Commit Graph

212 Commits

Author SHA1 Message Date
David S. Miller
6026e043d0 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Three cases of simple overlapping changes.

Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-01 17:42:05 -07:00
Parthasarathy Bhuvaragan
991ca84daa tipc: context imbalance at node read unlock
If we fail to find a valid bearer in tipc_node_get_linkname(),
node_read_unlock() is called without holding the node read lock.

This commit fixes this error.

Signed-off-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-24 21:54:34 -07:00
Parthasarathy Bhuvaragan
27163138b4 tipc: perform skb_linearize() before parsing the inner header
In tipc_rcv(), we linearize only the header and usually the packets
are consumed as the nodes permit direct reception. However, if the
skb contains tunnelled message due to fail over or synchronization
we parse it in tipc_node_check_state() without performing
linearization. This will cause link disturbances if the skb was
non linear.

In this commit, we perform linearization for the above messages.

Signed-off-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-24 21:54:34 -07:00
Jon Paul Maloy
40501f90ed tipc: don't reset stale broadcast send link
When the broadcast send link after 100 attempts has failed to
transfer a packet to all peers, we consider it stale, and reset
it. Thereafter it needs to re-synchronize with the peers, something
currently done by just resetting and re-establishing all links to
all peers. This has turned out to be overkill, with potentially
unwanted consequences for the remaining cluster.

A closer analysis reveals that this can be done much simpler. When
this kind of failure happens, for reasons that may lie outside the
TIPC protocol, it is typically only one peer which is failing to
receive and acknowledge packets. It is hence sufficient to identify
and reset the links only to that peer to resolve the situation, without
having to reset the broadcast link at all. This solution entails a much
lower risk of negative consequences for the own node as well as for
the overall cluster.

We implement this change in this commit.

Reviewed-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-21 13:37:45 -07:00
Jon Paul Maloy
ed43594aed tipc: remove premature ESTABLISH FSM event at link synchronization
When a link between two nodes come up, both endpoints will initially
send out a STATE message to the peer, to increase the probability that
the peer endpoint also is up when the first traffic message arrives.
Thereafter, if the establishing link is the second link between two
nodes, this first "traffic" message is a TUNNEL_PROTOCOL/SYNCH message,
helping the peer to perform initial synchronization between the two
links.

However, the initial STATE message may be lost, in which case the SYNCH
message will be the first one arriving at the peer. This should also
work, as the SYNCH message itself will be used to take up the link
endpoint before  initializing synchronization.

Unfortunately the code for this case is broken. Currently, the link is
brought up through a tipc_link_fsm_evt(ESTABLISHED) when a SYNCH
arrives, whereupon __tipc_node_link_up() is called to distribute the
link slots and take the link into traffic. But, __tipc_node_link_up() is
itself starting with a test for whether the link is up, and if true,
returns without action. Clearly, the tipc_link_fsm_evt(ESTABLISHED) call
is unnecessary, since tipc_node_link_up() is itself issuing such an
event, but also harmful, since it inhibits tipc_node_link_up() to
perform the test of its tasks, and the link endpoint in question hence
is never taken into traffic.

This problem has been exposed when we set up dual links between pre-
and post-4.4 kernels, because the former ones don't send out the
initial STATE message described above.

We fix this by removing the unnecessary event call.

Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-09 22:38:06 -07:00
Pan Bian
78302fd405 tipc: check return value of nlmsg_new
Function nlmsg_new() will return a NULL pointer if there is no enough
memory, and its return value should be checked before it is used.
However, in function tipc_nl_node_get_monitor(), the validation of the
return value of function nlmsg_new() is missed. This patch fixes the
bug.

Signed-off-by: Pan Bian <bianpan2016@163.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-24 15:51:30 -04:00
Johannes Berg
fe52145f91 netlink: pass extended ACK struct where available
This is an add-on to the previous patch that passes the extended ACK
structure where it's already available by existing genl_info or extack
function arguments.

This was done with this spatch (with some manual adjustment of
indentation):

@@
expression A, B, C, D, E;
identifier fn, info;
@@
fn(..., struct genl_info *info, ...) {
...
-nlmsg_parse(A, B, C, D, E, NULL)
+nlmsg_parse(A, B, C, D, E, info->extack)
...
}

@@
expression A, B, C, D, E;
identifier fn, info;
@@
fn(..., struct genl_info *info, ...) {
<...
-nla_parse_nested(A, B, C, D, NULL)
+nla_parse_nested(A, B, C, D, info->extack)
...>
}

@@
expression A, B, C, D, E;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
<...
-nlmsg_parse(A, B, C, D, E, NULL)
+nlmsg_parse(A, B, C, D, E, extack)
...>
}

@@
expression A, B, C, D, E;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
<...
-nla_parse(A, B, C, D, E, NULL)
+nla_parse(A, B, C, D, E, extack)
...>
}

@@
expression A, B, C, D, E;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
...
-nlmsg_parse(A, B, C, D, E, NULL)
+nlmsg_parse(A, B, C, D, E, extack)
...
}

@@
expression A, B, C, D;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
<...
-nla_parse_nested(A, B, C, D, NULL)
+nla_parse_nested(A, B, C, D, extack)
...>
}

@@
expression A, B, C, D;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
<...
-nlmsg_validate(A, B, C, D, NULL)
+nlmsg_validate(A, B, C, D, extack)
...>
}

@@
expression A, B, C, D;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
<...
-nla_validate(A, B, C, D, NULL)
+nla_validate(A, B, C, D, extack)
...>
}

@@
expression A, B, C;
identifier fn, extack;
@@
fn(..., struct netlink_ext_ack *extack, ...) {
<...
-nla_validate_nested(A, B, C, NULL)
+nla_validate_nested(A, B, C, extack)
...>
}

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Reviewed-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-13 13:58:22 -04:00
Johannes Berg
fceb6435e8 netlink: pass extended ACK struct to parsing functions
Pass the new extended ACK reporting struct to all of the generic
netlink parsing functions. For now, pass NULL in almost all callers
(except for some in the core.)

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-04-13 13:58:22 -04:00
Jon Paul Maloy
681a55d717 tipc: move premature initilalization of stack variables
In the function tipc_rcv() we initialize a couple of stack variables
from the message header before that same header has been validated.
In rare cases when the arriving header is non-linar, the validation
function itself may linearize the buffer by calling skb_may_pull(),
while the wrongly initialized stack fields are not updated accordingly.

We fix this in this commit.

Reported-by: Matthew Wong <mwong@sonusnet.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-24 11:42:54 -05:00
David S. Miller
4e8f2fc1a5 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Two trivial overlapping changes conflicts in MPLS and mlx5.

Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-28 10:33:06 -05:00
Parthasarathy Bhuvaragan
93f955aad4 tipc: fix nametbl_lock soft lockup at node/link events
We trigger a soft lockup as we grab nametbl_lock twice if the node
has a pending node up/down or link up/down event while:
- we process an incoming named message in tipc_named_rcv() and
  perform an tipc_update_nametbl().
- we have pending backlog items in the name distributor queue
  during a nametable update using tipc_nametbl_publish() or
  tipc_nametbl_withdraw().

The following are the call chain associated:
tipc_named_rcv() Grabs nametbl_lock
   tipc_update_nametbl() (publish/withdraw)
     tipc_node_subscribe()/unsubscribe()
       tipc_node_write_unlock()
          << lockup occurs if an outstanding node/link event
             exits, as we grabs nametbl_lock again >>

tipc_nametbl_withdraw() Grab nametbl_lock
  tipc_named_process_backlog()
    tipc_update_nametbl()
      << rest as above >>

The function tipc_node_write_unlock(), in addition to releasing the
lock processes the outstanding node/link up/down events. To do this,
we need to grab the nametbl_lock again leading to the lockup.

In this commit we fix the soft lockup by introducing a fast variant of
node_unlock(), where we just release the lock. We adapt the
node_subscribe()/node_unsubscribe() to use the fast variants.

Reported-and-Tested-by: John Thompson <thompa.atl@gmail.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-24 16:14:57 -05:00
Jon Paul Maloy
a853e4c6d0 tipc: introduce replicast as transport option for multicast
TIPC multicast messages are currently carried over a reliable
'broadcast link', making use of the underlying media's ability to
transport packets as L2 broadcast or IP multicast to all nodes in
the cluster.

When the used bearer is lacking that ability, we can instead emulate
the broadcast service by replicating and sending the packets over as
many unicast links as needed to reach all identified destinations.
We now introduce a new TIPC link-level 'replicast' service that does
this.

Reviewed-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-20 12:10:17 -05:00
Jon Paul Maloy
365ad353c2 tipc: reduce risk of user starvation during link congestion
The socket code currently handles link congestion by either blocking
and trying to send again when the congestion has abated, or just
returning to the user with -EAGAIN and let him re-try later.

This mechanism is prone to starvation, because the wakeup algorithm is
non-atomic. During the time the link issues a wakeup signal, until the
socket wakes up and re-attempts sending, other senders may have come
in between and occupied the free buffer space in the link. This in turn
may lead to a socket having to make many send attempts before it is
successful. In extremely loaded systems we have observed latency times
of several seconds before a low-priority socket is able to send out a
message.

In this commit, we simplify this mechanism and reduce the risk of the
described scenario happening. When a message is attempted sent via a
congested link, we now let it be added to the link's backlog queue
anyway, thus permitting an oversubscription of one message per source
socket. We still create a wakeup item and return an error code, hence
instructing the sender to block or stop sending. Only when enough space
has been freed up in the link's backlog queue do we issue a wakeup event
that allows the sender to continue with the next message, if any.

The fact that a socket now can consider a message sent even when the
link returns a congestion code means that the sending socket code can
be simplified. Also, since this is a good opportunity to get rid of the
obsolete 'mtu change' condition in the three socket send functions, we
now choose to refactor those functions completely.

Signed-off-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-03 11:13:05 -05:00
Jon Paul Maloy
06bd2b1ed0 tipc: fix broadcast link synchronization problem
In commit 2d18ac4ba7 ("tipc: extend broadcast link initialization
criteria") we tried to fix a problem with the initial synchronization
of broadcast link acknowledge values. Unfortunately that solution is
not sufficient to solve the issue.

We have seen it happen that LINK_PROTOCOL/STATE packets with a valid
non-zero unicast acknowledge number may bypass BCAST_PROTOCOL
initialization, NAME_DISTRIBUTOR and other STATE packets with invalid
broadcast acknowledge numbers, leading to premature opening of the
broadcast link. When the bypassed packets finally arrive, they are
inadvertently accepted, and the already correctly initialized
acknowledge number in the broadcast receive link is overwritten by
the invalid (zero) value of the said packets. After this the broadcast
link goes stale.

We now fix this by marking the packets where we know the acknowledge
value is or may be invalid, and then ignoring the acks from those.

To this purpose, we claim an unused bit in the header to indicate that
the value is invalid. We set the bit to 1 in the initial BCAST_PROTOCOL
synchronization packet and all initial ("bulk") NAME_DISTRIBUTOR
packets, plus those LINK_PROTOCOL packets sent out before the broadcast
links are fully synchronized.

This minor protocol update is fully backwards compatible.

Reported-by: John Thompson <thompa.atl@gmail.com>
Tested-by: John Thompson <thompa.atl@gmail.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-29 17:21:09 -04:00
Jon Paul Maloy
02d11ca200 tipc: transfer broadcast nacks in link state messages
When we send broadcasts in clusters of more 70-80 nodes, we sometimes
see the broadcast link resetting because of an excessive number of
retransmissions. This is caused by a combination of two factors:

1) A 'NACK crunch", where loss of broadcast packets is discovered
   and NACK'ed by several nodes simultaneously, leading to multiple
   redundant broadcast retransmissions.

2) The fact that the NACKS as such also are sent as broadcast, leading
   to excessive load and packet loss on the transmitting switch/bridge.

This commit deals with the latter problem, by moving sending of
broadcast nacks from the dedicated BCAST_PROTOCOL/NACK message type
to regular unicast LINK_PROTOCOL/STATE messages. We allocate 10 unused
bits in word 8 of the said message for this purpose, and introduce a
new capability bit, TIPC_BCAST_STATE_NACK in order to keep the change
backwards compatible.

Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-02 17:10:24 -07:00
Richard Alpe
b34040227b tipc: add peer removal functionality
Add TIPC_NL_PEER_REMOVE netlink command. This command can remove
an offline peer node from the internal data structures.

This will be supported by the tipc user space tool in iproute2.

Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-18 23:36:07 -07:00
Parthasarathy Bhuvaragan
cf6f7e1d51 tipc: dump monitor attributes
In this commit, we dump the monitor attributes when queried.
The link monitor attributes are separated into two kinds:
1. general attributes per bearer
2. specific attributes per node/peer
This style resembles the socket attributes and the nametable
publications per socket.

Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-26 14:26:42 -07:00
Parthasarathy Bhuvaragan
bf1035b2ff tipc: get monitor threshold for the cluster
In this commit, we add support to fetch the configured
cluster monitoring threshold.

Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-26 14:26:42 -07:00
Parthasarathy Bhuvaragan
7b3f522964 tipc: make cluster size threshold for monitoring configurable
In this commit, we introduce support to configure the minimum
threshold to activate the new link monitoring algorithm.

Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-26 14:26:42 -07:00
David S. Miller
de0ba9a0d8 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Just several instances of overlapping changes.

Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-24 00:53:32 -04:00
Jon Paul Maloy
1fc07f3e15 tipc: reset all unicast links when broadcast send link fails
In test situations with many nodes and a heavily stressed system we have
observed that the transmission broadcast link may fail due to an
excessive number of retransmissions of the same packet. In such
situations we need to reset all unicast links to all peers, in order to
reset and re-synchronize the broadcast link.

In this commit, we add a new function tipc_bearer_reset_all() to be used
in such situations. The function scans across all bearers and resets all
their pertaining links.

Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-11 22:42:12 -07:00
Jon Paul Maloy
35c55c9877 tipc: add neighbor monitoring framework
TIPC based clusters are by default set up with full-mesh link
connectivity between all nodes. Those links are expected to provide
a short failure detection time, by default set to 1500 ms. Because
of this, the background load for neighbor monitoring in an N-node
cluster increases with a factor N on each node, while the overall
monitoring traffic through the network infrastructure increases at
a ~(N * (N - 1)) rate. Experience has shown that such clusters don't
scale well beyond ~100 nodes unless we significantly increase failure
discovery tolerance.

This commit introduces a framework and an algorithm that drastically
reduces this background load, while basically maintaining the original
failure detection times across the whole cluster. Using this algorithm,
background load will now grow at a rate of ~(2 * sqrt(N)) per node, and
at ~(2 * N * sqrt(N)) in traffic overhead. As an example, each node will
now have to actively monitor 38 neighbors in a 400-node cluster, instead
of as before 399.

This "Overlapping Ring Supervision Algorithm" is completely distributed
and employs no centralized or coordinated state. It goes as follows:

- Each node makes up a linearly ascending, circular list of all its N
  known neighbors, based on their TIPC node identity. This algorithm
  must be the same on all nodes.

- The node then selects the next M = sqrt(N) - 1 nodes downstream from
  itself in the list, and chooses to actively monitor those. This is
  called its "local monitoring domain".

- It creates a domain record describing the monitoring domain, and
  piggy-backs this in the data area of all neighbor monitoring messages
  (LINK_PROTOCOL/STATE) leaving that node. This means that all nodes in
  the cluster eventually (default within 400 ms) will learn about
  its monitoring domain.

- Whenever a node discovers a change in its local domain, e.g., a node
  has been added or has gone down, it creates and sends out a new
  version of its node record to inform all neighbors about the change.

- A node receiving a domain record from anybody outside its local domain
  matches this against its own list (which may not look the same), and
  chooses to not actively monitor those members of the received domain
  record that are also present in its own list. Instead, it relies on
  indications from the direct monitoring nodes if an indirectly
  monitored node has gone up or down. If a node is indicated lost, the
  receiving node temporarily activates its own direct monitoring towards
  that node in order to confirm, or not, that it is actually gone.

- Since each node is actively monitoring sqrt(N) downstream neighbors,
  each node is also actively monitored by the same number of upstream
  neighbors. This means that all non-direct monitoring nodes normally
  will receive sqrt(N) indications that a node is gone.

- A major drawback with ring monitoring is how it handles failures that
  cause massive network partitionings. If both a lost node and all its
  direct monitoring neighbors are inside the lost partition, the nodes in
  the remaining partition will never receive indications about the loss.
  To overcome this, each node also chooses to actively monitor some
  nodes outside its local domain. Those nodes are called remote domain
  "heads", and are selected in such a way that no node in the cluster
  will be more than two direct monitoring hops away. Because of this,
  each node, apart from monitoring the member of its local domain, will
  also typically monitor sqrt(N) remote head nodes.

- As an optimization, local list status, domain status and domain
  records are marked with a generation number. This saves senders from
  unnecessarily conveying  unaltered domain records, and receivers from
  performing unneeded re-adaptations of their node monitoring list, such
  as re-assigning domain heads.

- As a measure of caution we have added the possibility to disable the
  new algorithm through configuration. We do this by keeping a threshold
  value for the cluster size; a cluster that grows beyond this value
  will switch from full-mesh to ring monitoring, and vice versa when
  it shrinks below the value. This means that if the threshold is set to
  a value larger than any anticipated cluster size (default size is 32)
  the new algorithm is effectively disabled. A patch set for altering the
  threshold value and for listing the table contents will follow shortly.

- This change is fully backwards compatible.

Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-15 14:06:28 -07:00
Jon Paul Maloy
5ca509fc0b tipc: change node timer unit from jiffies to ms
The node keepalive interval is recalculated at each timer expiration
to catch any changes in the link tolerance, and stored in a field in
struct tipc_node. We use jiffies as unit for the stored value.

This is suboptimal, because it makes the calculation unnecessary
complex, including two unit conversions. The conversions also lead to
a rounding error that causes the link "abort limit" to be 3 in the
normal case, instead of 4, as intended. This again leads to unnecessary
link resets when the network is pushed close to its limit, e.g., in an
environment with hundreds of nodes or namesapces.

In this commit, we do instead let the keepalive value be calculated and
stored in milliseconds, so that there is only one conversion and the
rounding error is eliminated.

We also remove a redundant "keepalive" field in struct tipc_link. This
is remnant from the previous implementation.

Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-08 11:27:02 -07:00
Jon Paul Maloy
c4282ca76c tipc: correct error in node fsm
commit 88e8ac7000 ("tipc: reduce transmission rate of reset messages
when link is down") revealed a flaw in the node FSM, as defined in
the log of commit 66996b6c47 ("tipc: extend node FSM").

We see the following scenario:
1: Node B receives a RESET message from node A before its link endpoint
   is fully up, i.e., the node FSM is in state SELF_UP_PEER_COMING. This
   event will not change the node FSM state, but the (distinct) link FSM
   will move to state RESETTING.
2: As an effect of the previous event, the local endpoint on B will
   declare node A lost, and post the event SELF_DOWN to the its node
   FSM. This moves the FSM state to SELF_DOWN_PEER_LEAVING, meaning
   that no messages will be accepted from A until it receives another
   RESET message that confirms that A's endpoint has been reset. This
   is  wasteful, since we know this as a fact already from the first
   received RESET, but worse is that the link instance's FSM has not
   wasted this information, but instead moved on to state ESTABLISHING,
   meaning that it repeatedly sends out ACTIVATE messages to the reset
   peer A.
3: Node A will receive one of the ACTIVATE messages, move its link FSM
   to state ESTABLISHED, and start repeatedly sending out STATE messages
   to node B.
4: Node B will consistently drop these messages, since it can only accept
   accept a RESET according to its node FSM.
5: After four lost STATE messages node A will reset its link and start
   repeatedly sending out RESET messages to B.
6: Because of the reduced send rate for RESET messages, it is very
   likely that A will receive an ACTIVATE (which is sent out at a much
   higher frequency) before it gets the chance to send a RESET, and A
   may hence quickly move back to state ESTABLISHED and continue sending
   out STATE messages, which will again be dropped by B.
7: GOTO 5.
8: After having repeated the cycle 5-7 a number of times, node A will
   by chance get in between with sending a RESET, and the situation is
   resolved.

Unfortunately, we have seen that it may take a substantial amount of
time before this vicious loop is broken, sometimes in the order of
minutes.

We correct this by making a small correction to the node FSM: When a
node in state SELF_UP_PEER_COMING receives a SELF_DOWN event, it now
moves directly back to state SELF_DOWN_PEER_DOWN, instead of as now
SELF_DOWN_PEER_LEAVING. This is logically consistent, since we don't
need to wait for RESET confirmation from of an endpoint that we alread
know has been reset. It also means that node B in the scenario above
will not be dropping incoming STATE messages, and the link can come up
immediately.

Finally, a symmetry comparison reveals that the  FSM has a similar
error when receiving the event PEER_DOWN in state PEER_UP_SELF_COMING.
Instead of moving to PERR_DOWN_SELF_LEAVING, it should move directly
to SELF_DOWN_PEER_DOWN. Although we have never seen any negative effect
of this logical error, we choose fix this one, too.

The node FSM looks as follows after those changes:

                           +----------------------------------------+
                           |                           PEER_DOWN_EVT|
                           |                                        |
  +------------------------+----------------+                       |
  |SELF_DOWN_EVT           |                |                       |
  |                        |                |                       |
  |              +-----------+          +-----------+               |
  |              |NODE_      |          |NODE_      |               |
  |   +----------|FAILINGOVER|<---------|SYNCHING   |-----------+   |
  |   |SELF_     +-----------+ FAILOVER_+-----------+   PEER_   |   |
  |   |DOWN_EVT   |          A BEGIN_EVT  A         |   DOWN_EVT|   |
  |   |           |          |            |         |           |   |
  |   |           |          |            |         |           |   |
  |   |           |FAILOVER_ |FAILOVER_   |SYNCH_   |SYNCH_     |   |
  |   |           |END_EVT   |BEGIN_EVT   |BEGIN_EVT|END_EVT    |   |
  |   |           |          |            |         |           |   |
  |   |           |          |            |         |           |   |
  |   |           |         +--------------+        |           |   |
  |   |           +-------->|   SELF_UP_   |<-------+           |   |
  |   |   +-----------------|   PEER_UP    |----------------+   |   |
  |   |   |SELF_DOWN_EVT    +--------------+   PEER_DOWN_EVT|   |   |
  |   |   |                    A        A                   |   |   |
  |   |   |                    |        |                   |   |   |
  |   |   |         PEER_UP_EVT|        |SELF_UP_EVT        |   |   |
  |   |   |                    |        |                   |   |   |
  V   V   V                    |        |                   V   V   V
+------------+       +-----------+    +-----------+       +------------+
|SELF_DOWN_  |       |SELF_UP_   |    |PEER_UP_   |       |PEER_DOWN   |
|PEER_LEAVING|       |PEER_COMING|    |SELF_COMING|       |SELF_LEAVING|
+------------+       +-----------+    +-----------+       +------------+
       |               |       A        A       |                |
       |               |       |        |       |                |
       |       SELF_   |       |SELF_   |PEER_  |PEER_           |
       |       DOWN_EVT|       |UP_EVT  |UP_EVT |DOWN_EVT        |
       |               |       |        |       |                |
       |               |       |        |       |                |
       |               |    +--------------+    |                |
       |PEER_DOWN_EVT  +--->|  SELF_DOWN_  |<---+   SELF_DOWN_EVT|
       +------------------->|  PEER_DOWN   |<--------------------+
                            +--------------+

Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-08 11:27:01 -07:00
Jon Paul Maloy
e7142c341c tipc: eliminate risk of double link_up events
When an ACTIVATE or data packet is received in a link in state
ESTABLISHING, the link does not immediately change state to
ESTABLISHED, but does instead return a LINK_UP event to the caller,
which will execute the state change in a different lock context.

This non-atomic approach incurs a low risk that we may have two
LINK_UP events pending simultaneously for the same link, resulting
in the final part of the setup procedure being executed twice. The
only potential harm caused by this it that we may see two LINK_UP
events issued to subsribers of the topology server, something that
may cause confusion.

This commit eliminates this risk by checking if the link is already
up before proceeding with the second half of the setup.

Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-12 17:11:27 -04:00
David S. Miller
cba6532100 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Conflicts:
	net/ipv4/ip_gre.c

Minor conflicts between tunnel bug fixes in net and
ipv6 tunnel cleanups in net-next.

Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-04 00:52:29 -04:00
Jon Paul Maloy
60020e1857 tipc: propagate peer node capabilities to socket layer
During neighbor discovery, nodes advertise their capabilities as a bit
map in a dedicated 16-bit field in the discovery message header. This
bit map has so far only be stored in the node structure on the peer
nodes, but we now see the need to keep a copy even in the socket
structure.

This commit adds this functionality.

Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-03 15:51:15 -04:00
Hamish Martin
efe790502b tipc: only process unicast on intended node
We have observed complete lock up of broadcast-link transmission due to
unacknowledged packets never being removed from the 'transmq' queue. This
is traced to nodes having their ack field set beyond the sequence number
of packets that have actually been transmitted to them.
Consider an example where node 1 has sent 10 packets to node 2 on a
link and node 3 has sent 20 packets to node 2 on another link. We
see examples of an ack from node 2 destined for node 3 being treated as
an ack from node 2 at node 1. This leads to the ack on the node 1 to node
2 link being increased to 20 even though we have only sent 10 packets.
When node 1 does get around to sending further packets, none of the
packets with sequence numbers less than 21 are actually removed from the
transmq.
To resolve this we reinstate some code lost in commit d999297c3d ("tipc:
reduce locking scope during packet reception") which ensures that only
messages destined for the receiving node are processed by that node. This
prevents the sequence numbers from getting out of sync and resolves the
packet leakage, thereby resolving the broadcast-link transmission
lock-ups we observed.

While we are aware that this change only patches over a root problem that
we still haven't identified, this is a sanity test that it is always
legitimate to do. It will remain in the code even after we identify and
fix the real problem.

Reviewed-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
Reviewed-by: John Thompson <john.thompson@alliedtelesis.co.nz>
Signed-off-by: Hamish Martin <hamish.martin@alliedtelesis.co.nz>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-01 21:03:30 -04:00
Jon Paul Maloy
def22c47d7 tipc: set 'active' state correctly for first established link
When we are displaying statistics for the first link established between
two peers, it will always be presented as STANDBY although it in reality
is ACTIVE.

This happens because we forget to set the 'active' flag in the link
instance at the moment it is established. Although this is a bug, it only
has impact on the presentation view of the link, not on its actual
functionality.

Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-01 19:40:22 -04:00
Jon Paul Maloy
34b9cd64c8 tipc: let first message on link be a state message
According to the link FSM, a received traffic packet can take a link
from state ESTABLISHING to ESTABLISHED, but the link can still not be
fully set up in one atomic operation. This means that even if the the
very first packet on the link is a traffic packet with sequence number
1 (one), it has to be dropped and retransmitted.

This can be avoided if we let the mentioned packet be preceded by a
LINK_PROTOCOL/STATE message, which takes up the endpoint before the
arrival of the traffic.

We add this small feature in this commit.

This is a fully compatible change.

Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-15 16:09:06 -04:00
Jon Paul Maloy
de7e07f9ee tipc: ensure that first packets on link are sent in order
In some link establishment scenarios we see that packet #2 may be sent
out before packet #1, forcing the receiver to demand retransmission of
the missing packet. This is harmless, but may cause confusion among
people tracing the packet flow.

Since this is extremely easy to fix, we do so by adding en extra send
call to the bearer immediately after the link has come up.

Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-15 16:09:06 -04:00
Richard Alpe
49cc66eaee tipc: move netlink policies to netlink.c
Make the c files less cluttered and enable netlink attributes to be
shared between files.

Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Acked-by: Parthasarathy Bhuvaragan <parthasarathy.bhuvaragan@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-07 14:56:41 -05:00
Richard Alpe
2837f39c7c tipc: don't check link reset on non existing link
Make sure we have a link before checking if it has been reset or not.

Prior to this patch tipc_link_is_reset() could be called with a non
existing link, resulting in a null pointer dereference.

Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Erik Hugne <erik.hugne@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-06 22:54:56 -05:00
Jon Paul Maloy
d25a01257e tipc: fix crash during node removal
When the TIPC module is unloaded, we have identified a race condition
that allows a node reference counter to go to zero and the node instance
being freed before the node timer is finished with accessing it. This
leads to occasional crashes, especially in multi-namespace environments.

The scenario goes as follows:

CPU0:(node_stop)                       CPU1:(node_timeout)  // ref == 2

1:                                          if(!mod_timer())
2: if (del_timer())
3:   tipc_node_put()                                        // ref -> 1
4: tipc_node_put()                                          // ref -> 0
5:   kfree_rcu(node);
6:                                               tipc_node_get(node)
7:                                               // BOOM!

We now clean up this functionality as follows:

1) We remove the node pointer from the node lookup table before we
   attempt deactivating the timer. This way, we reduce the risk that
   tipc_node_find() may obtain a valid pointer to an instance marked
   for deletion; a harmless but undesirable situation.

2) We use del_timer_sync() instead of del_timer() to safely deactivate
   the node timer without any risk that it might be reactivated by the
   timeout handler. There is no risk of deadlock here, since the two
   functions never touch the same spinlocks.

3: We remove a pointless tipc_node_get() + tipc_node_put() from the
   timeout handler.

Reported-by: Zhijiang Hu <huzhijiang@gmail.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-25 17:04:48 -05:00
Jon Paul Maloy
b170997ace tipc: eliminate risk of finding to-be-deleted node instance
Although we have never seen it happen, we have identified the
following problematic scenario when nodes are stopped and deleted:

CPU0:                            CPU1:

tipc_node_xxx()                                   //ref == 1
   tipc_node_put()                                //ref -> 0
                                 tipc_node_find() // node still in table
       tipc_node_delete()
         list_del_rcu(n. list)
                                 tipc_node_get()  //ref -> 1, bad
         kfree_rcu()

                                 tipc_node_put() //ref to 0 again.
                                 kfree_rcu()     // BOOM!

We fix this by introducing use of the conditional kref_get_if_not_zero()
instead of kref_get() in the function tipc_node_find(). This eliminates
any risk of post-mortem access.

Reported-by: Zhijiang Hu <huzhijiang@gmail.com>
Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-25 17:04:48 -05:00
David S. Miller
b633353115 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Conflicts:
	drivers/net/phy/bcm7xxx.c
	drivers/net/phy/marvell.c
	drivers/net/vxlan.c

All three conflicts were cases of simple overlapping changes.

Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-23 00:09:14 -05:00
Richard Alpe
4952cd3e7b tipc: refactor node xmit and fix memory leaks
Refactor tipc_node_xmit() to fail fast and fail early. Fix several
potential memory leaks in unexpected error paths.

Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-16 15:58:40 -05:00
Jon Paul Maloy
d5c91fb72f tipc: fix premature addition of node to lookup table
In commit 5266698661 ("tipc: let broadcast packet reception
use new link receive function") we introduced a new per-node
broadcast reception link instance. This link is created at the
moment the node itself is created. Unfortunately, the allocation
is done after the node instance has already been added to the node
lookup hash table. This creates a potential race condition, where
arriving broadcast packets are able to find and access the node
before it has been fully initialized, and before the above mentioned
link has been created. The result is occasional crashes in the function
tipc_bcast_rcv(), which is trying to access the not-yet existing link.

We fix this by deferring the addition of the node instance until after
it has been fully initialized in the function tipc_node_create().

Acked-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-16 15:57:11 -05:00
Richard Alpe
d01332f1ac tipc: fix link attribute propagation bug
Changing certain link attributes (link tolerance and link priority)
from the TIPC management tool is supposed to automatically take
effect at both endpoints of the affected link.

Currently the media address is not instantiated for the link and is
used uninstantiated when crafting protocol messages designated for the
peer endpoint. This means that changing a link property currently
results in the property being changed on the local machine but the
protocol message designated for the peer gets lost. Resulting in
property discrepancy between the endpoints.

In this patch we resolve this by using the media address from the
link entry and using the bearer transmit function to send it. Hence,
we can now eliminate the redundant function tipc_link_prot_xmit() and
the redundant field tipc_link::media_addr.

Fixes: 2af5ae372a (tipc: clean up unused code and structures)
Reviewed-by: Jon Maloy <jon.maloy@ericsson.com>
Reported-by: Jason Hu <huzhijiang@gmail.com>
Signed-off-by: Richard Alpe <richard.alpe@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-06 02:45:27 -05:00
Jon Paul Maloy
dc8d1eb305 tipc: fix node reference count bug
Commit 5405ff6e15 ("tipc: convert node lock to rwlock")
introduced a bug to the node reference counter handling. When a
message is successfully sent in the function tipc_node_xmit(),
we return directly after releasing the node lock, instead of
continuing and decrementing the node reference counter as we
should do.

This commit fixes this bug.

Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-03 15:19:40 -05:00
Jon Paul Maloy
1a90632da8 tipc: eliminate remnants of hungarian notation
The number of variables with Hungarian notation (l_ptr, n_ptr etc.)
has been significantly reduced over the last couple of years.

We now root out the last traces of this practice.
There are no functional changes in this commit.

Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-20 14:06:10 -05:00
Jon Paul Maloy
38206d5939 tipc: narrow down interface towards struct tipc_link
We move the definition of struct tipc_link from link.h to link.c in
order to minimize its exposure to the rest of the code.

When needed, we define new functions to make it possible for external
entities to access and set data in the link.

Apart from the above, there are no functional changes.

Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-20 14:06:10 -05:00
Jon Paul Maloy
5be9c08671 tipc: narrow down exposure of struct tipc_node
In our effort to have less code and include dependencies between
entities such as node, link and bearer, we try to narrow down
the exposed interface towards the node as much as possible.

In this commit, we move the definition of struct tipc_node, along
with many of its associated function declarations, from node.h to
node.c. We also move some function definitions from link.c and
name_distr.c to node.c, since they access fields in struct tipc_node
that should not be externally visible. The moved functions are renamed
according to new location, and made static whenever possible.

There are no functional changes in this commit.

Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-20 14:06:10 -05:00
Jon Paul Maloy
5405ff6e15 tipc: convert node lock to rwlock
According to the node FSM a node in state SELF_UP_PEER_UP cannot
change state inside a lock context, except when a TUNNEL_PROTOCOL
(SYNCH or FAILOVER) packet arrives. However, the node's individual
links may still change state.

Since each link now is protected by its own spinlock, we finally have
the conditions in place to convert the node spinlock to an rwlock_t.
If the node state and arriving packet type are rigth, we can let the
link directly receive the packet under protection of its own spinlock
and the node lock in read mode. In all other cases we use the node
lock in write mode. This enables full concurrent execution between
parallel links during steady-state traffic situations, i.e., 99+ %
of the time.

This commit implements this change.

Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-20 14:06:10 -05:00
Jon Paul Maloy
2312bf61ae tipc: introduce per-link spinlock
As a preparation to allow parallel links to work more independently
from each other we introduce a per-link spinlock, to be stored in the
struct nodes's link entry area. Since the node lock still is a regular
spinlock there is no increase in parallellism at this stage.

Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-20 14:06:10 -05:00
Jon Paul Maloy
1d7e1c2595 tipc: reduce code dependency between binding table and node layer
The file name_distr.c currently contains three functions,
named_cluster_distribute(), tipc_publ_subcscribe() and
tipc_publ_unsubscribe() that all directly access fields in
struct tipc_node. We want to eliminate such dependencies, so
we move those functions to the file node.c and rename them to
tipc_node_broadcast(), tipc_node_subscribe() and tipc_node_unsubscribe()
respectively.

Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-20 14:06:10 -05:00
Jon Paul Maloy
5c10e97940 tipc: small cleanup of function tipc_node_check_state()
The function tipc_node_check_state() contains the core logics
for handling link synchronization and failover. For this reason,
it is important to keep it as comprehensible as possible.

In this commit, we make three small cleanups.

1) If the node is in state SELF_DOWN_PEER_LEAVING and the received
   packet confirms that the peer has lost contact, there will be no
   further action in this function. To make this clearer, we return
   from the function directly after the state change.

2) Since commit 0f8b8e28fb ("tipc: eliminate risk of stalled
   link synchronization") only the logically first TUNNEL_PROTO/SYNCH
   packet can alter the link state and set the synch point,
   independently of arrival order. Hence, there is not any longer any
   need to adjust the synch value in case such packets arrive in
   disorder. We remove this adjustment.

3) It is the intention that any message arriving on any of the links
   may trig a check for and possible termination of a node SYNCH state.
   A redundant and unnoticed check for tipc_link_is_synching() obviously
   beats this purpose, with the effect that only packets arriving on the
   synching link may currently end the synch state. We remove this check.
   This change will further shorten the synchronization period between
   parallel links.

Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-11-20 14:06:10 -05:00
Wu Fengguang
742e038330 tipc: link_is_bc_sndlink() can be static
TO: "David S. Miller" <davem@davemloft.net>
CC: netdev@vger.kernel.org
CC: Jon Maloy <jon.maloy@ericsson.com>
CC: Ying Xue <ying.xue@windriver.com>
CC: tipc-discussion@lists.sourceforge.net
CC: linux-kernel@vger.kernel.org

Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Acked-by: Jon Maloy <jon.maloy@ericsson.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-25 06:31:52 -07:00
Jon Paul Maloy
2af5ae372a tipc: clean up unused code and structures
After the previous changes in this series, we can now remove some
unused code and structures, both in the broadcast, link aggregation
and link code.

There are no functional changes in this commit.

Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-24 06:56:47 -07:00
Jon Paul Maloy
c49a0a8439 tipc: ensure binding table initial distribution is sent via first link
Correct synchronization of the broadcast link at first contact between
two nodes is dependent on the assumption that the binding table "bulk"
update passes via the same link as the initial broadcast syncronization
message, i.e., via the first link that is established.

This is not guaranteed in the current implementation. If two link
come up very close to each other in time, the "bulk" may quite well
pass via the second link, and hence void the guarantee of a correct
initial synchronization before the broadcast link is opened.

This commit makes two small changes to strengthen this guarantee.

1) We let the second established link occupy slot 1 of the
   "active_links" array, while the first link will retain slot 0.
   (This is in reality a cosmetic change, we could just as well keep
    the current, opposite order)

2) We let the name distributor always use link selector/slot 0 when
   it sends it binding table updates.

The extra traffic bias on the first link caused by this change should
be negligible, since binding table updates constitutes a very small
fraction of the total traffic.

Signed-off-by: Jon Maloy <jon.maloy@ericsson.com>
Reviewed-by: Ying Xue <ying.xue@windriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-24 06:56:46 -07:00