There are some meta data of bcache are allocated by multiple pages,
and they are used as bio bv_page for I/Os to the cache device. for
example cache_set->uuids, cache->disk_buckets, journal_write->data,
bset_tree->data.
For such meta data memory, all the allocated pages should be treated
as a single memory block. Then the memory management and underlying I/O
code can treat them more clearly.
This patch adds __GFP_COMP flag to all the location allocating >0 order
pages for the above mentioned meta data. Then their pages are treated
as compound pages now.
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
generic_make_request has always been very confusingly misnamed, so rename
it to submit_bio_noacct to make it clear that it is submit_bio minus
accounting and a few checks.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
coccicheck reports:
drivers/md//bcache/btree.c:1538:1-7: preceding lock on line 1417
In btree_gc_coalesce func, if the coalescing process fails, we will goto
to out_nocoalesce tag directly without releasing new_nodes[i]->write_lock.
Then, it will cause a deadlock when trying to acquire new_nodes[i]->
write_lock for freeing new_nodes[i] before return.
btree_gc_coalesce func details as follows:
if alloc new_nodes[i] fails:
goto out_nocoalesce;
// obtain new_nodes[i]->write_lock
mutex_lock(&new_nodes[i]->write_lock)
// main coalescing process
for (i = nodes - 1; i > 0; --i)
[snipped]
if coalescing process fails:
// Here, directly goto out_nocoalesce
// tag will cause a deadlock
goto out_nocoalesce;
[snipped]
// release new_nodes[i]->write_lock
mutex_unlock(&new_nodes[i]->write_lock)
// coalesing succ, return
return;
out_nocoalesce:
btree_node_free(new_nodes[i]) // free new_nodes[i]
// obtain new_nodes[i]->write_lock
mutex_lock(&new_nodes[i]->write_lock);
// set flag for reuse
clear_bit(BTREE_NODE_dirty, &ew_nodes[i]->flags);
// release new_nodes[i]->write_lock
mutex_unlock(&new_nodes[i]->write_lock);
To fix the problem, we add a new tag 'out_unlock_nocoalesce' for
releasing new_nodes[i]->write_lock before out_nocoalesce tag. If
coalescing process fails, we will go to out_unlock_nocoalesce tag
for releasing new_nodes[i]->write_lock before free new_nodes[i] in
out_nocoalesce tag.
(Coly Li helps to clean up commit log format.)
Fixes: 2a285686c1 ("bcache: btree locking rework")
Signed-off-by: Zhiqiang Liu <liuzhiqiang26@huawei.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Remove the trailing newline from the define of pr_fmt and add newlines
to the uses.
Miscellanea:
o Convert bch_bkey_dump from multiple uses of pr_err to pr_cont
as the earlier conversion was inappropriate done causing multiple
lines to be emitted where only a single output line was desired
o Use vsprintf extension %pV in bch_cache_set_error to avoid multiple
line output where only a single line output was desired
o Coalesce formats
Fixes: 6ae63e3501 ("bcache: replace printk() by pr_*() routines")
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Variables i and n are being assigned but are never used. They are
redundant and can be removed.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Coly Li <colyli@suse.de>
Addresses-Coverity: ("Unused value")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The idea of this patch is from Davidlohr Bueso, he posts a patch
for bcache to optimize barrier usage for read-modify-write atomic
bitops. Indeed such optimization can also apply on other locations
where smp_mb() is used before or after an atomic operation.
This patch replaces smp_mb() with smp_mb__before_atomic() or
smp_mb__after_atomic() in btree.c and writeback.c, where it is used
to synchronize memory cache just earlier on other cores. Although
the locations are not on hot code path, it is always not bad to mkae
things a little better.
Signed-off-by: Coly Li <colyli@suse.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When registering a cache device, bch_btree_check() is called to check
all btree nodes, to make sure the btree is consistent and not
corrupted.
bch_btree_check() is recursively executed in a single thread, when there
are a lot of data cached and the btree is huge, it may take very long
time to check all the btree nodes. In my testing, I observed it took
around 50 minutes to finish bch_btree_check().
When checking the bcache btree nodes, the cache set is not running yet,
and indeed the whole tree is in read-only state, it is safe to create
multiple threads to check the btree in parallel.
This patch tries to create multiple threads, and each thread tries to
one-by-one check the sub-tree indexed by a key from the btree root node.
The parallel thread number depends on how many keys in the btree root
node. At most BCH_BTR_CHKTHREAD_MAX (64) threads can be created, but in
practice is should be min(cpu-number/2, root-node-keys-number).
Signed-off-by: Coly Li <colyli@suse.de>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch changes macro btree_root() and btree() to bcache_btree_root()
and bcache_btree(), to avoid potential generic name clash in future.
NOTE: for product kernel maintainers, this patch can be skipped if
you feel the rename stuffs introduce inconvenince to patch backport.
Suggested-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In order to accelerate bcache registration speed, the macro btree()
and btree_root() will be referenced out of btree.c. This patch moves
them from btree.c into btree.h with other relative function declaration
in btree.h, for the following changes.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit 0b96da639a.
We can't just go flushing random signals, under the assumption that the
OOM killer will just do something else. It's not safe from the OOM
perspective, and it could also cause other signals to get randomly lost.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When run a cache set, all the bcache btree node of this cache set will
be checked by bch_btree_check(). If the bcache btree is very large,
iterating all the btree nodes will occupy too much system memory and
the bcache registering process might be selected and killed by system
OOM killer. kthread_run() will fail if current process has pending
signal, therefore the kthread creating in run_cache_set() for gc and
allocator kernel threads are very probably failed for a very large
bcache btree.
Indeed such OOM is safe and the registering process will exit after
the registration done. Therefore this patch flushes pending signals
during the cache set start up, specificly in bch_cache_allocator_start()
and bch_gc_thread_start(), to make sure run_cache_set() won't fail for
large cahced data set.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When shrink btree node cache from c->btree_cache in bch_mca_scan(),
no matter the selected node is reaped or not, it will be rotated from
the head to the tail of c->btree_cache list. But in bcache journal
code, when flushing the btree nodes with oldest journal entry, btree
nodes are iterated and slected from the tail of c->btree_cache list in
btree_flush_write(). The list_rotate_left() in bch_mca_scan() will
make btree_flush_write() iterate more nodes in c->btree_list in reverse
order.
This patch just reaps the selected btree node cache, and not move it
from the head to the tail of c->btree_cache list. Then bch_mca_scan()
will not mess up c->btree_cache list to btree_flush_write().
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In order to skip the most recently freed btree node cahce, currently
in bch_mca_scan() the first 3 caches in c->btree_cache_freeable list
are skipped when shrinking bcache node caches in bch_mca_scan(). The
related code in bch_mca_scan() is,
737 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
738 if (nr <= 0)
739 goto out;
740
741 if (++i > 3 &&
742 !mca_reap(b, 0, false)) {
lines free cache memory
746 }
747 nr--;
748 }
The problem is, if virtual memory code calls bch_mca_scan() and
the calculated 'nr' is 1 or 2, then in the above loop, nothing will
be shunk. In such case, if slub/slab manager calls bch_mca_scan()
for many times with small scan number, it does not help to shrink
cache memory and just wasts CPU cycles.
This patch just selects btree node caches from tail of the
c->btree_cache_freeable list, then the newly freed host cache can
still be allocated by mca_alloc(), and at least 1 node can be shunk.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The member 'accessed' of struct btree is used in bch_mca_scan() when
shrinking btree node caches. The original idea is, if b->accessed is
set, clean it and look at next btree node cache from c->btree_cache
list, and only shrink the caches whose b->accessed is cleaned. Then
only cold btree node cache will be shrunk.
But when I/O pressure is high, it is very probably that b->accessed
of a btree node cache will be set again in bch_btree_node_get()
before bch_mca_scan() selects it again. Then there is no chance for
bch_mca_scan() to shrink enough memory back to slub or slab system.
This patch removes member accessed from struct btree, then once a
btree node ache is selected, it will be immediately shunk. By this
change, bch_mca_scan() may release btree node cahce more efficiently.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Coly says:
"Guoju Fang talked to me today, he told me this change was unnecessary
and I was over-thought.
Then I realize fifo_idx() uses a mask to handle the array index overflow
condition, so the index swap in journal_pin_cmp() won't happen. And yes,
Guoju and Kent are correct.
Since you already applied this patch, can you please to remove this
patch from your for-next branch? This single patch does not break
thing, but it is unecessary at this moment."
This reverts commit c0e0954e90.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In bch_mca_scan(), the number of shrinking btree node is calculated
by code like this,
unsigned long nr = sc->nr_to_scan;
nr /= c->btree_pages;
nr = min_t(unsigned long, nr, mca_can_free(c));
variable sc->nr_to_scan is number of objects (here is bcache B+tree
nodes' number) to shrink, and pointer variable sc is sent from memory
management code as parametr of a callback.
If sc->nr_to_scan is smaller than c->btree_pages, after the above
calculation, variable 'nr' will be 0 and nothing will be shrunk. It is
frequeently observed that only 1 or 2 is set to sc->nr_to_scan and make
nr to be zero. Then bch_mca_scan() will do nothing more then acquiring
and releasing mutex c->bucket_lock.
This patch checkes whether nr is 0 after the above calculation, if 0
is the result then set 1 to variable 'n'. Then at least bch_mca_scan()
will try to shrink a single B+tree node.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds code comments in bch_btree_leaf_dirty() to explain
why w->journal should always reference the eldest journal pin of
all the writing bkeys in the btree node. To make the bcache journal
code to be easier to be understood.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fix a lost wake-up problem caused by the race between
mca_cannibalize_lock and bch_cannibalize_unlock.
Consider two processes, A and B. Process A is executing
mca_cannibalize_lock, while process B takes c->btree_cache_alloc_lock
and is executing bch_cannibalize_unlock. The problem happens that after
process A executes cmpxchg and will execute prepare_to_wait. In this
timeslice process B executes wake_up, but after that process A executes
prepare_to_wait and set the state to TASK_INTERRUPTIBLE. Then process A
goes to sleep but no one will wake up it. This problem may cause bcache
device to dead.
Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Fifo structure journal.pin is implemented by a cycle buffer, if the back
index reaches highest location of the cycle buffer, it will be swapped
to 0. Once the swapping happens, it means a smaller fifo index might be
associated to a newer journal entry. So the btree node with oldest
journal entry won't be selected in bch_btree_leaf_dirty() to reference
the dirty B+tree leaf node. This problem may cause bcache journal won't
protect unflushed oldest B+tree dirty leaf node in power failure, and
this B+tree leaf node is possible to beinconsistent after reboot from
power failure.
This patch fixes the fifo index comparing logic in journal_pin_cmp(),
to avoid potential corrupted B+tree leaf node when the back index of
journal pin is swapped.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There is a race between mca_reap(), btree_node_free() and journal code
btree_flush_write(), which results very rare and strange deadlock or
panic and are very hard to reproduce.
Let me explain how the race happens. In btree_flush_write() one btree
node with oldest journal pin is selected, then it is flushed to cache
device, the select-and-flush is a two steps operation. Between these two
steps, there are something may happen inside the race window,
- The selected btree node was reaped by mca_reap() and allocated to
other requesters for other btree node.
- The slected btree node was selected, flushed and released by mca
shrink callback bch_mca_scan().
When btree_flush_write() tries to flush the selected btree node, firstly
b->write_lock is held by mutex_lock(). If the race happens and the
memory of selected btree node is allocated to other btree node, if that
btree node's write_lock is held already, a deadlock very probably
happens here. A worse case is the memory of the selected btree node is
released, then all references to this btree node (e.g. b->write_lock)
will trigger NULL pointer deference panic.
This race was introduced in commit cafe563591 ("bcache: A block layer
cache"), and enlarged by commit c4dc2497d5 ("bcache: fix high CPU
occupancy during journal"), which selected 128 btree nodes and flushed
them one-by-one in a quite long time period.
Such race is not easy to reproduce before. On a Lenovo SR650 server with
48 Xeon cores, and configure 1 NVMe SSD as cache device, a MD raid0
device assembled by 3 NVMe SSDs as backing device, this race can be
observed around every 10,000 times btree_flush_write() gets called. Both
deadlock and kernel panic all happened as aftermath of the race.
The idea of the fix is to add a btree flag BTREE_NODE_journal_flush. It
is set when selecting btree nodes, and cleared after btree nodes
flushed. Then when mca_reap() selects a btree node with this bit set,
this btree node will be skipped. Since mca_reap() only reaps btree node
without BTREE_NODE_journal_flush flag, such race is avoided.
Once corner case should be noticed, that is btree_node_free(). It might
be called in some error handling code path. For example the following
code piece from btree_split(),
2149 err_free2:
2150 bkey_put(b->c, &n2->key);
2151 btree_node_free(n2);
2152 rw_unlock(true, n2);
2153 err_free1:
2154 bkey_put(b->c, &n1->key);
2155 btree_node_free(n1);
2156 rw_unlock(true, n1);
At line 2151 and 2155, the btree node n2 and n1 are released without
mac_reap(), so BTREE_NODE_journal_flush also needs to be checked here.
If btree_node_free() is called directly in such error handling path,
and the selected btree node has BTREE_NODE_journal_flush bit set, just
delay for 1 us and retry again. In this case this btree node won't
be skipped, just retry until the BTREE_NODE_journal_flush bit cleared,
and free the btree node memory.
Fixes: cafe563591 ("bcache: A block layer cache")
Signed-off-by: Coly Li <colyli@suse.de>
Reported-and-tested-by: kbuild test robot <lkp@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When accessing or modifying BTREE_NODE_dirty bit, it is not always
necessary to acquire b->write_lock. In bch_btree_cache_free() and
mca_reap() acquiring b->write_lock is necessary, and this patch adds
comments to explain why mutex_lock(&b->write_lock) is necessary for
checking or clearing BTREE_NODE_dirty bit there.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In bch_btree_cache_free() and btree_node_free(), BTREE_NODE_dirty is
always set no matter btree node is dirty or not. The code looks like
this,
if (btree_node_dirty(b))
btree_complete_write(b, btree_current_write(b));
clear_bit(BTREE_NODE_dirty, &b->flags);
Indeed if btree_node_dirty(b) returns false, it means BTREE_NODE_dirty
bit is cleared, then it is unnecessary to clear the bit again.
This patch only clears BTREE_NODE_dirty when btree_node_dirty(b) is
true (the bit is set), to save a few CPU cycles.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Function bch_btree_keys_init() initializes b->set[].size and
b->set[].data to zero. As the code comments indicates, these code indeed
is unncessary, because both struct btree_keys and struct bset_tree are
nested embedded into struct btree, when struct btree is filled with 0
bits by kzalloc() in mca_bucket_alloc(), b->set[].size and
b->set[].data are initialized to 0 (a.k.a NULL) already.
This patch removes the redundant code, and add comments in
bch_btree_keys_init() and mca_bucket_alloc() to explain why it's safe.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We only have two callers that need the integer loop iterator, and they
can easily maintain it themselves.
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Coly Li <colyli@suse.de>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Use a variable containing the buffer address instead of the to be
removed integer iterator from bio_for_each_segment_all.
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Coly Li <colyli@suse.de>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Elements of keylist should be accessed before the list is freed.
Move bch_keylist_free() calling after the while loop to avoid wrong
content accessed.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch introduces one extra iterator variable to bio_for_each_segment_all(),
then we can allow bio_for_each_segment_all() to iterate over multi-page bvec.
Given it is just one mechannical & simple change on all bio_for_each_segment_all()
users, this patch does tree-wide change in one single patch, so that we can
avoid to use a temporary helper for this conversion.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We have the following define for btree iterator:
struct btree_iter {
size_t size, used;
#ifdef CONFIG_BCACHE_DEBUG
struct btree_keys *b;
#endif
struct btree_iter_set {
struct bkey *k, *end;
} data[MAX_BSETS];
};
We can see that the length of data[] field is static MAX_BSETS, which is
defined as 4 currently.
But a btree node on disk could have too many bsets for an iterator to fit
on the stack - maybe far more that MAX_BSETS. Have to dynamically allocate
space to host more btree_iter_sets.
bch_cache_set_alloc() will make sure the pool cache_set->fill_iter can
allocate an iterator equipped with enough room that can host
(sb.bucket_size / sb.block_size)
btree_iter_sets, which is more than static MAX_BSETS.
bch_btree_node_read_done() will use that pool to allocate one iterator, to
host many bsets in one btree node.
Add more comment around cache_set->fill_iter to make code less confusing.
Signed-off-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
refill->end record the last key of writeback, for example, at the first
time, keys (1,128K) to (1,1024K) are flush to the backend device, but
the end key (1,1024K) is not included, since the bellow code:
if (bkey_cmp(k, refill->end) >= 0) {
ret = MAP_DONE;
goto out;
}
And in the next time when we refill writeback keybuf again, we searched
key start from (1,1024K), and got a key bigger than it, so the key
(1,1024K) missed.
This patch modify the above code, and let the end key to be included to
the writeback key buffer.
Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
bch_btree_insert_check_key() has unaligned indent, or indent by blank
characters. This patch makes the indent aligned and replace blank by
tabs.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fixes the lines over 80 characters into more lines, to minimize
warnings by checkpatch.pl. There are still some lines exceed 80 characters,
but it is better to be a single line and I don't change them.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There are many function definitions do not have identifier argument names,
scripts/checkpatch.pl complains warnings like this,
WARNING: function definition argument 'struct bcache_device *' should
also have an identifier name
#16735: FILE: writeback.h:120:
+void bch_sectors_dirty_init(struct bcache_device *);
This patch adds identifier argument names to all bcache function
definitions to fix such warnings.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fixes warning reported by checkpatch.pl by replacing 'unsigned'
with 'unsigned int'.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In bch_btree_node_get() the read-in btree node will be partially
prefetched into L1 cache for following bset iteration (if there is).
But if the btree node read is failed, the perfetch operations will
waste L1 cache space. This patch checkes whether read operation and
only does cache prefetch when read I/O succeeded.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch base on "[PATCH] bcache: finish incremental GC".
Since incremental GC would stop 100ms when front side I/O comes, so when
there are many btree nodes, if GC only processes constant (100) nodes each
time, GC would last a long time, and the front I/Os would run out of the
buckets (since no new bucket can be allocated during GC), and I/Os be
blocked again.
So GC should not process constant nodes, but varied nodes according to the
number of btree nodes. In this patch, GC is divided into constant (100)
times, so when there are many btree nodes, GC can process more nodes each
time, otherwise GC will process less nodes each time (but no less than
MIN_GC_NODES).
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In GC thread, we record the latest GC key in gc_done, which is expected
to be used for incremental GC, but in currently code, we didn't realize
it. When GC runs, front side IO would be blocked until the GC over, it
would be a long time if there is a lot of btree nodes.
This patch realizes incremental GC, the main ideal is that, when there
are front side I/Os, after GC some nodes (100), we stop GC, release locker
of the btree node, and go to process the front side I/Os for some times
(100 ms), then go back to GC again.
By this patch, when we doing GC, I/Os are not blocked all the time, and
there is no obvious I/Os zero jump problem any more.
Patch v2: Rename some variables and macros name as Coly suggested.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
As we move stuff around, some doc references are broken. Fix some of
them via this script:
./scripts/documentation-file-ref-check --fix
Manually checked if the produced result is valid, removing a few
false-positives.
Acked-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Stephen Boyd <sboyd@kernel.org>
Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com>
Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Jonathan Corbet <corbet@lwn.net>
Convert bcache to embedded bio sets.
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Avoid that building with W=1 triggers warnings about the kernel-doc
headers.
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch avoids that smatch complains about inconsistent indentation.
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In bch_mca_scan(), There are some confusion and logical error in the use of
loop variables. In this patch, we clarify them as:
1) nr: the number of btree nodes needs to scan, which will decrease after
we scan a btree node, and should not be less than 0;
2) i: the number of btree nodes have scanned, includes both
btree_cache_freeable and btree_cache, which should not be bigger than
btree_cache_used;
3) freed: the number of btree nodes have freed.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In bch_mca_scan(), the return value should not be the number of freed btree
nodes, but the number of pages of freed btree nodes.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When too many I/Os failed on cache device, bch_cache_set_error() is called
in the error handling code path to retire whole problematic cache set. If
new I/O requests continue to come and take refcount dc->count, the cache
set won't be retired immediately, this is a problem.
Further more, there are several kernel thread and self-armed kernel work
may still running after bch_cache_set_error() is called. It needs to wait
quite a while for them to stop, or they won't stop at all. They also
prevent the cache set from being retired.
The solution in this patch is, to add per cache set flag to disable I/O
request on this cache and all attached backing devices. Then new coming I/O
requests can be rejected in *_make_request() before taking refcount, kernel
threads and self-armed kernel worker can stop very fast when flags bit
CACHE_SET_IO_DISABLE is set.
Because bcache also do internal I/Os for writeback, garbage collection,
bucket allocation, journaling, this kind of I/O should be disabled after
bch_cache_set_error() is called. So closure_bio_submit() is modified to
check whether CACHE_SET_IO_DISABLE is set on cache_set->flags. If set,
closure_bio_submit() will set bio->bi_status to BLK_STS_IOERR and
return, generic_make_request() won't be called.
A sysfs interface is also added to set or clear CACHE_SET_IO_DISABLE bit
from cache_set->flags, to disable or enable cache set I/O for debugging. It
is helpful to trigger more corner case issues for failed cache device.
Changelog
v4, add wait_for_kthread_stop(), and call it before exits writeback and gc
kernel threads.
v3, change CACHE_SET_IO_DISABLE from 4 to 3, since it is bit index.
remove "bcache: " prefix when printing out kernel message.
v2, more changes by previous review,
- Use CACHE_SET_IO_DISABLE of cache_set->flags, suggested by Junhui.
- Check CACHE_SET_IO_DISABLE in bch_btree_gc() to stop a while-loop, this
is reported and inspired from origal patch of Pavel Vazharov.
v1, initial version.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Pavel Vazharov <freakpv@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
After long time running of random small IO writing,
I reboot the machine, and after the machine power on,
I found bcache got stuck, the stack is:
[root@ceph153 ~]# cat /proc/2510/task/*/stack
[<ffffffffa06b2455>] closure_sync+0x25/0x90 [bcache]
[<ffffffffa06b6be8>] bch_journal+0x118/0x2b0 [bcache]
[<ffffffffa06b6dc7>] bch_journal_meta+0x47/0x70 [bcache]
[<ffffffffa06be8f7>] bch_prio_write+0x237/0x340 [bcache]
[<ffffffffa06a8018>] bch_allocator_thread+0x3c8/0x3d0 [bcache]
[<ffffffff810a631f>] kthread+0xcf/0xe0
[<ffffffff8164c318>] ret_from_fork+0x58/0x90
[<ffffffffffffffff>] 0xffffffffffffffff
[root@ceph153 ~]# cat /proc/2038/task/*/stack
[<ffffffffa06b1abd>] __bch_btree_map_nodes+0x12d/0x150 [bcache]
[<ffffffffa06b1bd1>] bch_btree_insert+0xf1/0x170 [bcache]
[<ffffffffa06b637f>] bch_journal_replay+0x13f/0x230 [bcache]
[<ffffffffa06c75fe>] run_cache_set+0x79a/0x7c2 [bcache]
[<ffffffffa06c0cf8>] register_bcache+0xd48/0x1310 [bcache]
[<ffffffff812f702f>] kobj_attr_store+0xf/0x20
[<ffffffff8125b216>] sysfs_write_file+0xc6/0x140
[<ffffffff811dfbfd>] vfs_write+0xbd/0x1e0
[<ffffffff811e069f>] SyS_write+0x7f/0xe0
[<ffffffff8164c3c9>] system_call_fastpath+0x16/0x1
The stack shows the register thread and allocator thread
were getting stuck when registering cache device.
I reboot the machine several times, the issue always
exsit in this machine.
I debug the code, and found the call trace as bellow:
register_bcache()
==>run_cache_set()
==>bch_journal_replay()
==>bch_btree_insert()
==>__bch_btree_map_nodes()
==>btree_insert_fn()
==>btree_split() //node need split
==>btree_check_reserve()
In btree_check_reserve(), It will check if there is enough buckets
of RESERVE_BTREE type, since allocator thread did not work yet, so
no buckets of RESERVE_BTREE type allocated, so the register thread
waits on c->btree_cache_wait, and goes to sleep.
Then the allocator thread initialized, the call trace is bellow:
bch_allocator_thread()
==>bch_prio_write()
==>bch_journal_meta()
==>bch_journal()
==>journal_wait_for_write()
In journal_wait_for_write(), It will check if journal is full by
journal_full(), but the long time random small IO writing
causes the exhaustion of journal buckets(journal.blocks_free=0),
In order to release the journal buckets,
the allocator calls btree_flush_write() to flush keys to
btree nodes, and waits on c->journal.wait until btree nodes writing
over or there has already some journal buckets space, then the
allocator thread goes to sleep. but in btree_flush_write(), since
bch_journal_replay() is not finished, so no btree nodes have journal
(condition "if (btree_current_write(b)->journal)" never satisfied),
so we got no btree node to flush, no journal bucket released,
and allocator sleep all the times.
Through the above analysis, we can see that:
1) Register thread wait for allocator thread to allocate buckets of
RESERVE_BTREE type;
2) Alloctor thread wait for register thread to replay journal, so it
can flush btree nodes and get journal bucket.
then they are all got stuck by waiting for each other.
Hua Rui provided a patch for me, by allocating some buckets of
RESERVE_BTREE type in advance, so the register thread can get bucket
when btree node splitting and no need to waiting for the allocator
thread. I tested it, it has effect, and register thread run a step
forward, but finally are still got stuck, the reason is only 8 bucket
of RESERVE_BTREE type were allocated, and in bch_journal_replay(),
after 2 btree nodes splitting, only 4 bucket of RESERVE_BTREE type left,
then btree_check_reserve() is not satisfied anymore, so it goes to sleep
again, and in the same time, alloctor thread did not flush enough btree
nodes to release a journal bucket, so they all got stuck again.
So we need to allocate more buckets of RESERVE_BTREE type in advance,
but how much is enough? By experience and test, I think it should be
as much as journal buckets. Then I modify the code as this patch,
and test in the machine, and it works.
This patch modified base on Hua Rui’s patch, and allocate more buckets
of RESERVE_BTREE type in advance to avoid register thread and allocate
thread going to wait for each other.
[patch v2] ca->sb.njournal_buckets would be 0 in the first time after
cache creation, and no journal exists, so just 8 btree buckets is OK.
Signed-off-by: Hua Rui <huarui.dev@gmail.com>
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Member devices of struct cache_set is used to reference all attached
bcache devices to this cache set. If it is treated as array of pointers,
size of devices[] is indicated by member nr_uuids of struct cache_set.
nr_uuids is calculated in drivers/md/super.c:bch_cache_set_alloc(),
bucket_bytes(c) / sizeof(struct uuid_entry)
Bucket size is determined by user space tool "make-bcache", by default it
is 1024 sectors (defined in bcache-tools/make-bcache.c:main()). So default
nr_uuids value is 4096 from the above calculation.
Every time when bcache code iterates bcache devices of a cache set, all
the 4096 pointers are checked even only 1 bcache device is attached to the
cache set, that's a wast of time and unncessary.
This patch adds a member devices_max_used to struct cache_set. Its value
is 1 + the maximum used index of devices[] in a cache set. When iterating
all valid bcache devices of a cache set, use c->devices_max_used in
for-loop may reduce a lot of useless checking.
Personally, my motivation of this patch is not for performance, I use it
in bcache debugging, which helps me to narrow down the scape to check
valid bcached devices of a cache set.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Fix ptr_ret.cocci warnings:
drivers/md/bcache/btree.c:1800:1-3: WARNING: PTR_ERR_OR_ZERO can be used
Use PTR_ERR_OR_ZERO rather than if(IS_ERR(...)) + PTR_ERR
Generated by: scripts/coccinelle/api/ptr_ret.cocci
Signed-off-by: Vasyl Gomonovych <gomonovych@gmail.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
bcache is the only user of bio_alloc_pages(), so move this function into
bcache, and avoid it being misused in the future.
Also rename it to bch_bio_allo_pages() since it is bcache only.
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
All direct access to bvec table are safe even after multipage bvec is
supported.
Cc: linux-bcache@vger.kernel.org
Acked-by: Coly Li <colyli@suse.de>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
register_shrinker is now __must_check, so check it to kill a warning.
Caller of bch_btree_cache_alloc in super.c appropriately checks return
value so this is fully plumbed through.
This V2 fixes checkpatch warnings and improves the commit description,
as I was too hasty getting the previous version out.
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Vojtech Pavlik <vojtech@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>