Commit Graph

7 Commits

Author SHA1 Message Date
Linus Torvalds
988faa7312 Merge branch 'mailbox-for-next' of git://git.linaro.org/landing-teams/working/fujitsu/integration
Pull more mailbox updates from Jassi Brar:
 "Device tree bindings and driver for TI's Message-Manager controller.

  Due to some last minute cosmetic changes, the driver was not included
  in the first pull request, otherwise the driver has been reviewed
  twice"

* 'mailbox-for-next' of git://git.linaro.org/landing-teams/working/fujitsu/integration:
  mailbox: Introduce TI message manager driver
  Documentation: dt: mailbox: Add TI Message Manager
2016-03-23 06:09:15 -07:00
Nishanth Menon
aace66b170 mailbox: Introduce TI message manager driver
Support for TI Message Manager Module. This hardware block manages a
bunch of hardware queues meant for communication between processor
entities.

Clients sitting on top of this would manage the required protocol
for communicating with the counterpart entities.

For more details on TI Message Manager hardware block, see documentation
that will is available here: http://www.ti.com/lit/ug/spruhy8/spruhy8.pdf
Chapter 8.1(Message Manager)

Signed-off-by: Nishanth Menon <nm@ti.com>
Signed-off-by: Jassi Brar <jaswinder.singh@linaro.org>
2016-03-21 20:33:15 +05:30
Karicheri, Muralidharan
b1cb86ae0e soc: ti: knav_dma: rename pad in struct knav_dma_desc to sw_data
Rename the pad to sw_data as per description of this field in the hardware
spec(refer sprugr9 from www.ti.com). Latest version of the document is
at http://www.ti.com/lit/ug/sprugr9h/sprugr9h.pdf and section 3.1
Host Packet Descriptor describes this field.

Define and use a constant for the size of sw_data field similar to
other fields in the struct for desc and document the sw_data field
in the header. As the sw_data is not touched by hw, it's type can be
changed to u32.

Rename the helpers to match with the updated dma desc field sw_data.

Cc: Wingman Kwok <w-kwok2@ti.com>
Cc: Mugunthan V N <mugunthanvnm@ti.com>
CC: Arnd Bergmann <arnd@arndb.de>
CC: Grygorii Strashko <grygorii.strashko@ti.com>
CC: David Laight <David.Laight@ACULAB.COM>
Signed-off-by: Murali Karicheri <m-karicheri2@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-21 22:03:15 -05:00
Arnd Bergmann
8990777914 netcp: try to reduce type confusion in descriptors
The netcp driver produces tons of warnings when CONFIG_LPAE is enabled
on ARM:

drivers/net/ethernet/ti/netcp_core.c: In function 'netcp_tx_map_skb':
drivers/net/ethernet/ti/netcp_core.c:1084:13: warning: passing argument 1 of 'set_words' from incompatible pointer type [-Wincompatible-pointer-types]

This is the result of trying to pass a pointer to a dma_addr_t to
a function that expects a u32 pointer to copy that into a DMA descriptor.

Looking at that code in more detail to fix the warnings, I see multiple
related problems:

* The conversion functions are not endian-safe, as the DMA descriptors
  are almost certainly fixed-endian, but the CPU is not.

* On 64-bit machines, passing a pointer through a u32 variable is a
  bug, accessing an indirect pointer as a u32 pointer even more so.

* The handling of epib and psdata mixes native-endian and device-endian
  data.

In this patch, I try to sort out the types for most accesses here,
adding le32_to_cpu/cpu_to_le32 where appropriate, and passing pointers
through two 32-bit words in the descriptor padding, to make it plausible
that the driver does the right thing if compiled for big-endian or
64-bit systems.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-11 19:34:39 -05:00
Olof Johansson
b2fc3f3c6d drivers/soc: ti: fix build break with modules
Fixes below build break by not switching to stubs when the driver is a module:

drivers/soc/ti/knav_dma.c:418:7: error: redefinition of 'knav_dma_open_channel'
 void *knav_dma_open_channel(struct device *dev, const char *name,
       ^
In file included from drivers/soc/ti/knav_dma.c:26:0:
include/linux/soc/ti/knav_dma.h:165:21: note: previous definition of 'knav_dma_open_channel' was here
 static inline void *knav_dma_open_channel(struct device *dev, const char *name,
                     ^

Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Olof Johansson <olof@lixom.net>
2014-09-24 11:53:39 -07:00
Santosh Shilimkar
88139ed030 soc: ti: add Keystone Navigator DMA support
The Keystone Navigator DMA driver sets up the dma channels and flows for
the QMSS(Queue Manager SubSystem) who triggers the actual data movements
across clients using destination queues. Every client modules like
NETCP(Network Coprocessor), SRIO(Serial Rapid IO) and CRYPTO
Engines has its own instance of packet dma hardware. QMSS has also
an internal packet DMA module which is used as an infrastructure
DMA with zero copy.

Initially this driver was proposed as DMA engine driver but since the
hardware is not typical DMA engine and hence doesn't comply with typical
DMA engine driver needs, that approach was naked. Link to that
discussion -
	https://lkml.org/lkml/2014/3/18/340

As aligned, now we pair the Navigator DMA with its companion Navigator
QMSS subsystem driver.

Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kumar Gala <galak@codeaurora.org>
Cc: Olof Johansson <olof@lixom.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sandeep Nair <sandeep_n@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
2014-09-24 09:49:15 -04:00
Sandeep Nair
41f93af900 soc: ti: add Keystone Navigator QMSS driver
The QMSS (Queue Manager Sub System) found on Keystone SOCs is one of
the main hardware sub system which forms the backbone of the Keystone
Multi-core Navigator. QMSS consist of queue managers, packed-data structure
processors(PDSP), linking RAM, descriptor pools and infrastructure
Packet DMA.

The Queue Manager is a hardware module that is responsible for accelerating
management of the packet queues. Packets are queued/de-queued by writing or
reading descriptor address to a particular memory mapped location. The PDSPs
perform QMSS related functions like accumulation, QoS, or event management.
Linking RAM registers are used to link the descriptors which are stored in
descriptor RAM. Descriptor RAM is configurable as internal or external memory.

The QMSS driver manages the PDSP setups, linking RAM regions,
queue pool management (allocation, push, pop and notify) and descriptor
pool management. The specifics on the device tree bindings for
QMSS can be found in:
	Documentation/devicetree/bindings/soc/keystone-navigator-qmss.txt

Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Kumar Gala <galak@codeaurora.org>
Cc: Olof Johansson <olof@lixom.net>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sandeep Nair <sandeep_n@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
2014-09-24 09:49:14 -04:00