(r6)
6: // leak r9
Since line 3 runs iff r0 == 0 and line 5 runs iff r0 == 1, the verifier
concludes that the pointer dereference on line 5 is safe. But: if the
attacker trains both the branches to fall-through, such that the following
is speculatively executed ...
r6 = r9
r9 = *(u8 *)(r6)
// leak r9
... then the program will dereference an attacker-controlled value and could
leak its content under speculative execution via side-channel. This requires
to mistrain the branch predictor, which can be rather tricky, because the
branches are mutually exclusive. However such training can be done at
congruent addresses in user space using different branches that are not
mutually exclusive. That is, by training branches in user space ...
A: if r0 != 0x0 goto line C
B: ...
C: if r0 != 0x0 goto line D
D: ...
... such that addresses A and C collide to the same CPU branch prediction
entries in the PHT (pattern history table) as those of the BPF program's
lines 2 and 4, respectively. A non-privileged attacker could simply brute
force such collisions in the PHT until observing the attack succeeding.
Alternative methods to mistrain the branch predictor are also possible that
avoid brute forcing the collisions in the PHT. A reliable attack has been
demonstrated, for example, using the following crafted program:
// r0 = pointer to a [control] map array entry
// r7 = *(u64 *)(r0 + 0), training/attack phase
// r8 = *(u64 *)(r0 + 8), oob address
// [...]
// r0 = pointer to a [data] map array entry
1: if r7 == 0x3 goto line 3
2: r8 = r0
// crafted sequence of conditional jumps to separate the conditional
// branch in line 193 from the current execution flow
3: if r0 != 0x0 goto line 5
4: if r0 == 0x0 goto exit
5: if r0 != 0x0 goto line 7
6: if r0 == 0x0 goto exit
[...]
187: if r0 != 0x0 goto line 189
188: if r0 == 0x0 goto exit
// load any slowly-loaded value (due to cache miss in phase 3) ...
189: r3 = *(u64 *)(r0 + 0x1200)
// ... and turn it into known zero for verifier, while preserving slowly-
// loaded dependency when executing:
190: r3 &= 1
191: r3 &= 2
// speculatively bypassed phase dependency
192: r7 += r3
193: if r7 == 0x3 goto exit
194: r4 = *(u8 *)(r8 + 0)
// leak r4
As can be seen, in training phase (phase != 0x3), the condition in line 1
turns into false and therefore r8 with the oob address is overridden with
the valid map value address, which in line 194 we can read out without
issues. However, in attack phase, line 2 is skipped, and due to the cache
miss in line 189 where the map value is (zeroed and later) added to the
phase register, the condition in line 193 takes the fall-through path due
to prior branch predictor training, where under speculation, it'll load the
byte at oob address r8 (unknown scalar type at that point) which could then
be leaked via side-channel.
One way to mitigate these is to 'branch off' an unreachable path, meaning,
the current verification path keeps following the is_branch_taken() path
and we push the other branch to the verification stack. Given this is
unreachable from the non-speculative domain, this branch's vstate is
explicitly marked as speculative. This is needed for two reasons: i) if
this path is solely seen from speculative execution, then we later on still
want the dead code elimination to kick in in order to sanitize these
instructions with jmp-1s, and ii) to ensure that paths walked in the
non-speculative domain are not pruned from earlier walks of paths walked in
the speculative domain. Additionally, for robustness, we mark the registers
which have been part of the conditional as unknown in the speculative path
given there should be no assumptions made on their content.
The fix in here mitigates type confusion attacks described earlier due to
i) all code paths in the BPF program being explored and ii) existing
verifier logic already ensuring that given memory access instruction
references one specific data structure.
An alternative to this fix that has also been looked at in this scope was to
mark aux->alu_state at the jump instruction with a BPF_JMP_TAKEN state as
well as direction encoding (always-goto, always-fallthrough, unknown), such
that mixing of different always-* directions themselves as well as mixing of
always-* with unknown directions would cause a program rejection by the
verifier, e.g. programs with constructs like 'if ([...]) { x = 0; } else
{ x = 1; }' with subsequent 'if (x == 1) { [...] }'. For unprivileged, this
would result in only single direction always-* taken paths, and unknown taken
paths being allowed, such that the former could be patched from a conditional
jump to an unconditional jump (ja). Compared to this approach here, it would
have two downsides: i) valid programs that otherwise are not performing any
pointer arithmetic, etc, would potentially be rejected/broken, and ii) we are
required to turn off path pruning for unprivileged, where both can be avoided
in this work through pushing the invalid branch to the verification stack.
The issue was originally discovered by Adam and Ofek, and later independently
discovered and reported as a result of Benedict and Piotr's research work.
Fixes:
|
||
Jiri Olsa
|
584b2c7ce2 |
bpf: Forbid trampoline attach for functions with variable arguments
[ Upstream commit 31379397dcc364a59ce764fabb131b645c43e340 ] We can't currently allow to attach functions with variable arguments. The problem is that we should save all the registers for arguments, which is probably doable, but if caller uses more than 6 arguments, we need stack data, which will be wrong, because of the extra stack frame we do in bpf trampoline, so we could crash. Also currently there's malformed trampoline code generated for such functions at the moment as described in: https://lore.kernel.org/bpf/20210429212834.82621-1-jolsa@kernel.org/ Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210505132529.401047-1-jolsa@kernel.org Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
ff5039ec75 |
bpf, lockdown, audit: Fix buggy SELinux lockdown permission checks
[ Upstream commit ff40e51043af63715ab413995ff46996ecf9583f ] Commit |
||
Tobias Klauser
|
cdf3f6db1a |
bpf: Simplify cases in bpf_base_func_proto
[ Upstream commit 61ca36c8c4eb3bae35a285b1ae18c514cde65439 ] !perfmon_capable() is checked before the last switch(func_id) in bpf_base_func_proto. Thus, the cases BPF_FUNC_trace_printk and BPF_FUNC_snprintf_btf can be moved to that last switch(func_id) to omit the inline !perfmon_capable() checks. Signed-off-by: Tobias Klauser <tklauser@distanz.ch> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210127174615.3038-1-tklauser@distanz.ch Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Yinjun Zhang
|
24cb8bb7f6 |
bpf, offload: Reorder offload callback 'prepare' in verifier
[ Upstream commit ceb11679d9fcf3fdb358a310a38760fcbe9b63ed ] Commit |
||
Daniel Borkmann
|
27acfd11ba |
bpf: No need to simulate speculative domain for immediates
commit a7036191277f9fa68d92f2071ddc38c09b1e5ee5 upstream. In 801c6058d14a ("bpf: Fix leakage of uninitialized bpf stack under speculation") we replaced masking logic with direct loads of immediates if the register is a known constant. Given in this case we do not apply any masking, there is also no reason for the operation to be truncated under the speculative domain. Therefore, there is also zero reason for the verifier to branch-off and simulate this case, it only needs to do it for unknown but bounded scalars. As a side-effect, this also enables few test cases that were previously rejected due to simulation under zero truncation. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
c87ef240a8 |
bpf: Fix mask direction swap upon off reg sign change
commit bb01a1bba579b4b1c5566af24d95f1767859771e upstream. Masking direction as indicated via mask_to_left is considered to be calculated once and then used to derive pointer limits. Thus, this needs to be placed into bpf_sanitize_info instead so we can pass it to sanitize_ptr_alu() call after the pointer move. Piotr noticed a corner case where the off reg causes masking direction change which then results in an incorrect final aux->alu_limit. Fixes: 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") Reported-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
4e2c7b2974 |
bpf: Wrap aux data inside bpf_sanitize_info container
commit 3d0220f6861d713213b015b582e9f21e5b28d2e0 upstream. Add a container structure struct bpf_sanitize_info which holds the current aux info, and update call-sites to sanitize_ptr_alu() to pass it in. This is needed for passing in additional state later on. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Andrii Nakryiko
|
00d9f429af |
bpf: Prevent writable memory-mapping of read-only ringbuf pages
commit 04ea3086c4d73da7009de1e84962a904139af219 upstream.
Only the very first page of BPF ringbuf that contains consumer position
counter is supposed to be mapped as writeable by user-space. Producer
position is read-only and can be modified only by the kernel code. BPF ringbuf
data pages are read-only as well and are not meant to be modified by
user-code to maintain integrity of per-record headers.
This patch allows to map only consumer position page as writeable and
everything else is restricted to be read-only. remap_vmalloc_range()
internally adds VM_DONTEXPAND, so all the established memory mappings can't be
extended, which prevents any future violations through mremap()'ing.
Fixes:
|
||
Thadeu Lima de Souza Cascardo
|
1ca284f086 |
bpf, ringbuf: Deny reserve of buffers larger than ringbuf
commit 4b81ccebaeee885ab1aa1438133f2991e3a2b6ea upstream.
A BPF program might try to reserve a buffer larger than the ringbuf size.
If the consumer pointer is way ahead of the producer, that would be
successfully reserved, allowing the BPF program to read or write out of
the ringbuf allocated area.
Reported-by: Ryota Shiga (Flatt Security)
Fixes:
|
||
Daniel Borkmann
|
282bfc8848 |
bpf: Fix alu32 const subreg bound tracking on bitwise operations
commit 049c4e13714ecbca567b4d5f6d563f05d431c80e upstream. Fix a bug in the verifier's scalar32_min_max_*() functions which leads to incorrect tracking of 32 bit bounds for the simulation of and/or/xor bitops. When both the src & dst subreg is a known constant, then the assumption is that scalar_min_max_*() will take care to update bounds correctly. However, this is not the case, for example, consider a register R2 which has a tnum of 0xffffffff00000000, meaning, lower 32 bits are known constant and in this case of value 0x00000001. R2 is then and'ed with a register R3 which is a 64 bit known constant, here, 0x100000002. What can be seen in line '10:' is that 32 bit bounds reach an invalid state where {u,s}32_min_value > {u,s}32_max_value. The reason is scalar32_min_max_*() delegates 32 bit bounds updates to scalar_min_max_*(), however, that really only takes place when both the 64 bit src & dst register is a known constant. Given scalar32_min_max_*() is intended to be designed as closely as possible to scalar_min_max_*(), update the 32 bit bounds in this situation through __mark_reg32_known() which will set all {u,s}32_{min,max}_value to the correct constant, which is 0x00000000 after the fix (given 0x00000001 & 0x00000002 in 32 bit space). This is possible given var32_off already holds the final value as dst_reg->var_off is updated before calling scalar32_min_max_*(). Before fix, invalid tracking of R2: [...] 9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0 9: (5f) r2 &= r3 10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=1,s32_max_value=0,u32_min_value=1,u32_max_value=0) R3_w=inv4294967298 R10=fp0 [...] After fix, correct tracking of R2: [...] 9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0 9: (5f) r2 &= r3 10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=0,s32_max_value=0,u32_min_value=0,u32_max_value=0) R3_w=inv4294967298 R10=fp0 [...] Fixes: |
||
Daniel Borkmann
|
4394be0a18 |
bpf: Fix propagation of 32 bit unsigned bounds from 64 bit bounds
[ Upstream commit 10bf4e83167cc68595b85fd73bb91e8f2c086e36 ] Similarly as |
||
Daniel Borkmann
|
2fa15d61e4 |
bpf: Fix leakage of uninitialized bpf stack under speculation
commit 801c6058d14a82179a7ee17a4b532cac6fad067f upstream. The current implemented mechanisms to mitigate data disclosure under speculation mainly address stack and map value oob access from the speculative domain. However, Piotr discovered that uninitialized BPF stack is not protected yet, and thus old data from the kernel stack, potentially including addresses of kernel structures, could still be extracted from that 512 bytes large window. The BPF stack is special compared to map values since it's not zero initialized for every program invocation, whereas map values /are/ zero initialized upon their initial allocation and thus cannot leak any prior data in either domain. In the non-speculative domain, the verifier ensures that every stack slot read must have a prior stack slot write by the BPF program to avoid such data leaking issue. However, this is not enough: for example, when the pointer arithmetic operation moves the stack pointer from the last valid stack offset to the first valid offset, the sanitation logic allows for any intermediate offsets during speculative execution, which could then be used to extract any restricted stack content via side-channel. Given for unprivileged stack pointer arithmetic the use of unknown but bounded scalars is generally forbidden, we can simply turn the register-based arithmetic operation into an immediate-based arithmetic operation without the need for masking. This also gives the benefit of reducing the needed instructions for the operation. Given after the work in 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask"), the aux->alu_limit already holds the final immediate value for the offset register with the known scalar. Thus, a simple mov of the immediate to AX register with using AX as the source for the original instruction is sufficient and possible now in this case. Reported-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
2cfa537674 |
bpf: Fix masking negation logic upon negative dst register
commit b9b34ddbe2076ade359cd5ce7537d5ed019e9807 upstream.
The negation logic for the case where the off_reg is sitting in the
dst register is not correct given then we cannot just invert the add
to a sub or vice versa. As a fix, perform the final bitwise and-op
unconditionally into AX from the off_reg, then move the pointer from
the src to dst and finally use AX as the source for the original
pointer arithmetic operation such that the inversion yields a correct
result. The single non-AX mov in between is possible given constant
blinding is retaining it as it's not an immediate based operation.
Fixes:
|
||
Daniel Borkmann
|
b642e493a9 |
bpf: Tighten speculative pointer arithmetic mask
[ Upstream commit 7fedb63a8307dda0ec3b8969a3b233a1dd7ea8e0 ] This work tightens the offset mask we use for unprivileged pointer arithmetic in order to mitigate a corner case reported by Piotr and Benedict where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of-bounds in order to leak kernel memory via side-channel to user space. Before this change, the computed ptr_limit for retrieve_ptr_limit() helper represents largest valid distance when moving pointer to the right or left which is then fed as aux->alu_limit to generate masking instructions against the offset register. After the change, the derived aux->alu_limit represents the largest potential value of the offset register which we mask against which is just a narrower subset of the former limit. For minimal complexity, we call sanitize_ptr_alu() from 2 observation points in adjust_ptr_min_max_vals(), that is, before and after the simulated alu operation. In the first step, we retieve the alu_state and alu_limit before the operation as well as we branch-off a verifier path and push it to the verification stack as we did before which checks the dst_reg under truncation, in other words, when the speculative domain would attempt to move the pointer out-of-bounds. In the second step, we retrieve the new alu_limit and calculate the absolute distance between both. Moreover, we commit the alu_state and final alu_limit via update_alu_sanitation_state() to the env's instruction aux data, and bail out from there if there is a mismatch due to coming from different verification paths with different states. Reported-by: Piotr Krysiuk <piotras@gmail.com> Reported-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
2982ea926b |
bpf: Refactor and streamline bounds check into helper
[ Upstream commit 073815b756c51ba9d8384d924c5d1c03ca3d1ae4 ] Move the bounds check in adjust_ptr_min_max_vals() into a small helper named sanitize_check_bounds() in order to simplify the former a bit. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Andrei Matei
|
f3c4b01689 |
bpf: Allow variable-offset stack access
[ Upstream commit 01f810ace9ed37255f27608a0864abebccf0aab3 ] Before this patch, variable offset access to the stack was dissalowed for regular instructions, but was allowed for "indirect" accesses (i.e. helpers). This patch removes the restriction, allowing reading and writing to the stack through stack pointers with variable offsets. This makes stack-allocated buffers more usable in programs, and brings stack pointers closer to other types of pointers. The motivation is being able to use stack-allocated buffers for data manipulation. When the stack size limit is sufficient, allocating buffers on the stack is simpler than per-cpu arrays, or other alternatives. In unpriviledged programs, variable-offset reads and writes are disallowed (they were already disallowed for the indirect access case) because the speculative execution checking code doesn't support them. Additionally, when writing through a variable-offset stack pointer, if any pointers are in the accessible range, there's possilibities of later leaking pointers because the write cannot be tracked precisely. Writes with variable offset mark the whole range as initialized, even though we don't know which stack slots are actually written. This is in order to not reject future reads to these slots. Note that this doesn't affect writes done through helpers; like before, helpers need the whole stack range to be initialized to begin with. All the stack slots are in range are considered scalars after the write; variable-offset register spills are not tracked. For reads, all the stack slots in the variable range needs to be initialized (but see above about what writes do), otherwise the read is rejected. All register spilled in stack slots that might be read are marked as having been read, however reads through such pointers don't do register filling; the target register will always be either a scalar or a constant zero. Signed-off-by: Andrei Matei <andreimatei1@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210207011027.676572-2-andreimatei1@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Yonghong Song
|
f79efcb007 |
bpf: Permits pointers on stack for helper calls
[ Upstream commit cd17d38f8b28f808c368121041c0a4fa91757e0d ] Currently, when checking stack memory accessed by helper calls, for spills, only PTR_TO_BTF_ID and SCALAR_VALUE are allowed. Song discovered an issue where the below bpf program int dump_task(struct bpf_iter__task *ctx) { struct seq_file *seq = ctx->meta->seq; static char[] info = "abc"; BPF_SEQ_PRINTF(seq, "%s\n", info); return 0; } may cause a verifier failure. The verifier output looks like: ; struct seq_file *seq = ctx->meta->seq; 1: (79) r1 = *(u64 *)(r1 +0) ; BPF_SEQ_PRINTF(seq, "%s\n", info); 2: (18) r2 = 0xffff9054400f6000 4: (7b) *(u64 *)(r10 -8) = r2 5: (bf) r4 = r10 ; 6: (07) r4 += -8 ; BPF_SEQ_PRINTF(seq, "%s\n", info); 7: (18) r2 = 0xffff9054400fe000 9: (b4) w3 = 4 10: (b4) w5 = 8 11: (85) call bpf_seq_printf#126 R1_w=ptr_seq_file(id=0,off=0,imm=0) R2_w=map_value(id=0,off=0,ks=4,vs=4,imm=0) R3_w=inv4 R4_w=fp-8 R5_w=inv8 R10=fp0 fp-8_w=map_value last_idx 11 first_idx 0 regs=8 stack=0 before 10: (b4) w5 = 8 regs=8 stack=0 before 9: (b4) w3 = 4 invalid indirect read from stack off -8+0 size 8 Basically, the verifier complains the map_value pointer at "fp-8" location. To fix the issue, if env->allow_ptr_leaks is true, let us also permit pointers on the stack to be accessible by the helper. Reported-by: Song Liu <songliubraving@fb.com> Suggested-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20201210013349.943719-1-yhs@fb.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
fbe6603e7c |
bpf: Move sanitize_val_alu out of op switch
commit f528819334881fd622fdadeddb3f7edaed8b7c9b upstream. Add a small sanitize_needed() helper function and move sanitize_val_alu() out of the main opcode switch. In upcoming work, we'll move sanitize_ptr_alu() as well out of its opcode switch so this helps to streamline both. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
7723d32438 |
bpf: Improve verifier error messages for users
commit a6aaece00a57fa6f22575364b3903dfbccf5345d upstream. Consolidate all error handling and provide more user-friendly error messages from sanitize_ptr_alu() and sanitize_val_alu(). Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
55565c3079 |
bpf: Rework ptr_limit into alu_limit and add common error path
commit b658bbb844e28f1862867f37e8ca11a8e2aa94a3 upstream. Small refactor with no semantic changes in order to consolidate the max ptr_limit boundary check. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
480d875f12 |
bpf: Move off_reg into sanitize_ptr_alu
[ Upstream commit 6f55b2f2a1178856c19bbce2f71449926e731914 ] Small refactor to drag off_reg into sanitize_ptr_alu(), so we later on can use off_reg for generalizing some of the checks for all pointer types. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
589fd9684d |
bpf: Ensure off_reg has no mixed signed bounds for all types
[ Upstream commit 24c109bb1537c12c02aeed2d51a347b4d6a9b76e ]
The mixed signed bounds check really belongs into retrieve_ptr_limit()
instead of outside of it in adjust_ptr_min_max_vals(). The reason is
that this check is not tied to PTR_TO_MAP_VALUE only, but to all pointer
types that we handle in retrieve_ptr_limit() and given errors from the latter
propagate back to adjust_ptr_min_max_vals() and lead to rejection of the
program, it's a better place to reside to avoid anything slipping through
for future types. The reason why we must reject such off_reg is that we
otherwise would not be able to derive a mask, see details in
|
||
Daniel Borkmann
|
4f3ff11204 |
bpf: Use correct permission flag for mixed signed bounds arithmetic
[ Upstream commit 9601148392520e2e134936e76788fc2a6371e7be ]
We forbid adding unknown scalars with mixed signed bounds due to the
spectre v1 masking mitigation. Hence this also needs bypass_spec_v1
flag instead of allow_ptr_leaks.
Fixes:
|
||
Dave Marchevsky
|
d921baabd9 |
bpf: Refcount task stack in bpf_get_task_stack
commit 06ab134ce8ecfa5a69e850f88f81c8a4c3fa91df upstream.
On x86 the struct pt_regs * grabbed by task_pt_regs() points to an
offset of task->stack. The pt_regs are later dereferenced in
__bpf_get_stack (e.g. by user_mode() check). This can cause a fault if
the task in question exits while bpf_get_task_stack is executing, as
warned by task_stack_page's comment:
* When accessing the stack of a non-current task that might exit, use
* try_get_task_stack() instead. task_stack_page will return a pointer
* that could get freed out from under you.
Taking the comment's advice and using try_get_task_stack() and
put_task_stack() to hold task->stack refcount, or bail early if it's
already 0. Incrementing stack_refcount will ensure the task's stack
sticks around while we're using its data.
I noticed this bug while testing a bpf task iter similar to
bpf_iter_task_stack in selftests, except mine grabbed user stack, and
getting intermittent crashes, which resulted in dumps like:
BUG: unable to handle page fault for address: 0000000000003fe0
\#PF: supervisor read access in kernel mode
\#PF: error_code(0x0000) - not-present page
RIP: 0010:__bpf_get_stack+0xd0/0x230
<snip...>
Call Trace:
bpf_prog_0a2be35c092cb190_get_task_stacks+0x5d/0x3ec
bpf_iter_run_prog+0x24/0x81
__task_seq_show+0x58/0x80
bpf_seq_read+0xf7/0x3d0
vfs_read+0x91/0x140
ksys_read+0x59/0xd0
do_syscall_64+0x48/0x120
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes:
|
||
Lorenz Bauer
|
d86046a775 |
bpf: link: Refuse non-O_RDWR flags in BPF_OBJ_GET
commit 25fc94b2f02d832fa8e29419699dcc20b0b05c6a upstream.
Invoking BPF_OBJ_GET on a pinned bpf_link checks the path access
permissions based on file_flags, but the returned fd ignores flags.
This means that any user can acquire a "read-write" fd for a pinned
link with mode 0664 by invoking BPF_OBJ_GET with BPF_F_RDONLY in
file_flags. The fd can be used to invoke BPF_LINK_DETACH, etc.
Fix this by refusing non-O_RDWR flags in BPF_OBJ_GET. This works
because OBJ_GET by default returns a read write mapping and libbpf
doesn't expose a way to override this behaviour for programs
and links.
Fixes:
|
||
Toke Høiland-Jørgensen
|
b7004ecafa |
bpf: Enforce that struct_ops programs be GPL-only
commit 12aa8a9467b354ef893ce0fc5719a4de4949a9fb upstream.
With the introduction of the struct_ops program type, it became possible to
implement kernel functionality in BPF, making it viable to use BPF in place
of a regular kernel module for these particular operations.
Thus far, the only user of this mechanism is for implementing TCP
congestion control algorithms. These are clearly marked as GPL-only when
implemented as modules (as seen by the use of EXPORT_SYMBOL_GPL for
tcp_register_congestion_control()), so it seems like an oversight that this
was not carried over to BPF implementations. Since this is the only user
of the struct_ops mechanism, just enforcing GPL-only for the struct_ops
program type seems like the simplest way to fix this.
Fixes:
|
||
Alexei Starovoitov
|
e21d2b9235 |
bpf: Fix fexit trampoline.
[ Upstream commit e21aa341785c679dd409c8cb71f864c00fe6c463 ]
The fexit/fmod_ret programs can be attached to kernel functions that can sleep.
The synchronize_rcu_tasks() will not wait for such tasks to complete.
In such case the trampoline image will be freed and when the task
wakes up the return IP will point to freed memory causing the crash.
Solve this by adding percpu_ref_get/put for the duration of trampoline
and separate trampoline vs its image life times.
The "half page" optimization has to be removed, since
first_half->second_half->first_half transition cannot be guaranteed to
complete in deterministic time. Every trampoline update becomes a new image.
The image with fmod_ret or fexit progs will be freed via percpu_ref_kill and
call_rcu_tasks. Together they will wait for the original function and
trampoline asm to complete. The trampoline is patched from nop to jmp to skip
fexit progs. They are freed independently from the trampoline. The image with
fentry progs only will be freed via call_rcu_tasks_trace+call_rcu_tasks which
will wait for both sleepable and non-sleepable progs to complete.
Fixes:
|
||
Zqiang
|
ccd5565fee |
bpf: Fix umd memory leak in copy_process()
[ Upstream commit f60a85cad677c4f9bb4cadd764f1d106c38c7cf8 ]
The syzbot reported a memleak as follows:
BUG: memory leak
unreferenced object 0xffff888101b41d00 (size 120):
comm "kworker/u4:0", pid 8, jiffies 4294944270 (age 12.780s)
backtrace:
[<ffffffff8125dc56>] alloc_pid+0x66/0x560
[<ffffffff81226405>] copy_process+0x1465/0x25e0
[<ffffffff81227943>] kernel_clone+0xf3/0x670
[<ffffffff812281a1>] kernel_thread+0x61/0x80
[<ffffffff81253464>] call_usermodehelper_exec_work
[<ffffffff81253464>] call_usermodehelper_exec_work+0xc4/0x120
[<ffffffff812591c9>] process_one_work+0x2c9/0x600
[<ffffffff81259ab9>] worker_thread+0x59/0x5d0
[<ffffffff812611c8>] kthread+0x178/0x1b0
[<ffffffff8100227f>] ret_from_fork+0x1f/0x30
unreferenced object 0xffff888110ef5c00 (size 232):
comm "kworker/u4:0", pid 8414, jiffies 4294944270 (age 12.780s)
backtrace:
[<ffffffff8154a0cf>] kmem_cache_zalloc
[<ffffffff8154a0cf>] __alloc_file+0x1f/0xf0
[<ffffffff8154a809>] alloc_empty_file+0x69/0x120
[<ffffffff8154a8f3>] alloc_file+0x33/0x1b0
[<ffffffff8154ab22>] alloc_file_pseudo+0xb2/0x140
[<ffffffff81559218>] create_pipe_files+0x138/0x2e0
[<ffffffff8126c793>] umd_setup+0x33/0x220
[<ffffffff81253574>] call_usermodehelper_exec_async+0xb4/0x1b0
[<ffffffff8100227f>] ret_from_fork+0x1f/0x30
After the UMD process exits, the pipe_to_umh/pipe_from_umh and
tgid need to be released.
Fixes:
|
||
Tal Lossos
|
f7c3d7615e |
bpf: Change inode_storage's lookup_elem return value from NULL to -EBADF
[ Upstream commit 769c18b254ca191b45047e1fcb3b2ce56fada0b6 ]
bpf_fd_inode_storage_lookup_elem() returned NULL when getting a bad FD,
which caused -ENOENT in bpf_map_copy_value. -EBADF error is better than
-ENOENT for a bad FD behaviour.
The patch was partially contributed by CyberArk Software, Inc.
Fixes:
|
||
Piotr Krysiuk
|
1010f17aaa |
bpf: Add sanity check for upper ptr_limit
commit 1b1597e64e1a610c7a96710fc4717158e98a08b3 upstream. Given we know the max possible value of ptr_limit at the time of retrieving the latter, add basic assertions, so that the verifier can bail out if anything looks odd and reject the program. Nothing triggered this so far, but it also does not hurt to have these. Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Piotr Krysiuk
|
6a3504bf40 |
bpf: Simplify alu_limit masking for pointer arithmetic
commit b5871dca250cd391885218b99cc015aca1a51aea upstream. Instead of having the mov32 with aux->alu_limit - 1 immediate, move this operation to retrieve_ptr_limit() instead to simplify the logic and to allow for subsequent sanity boundary checks inside retrieve_ptr_limit(). This avoids in future that at the time of the verifier masking rewrite we'd run into an underflow which would not sign extend due to the nature of mov32 instruction. Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |