When delivering a machine check the CPU state is "loaded", which
means that some registers are already in the host registers.
Before writing the register content into the machine check
save area, we must make sure that we save the content of the
registers into the data structures that are used for delivering
the machine check.
We already do the right thing for access, vector/floating point
registers, let's do the same for guarded storage.
Fixes: 4e0b1ab72b ("KVM: s390: gs support for kvm guests")
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Inject adapter interrupts on a specified adapter which allows to
retrieve the adapter flags, e.g. if the adapter is subject to AIS
facility or not. And add documentation for this interface.
For adapters subject to AIS, handle the airq injection suppression
for a given ISC according to the interruption mode:
- before injection, if NO-Interruptions Mode, just return 0 and
suppress, otherwise, allow the injection.
- after injection, if SINGLE-Interruption Mode, change it to
NO-Interruptions Mode to suppress the following interrupts.
Besides, add tracepoint for suppressed airq and AIS mode transitions.
Signed-off-by: Yi Min Zhao <zyimin@linux.vnet.ibm.com>
Signed-off-by: Fei Li <sherrylf@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Provide an interface for userspace to modify AIS
(adapter-interruption-suppression) mode state, and add documentation
for the interface. Allowed target modes are ALL-Interruptions mode
and SINGLE-Interruption mode.
We introduce the 'simm' and 'nimm' fields in kvm_s390_float_interrupt
to store interruption modes for each ISC. Each bit in 'simm' and
'nimm' targets to one ISC, and collaboratively indicate three modes:
ALL-Interruptions, SINGLE-Interruption and NO-Interruptions. This
interface can initiate most transitions between the states; transition
from SINGLE-Interruption to NO-Interruptions via adapter interrupt
injection will be introduced in a following patch. The meaningful
combinations are as follows:
interruption mode | simm bit | nimm bit
------------------|----------|----------
ALL | 0 | 0
SINGLE | 1 | 0
NO | 1 | 1
Besides, add tracepoint to track AIS mode transitions.
Co-Authored-By: Yi Min Zhao <zyimin@linux.vnet.ibm.com>
Signed-off-by: Yi Min Zhao <zyimin@linux.vnet.ibm.com>
Signed-off-by: Fei Li <sherrylf@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
In order to properly implement adapter-interruption suppression, we
need a way for userspace to specify which adapters are subject to
suppression. Let's convert the existing (and unused) 'pad' field into
a 'flags' field and define a flag value for suppressible adapters.
Besides, add documentation for the interface.
Signed-off-by: Fei Li <sherrylf@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch adds guarded storage support for KVM guest. We need to
setup the necessary control blocks, the kvm_run structure for the
new registers, the necessary wrappers for VSIE, as well as the
machine check save areas.
GS is enabled lazily and the register saving and reloading is done in
KVM code. As this feature adds new content for migration, we provide
a new capability for enablement (KVM_CAP_S390_GS).
Signed-off-by: Fan Zhang <zhangfan@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This adds a new system call to enable the use of guarded storage for
user space processes. The system call takes two arguments, a command
and pointer to a guarded storage control block:
s390_guarded_storage(int command, struct gs_cb *gs_cb);
The second argument is relevant only for the GS_SET_BC_CB command.
The commands in detail:
0 - GS_ENABLE
Enable the guarded storage facility for the current task. The
initial content of the guarded storage control block will be
all zeros. After the enablement the user space code can use
load-guarded-storage-controls instruction (LGSC) to load an
arbitrary control block. While a task is enabled the kernel
will save and restore the current content of the guarded
storage registers on context switch.
1 - GS_DISABLE
Disables the use of the guarded storage facility for the current
task. The kernel will cease to save and restore the content of
the guarded storage registers, the task specific content of
these registers is lost.
2 - GS_SET_BC_CB
Set a broadcast guarded storage control block. This is called
per thread and stores a specific guarded storage control block
in the task struct of the current task. This control block will
be used for the broadcast event GS_BROADCAST.
3 - GS_CLEAR_BC_CB
Clears the broadcast guarded storage control block. The guarded-
storage control block is removed from the task struct that was
established by GS_SET_BC_CB.
4 - GS_BROADCAST
Sends a broadcast to all thread siblings of the current task.
Every sibling that has established a broadcast guarded storage
control block will load this control block and will be enabled
for guarded storage. The broadcast guarded storage control block
is used up, a second broadcast without a refresh of the stored
control block with GS_SET_BC_CB will not have any effect.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
ktime_set(S,N) was required for the timespec storage type and is still
useful for situations where a Seconds and Nanoseconds part of a time value
needs to be converted. For anything where the Seconds argument is 0, this
is pointless and can be replaced with a simple assignment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now we save the host access registers in kvm_arch_vcpu_load
and load them in kvm_arch_vcpu_put. Vice versa for the guest access
registers. On schedule this means, that we load/save access registers
multiple times.
e.g. VCPU_RUN with just one reschedule and then return does
[from user space via VCPU_RUN]
- save the host registers in kvm_arch_vcpu_load (via ioctl)
- load the guest registers in kvm_arch_vcpu_load (via ioctl)
- do guest stuff
- decide to schedule/sleep
- save the guest registers in kvm_arch_vcpu_put (via sched)
- load the host registers in kvm_arch_vcpu_put (via sched)
- save the host registers in switch_to (via sched)
- schedule
- return
- load the host registers in switch_to (via sched)
- save the host registers in kvm_arch_vcpu_load (via sched)
- load the guest registers in kvm_arch_vcpu_load (via sched)
- do guest stuff
- decide to go to userspace
- save the guest registers in kvm_arch_vcpu_put (via ioctl)
- load the host registers in kvm_arch_vcpu_put (via ioctl)
[back to user space]
As the kernel does not use access registers, we can avoid
this reloading and simply piggy back on switch_to (let it save
the guest values instead of host values in thread.acrs) by
moving the host/guest switch into the VCPU_RUN ioctl function.
We now do
[from user space via VCPU_RUN]
- save the host registers in kvm_arch_vcpu_ioctl_run
- load the guest registers in kvm_arch_vcpu_ioctl_run
- do guest stuff
- decide to schedule/sleep
- save the guest registers in switch_to
- schedule
- return
- load the guest registers in switch_to (via sched)
- do guest stuff
- decide to go to userspace
- save the guest registers in kvm_arch_vcpu_ioctl_run
- load the host registers in kvm_arch_vcpu_ioctl_run
This seems to save about 10% of the vcpu_put/load functions
according to perf.
As vcpu_load no longer switches the acrs, We can also loading
the acrs in kvm_arch_vcpu_ioctl_set_sregs.
Suggested-by: Fan Zhang <zhangfan@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
If the SCA entries aren't used by the hardware (no SIGPIF), we
can simply not set the entries, stick to the basic sca and allow more
than 64 VCPUs.
To hinder any other facility from using these entries, let's properly
provoke intercepts by not setting the MCN and keeping the entries
unset.
This effectively allows when running KVM under KVM (vSIE) or under z/VM to
provide more than 64 VCPUs to a guest. Let's limit it to 255 for now, to
not run into problems if the CPU numbers are limited somewhere else.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's also write the external damage code already provided by
struct kvm_s390_mchk_info.
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Vector registers are only to be stored if the facility is available
and if the guest has set up the machine check extended save area.
If anything goes wrong while writing the vector registers, the vector
registers are to be marked as invalid. Please note that we are allowed
to write the registers although they are marked as invalid.
Machine checks and "store status" SIGP orders are two different concepts,
let's correctly separate these. As the SIGP part is completely handled in
user space, we can drop it.
This patch is based on a patch from Cornelia Huck.
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Store status writes the prefix which is not to be done by a machine check.
Also, the psw is stored and later on overwritten by the failing-storage
address, which looks strange at first sight.
Store status and machine check handling look similar, but they are actually
two different things.
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's factor this out to prepare for bigger changes. Reorder to calls to
match the logical order given in the PoP.
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Whenever we want to wake up a VCPU (e.g. when injecting an IRQ), we
have to kick it out of vsie, so the request will be handled faster.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We currently have two issues with the I/O interrupt injection logging:
1. All QEMU versions up to 2.6 have a wrong encoding of device numbers
etc for the I/O interrupt type, so the inject VM_EVENT will have wrong
data. Let's fix this by using the interrupt parameters and not the
interrupt type number.
2. We only log in kvm_s390_inject_vm, but not when coming from
kvm_s390_reinject_io_int or from flic. Let's move the logging to the
common __inject_io function.
We also enhance the logging for delivery to match the data.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Some wakeups should not be considered a sucessful poll. For example on
s390 I/O interrupts are usually floating, which means that _ALL_ CPUs
would be considered runnable - letting all vCPUs poll all the time for
transactional like workload, even if one vCPU would be enough.
This can result in huge CPU usage for large guests.
This patch lets architectures provide a way to qualify wakeups if they
should be considered a good/bad wakeups in regard to polls.
For s390 the implementation will fence of halt polling for anything but
known good, single vCPU events. The s390 implementation for floating
interrupts does a wakeup for one vCPU, but the interrupt will be delivered
by whatever CPU checks first for a pending interrupt. We prefer the
woken up CPU by marking the poll of this CPU as "good" poll.
This code will also mark several other wakeup reasons like IPI or
expired timers as "good". This will of course also mark some events as
not sucessful. As KVM on z runs always as a 2nd level hypervisor,
we prefer to not poll, unless we are really sure, though.
This patch successfully limits the CPU usage for cases like uperf 1byte
transactional ping pong workload or wakeup heavy workload like OLTP
while still providing a proper speedup.
This also introduced a new vcpu stat "halt_poll_no_tuning" that marks
wakeups that are considered not good for polling.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Radim Krčmář <rkrcmar@redhat.com> (for an earlier version)
Cc: David Matlack <dmatlack@google.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
[Rename config symbol. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduce a FLIC operation for clearing I/O interrupts for a subchannel.
Rationale: According to the platform specification, pending I/O
interruption requests have to be revoked in certain situations. For
instance, according to the Principles of Operation (page 17-27), a
subchannel put into the installed parameters initialized state is in the
same state as after an I/O system reset (just parameters possibly changed).
This implies that any I/O interrupts for that subchannel are no longer
pending (as I/O system resets clear I/O interrupts). Therefore, we need an
interface to clear pending I/O interrupts.
Signed-off-by: Halil Pasic <pasic@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
HAS_ATTR is useful for determining the supported attributes; let's
implement it.
Signed-off-by: Halil Pasic <pasic@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Pull s390 updates from Martin Schwidefsky:
- Add the CPU id for the new z13s machine
- Add a s390 specific XOR template for RAID-5 checksumming based on the
XC instruction. Remove all other alternatives, XC is always faster
- The merge of our four different stack tracers into a single one
- Tidy up the code related to page tables, several large inline
functions are now out-of-line. Bloat-o-meter reports ~11K text size
reduction
- A binary interface for the priviledged CLP instruction to retrieve
the hardware view of the installed PCI functions
- Improvements for the dasd format code
- Bug fixes and cleanups
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (31 commits)
s390/pci: enforce fmb page boundary rule
s390: fix floating pointer register corruption (again)
s390/cpumf: add missing lpp magic initialization
s390: Fix misspellings in comments
s390/mm: split arch/s390/mm/pgtable.c
s390/mm: uninline pmdp_xxx functions from pgtable.h
s390/mm: uninline ptep_xxx functions from pgtable.h
s390/pci: add ioctl interface for CLP
s390: Use pr_warn instead of pr_warning
s390/dasd: remove casts to dasd_*_private
s390/dasd: Refactor dasd format functions
s390/dasd: Simplify code in format logic
s390/dasd: Improve dasd format code
s390/percpu: remove this_cpu_cmpxchg_double_4
s390/cpumf: Improve guest detection heuristics
s390/fault: merge report_user_fault implementations
s390/dis: use correct escape sequence for '%' character
s390/kvm: simplify set_guest_storage_key
s390/oprofile: add z13/z13s model numbers
s390: add z13s model number to z13 elf platform
...
but lots of architecture-specific changes.
* ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
* PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
* s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
* x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using vector
hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest memory---currently
its only use is to speedup the legacy shadow paging (pre-EPT) case, but
in the future it will be used for virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJW5r3BAAoJEL/70l94x66D2pMH/jTSWWwdTUJMctrDjPVzKzG0
yOzHW5vSLFoFlwEOY2VpslnXzn5TUVmCAfrdmFNmQcSw6hGb3K/xA/ZX/KLwWhyb
oZpr123ycahga+3q/ht/dFUBCCyWeIVMdsLSFwpobEBzPL0pMgc9joLgdUC6UpWX
tmN0LoCAeS7spC4TTiTTpw3gZ/L+aB0B6CXhOMjldb9q/2CsgaGyoVvKA199nk9o
Ngu7ImDt7l/x1VJX4/6E/17VHuwqAdUrrnbqerB/2oJ5ixsZsHMGzxQ3sHCmvyJx
WG5L00ubB1oAJAs9fBg58Y/MdiWX99XqFhdEfxq4foZEiQuCyxygVvq3JwZTxII=
=OUZZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"One of the largest releases for KVM... Hardly any generic
changes, but lots of architecture-specific updates.
ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using
vector hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest
memory - currently its only use is to speedup the legacy shadow
paging (pre-EPT) case, but in the future it will be used for
virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (217 commits)
KVM: x86: remove eager_fpu field of struct kvm_vcpu_arch
KVM: x86: disable MPX if host did not enable MPX XSAVE features
arm64: KVM: vgic-v3: Only wipe LRs on vcpu exit
arm64: KVM: vgic-v3: Reset LRs at boot time
arm64: KVM: vgic-v3: Do not save an LR known to be empty
arm64: KVM: vgic-v3: Save maintenance interrupt state only if required
arm64: KVM: vgic-v3: Avoid accessing ICH registers
KVM: arm/arm64: vgic-v2: Make GICD_SGIR quicker to hit
KVM: arm/arm64: vgic-v2: Only wipe LRs on vcpu exit
KVM: arm/arm64: vgic-v2: Reset LRs at boot time
KVM: arm/arm64: vgic-v2: Do not save an LR known to be empty
KVM: arm/arm64: vgic-v2: Move GICH_ELRSR saving to its own function
KVM: arm/arm64: vgic-v2: Save maintenance interrupt state only if required
KVM: arm/arm64: vgic-v2: Avoid accessing GICH registers
KVM: s390: allocate only one DMA page per VM
KVM: s390: enable STFLE interpretation only if enabled for the guest
KVM: s390: wake up when the VCPU cpu timer expires
KVM: s390: step the VCPU timer while in enabled wait
KVM: s390: protect VCPU cpu timer with a seqcount
KVM: s390: step VCPU cpu timer during kvm_run ioctl
...
The pgtable.c file is quite big, before it grows any larger split it
into pgtable.c, pgalloc.c and gmap.c. In addition move the gmap related
header definitions into the new gmap.h header and all of the pgste
helpers from pgtable.h to pgtable.c.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
When the VCPU cpu timer expires, we have to wake up just like when the ckc
triggers. For now, setting up a cpu timer in the guest and going into
enabled wait will never lead to a wakeup. This patch fixes this problem.
Just as for the ckc, we have to take care of waking up too early. We
have to recalculate the sleep time and go back to sleep.
Please note that the timer callback calls kvm_s390_get_cpu_timer() from
interrupt context. As the timer is canceled when leaving handle_wait(),
and we don't do any VCPU cpu timer writes/updates in that function, we can
be sure that we will never try to read the VCPU cpu timer from the same cpu
that is currentyl updating the timer (deadlock).
Reported-by: Sascha Silbe <silbe@linux.vnet.ibm.com>
Tested-by: Sascha Silbe <silbe@linux.vnet.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We want to manually step the cpu timer in certain scenarios in the future.
Let's abstract any access to the cpu timer, so we can hide the complexity
internally.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The problem:
On -rt, an emulated LAPIC timer instances has the following path:
1) hard interrupt
2) ksoftirqd is scheduled
3) ksoftirqd wakes up vcpu thread
4) vcpu thread is scheduled
This extra context switch introduces unnecessary latency in the
LAPIC path for a KVM guest.
The solution:
Allow waking up vcpu thread from hardirq context,
thus avoiding the need for ksoftirqd to be scheduled.
Normal waitqueues make use of spinlocks, which on -RT
are sleepable locks. Therefore, waking up a waitqueue
waiter involves locking a sleeping lock, which
is not allowed from hard interrupt context.
cyclictest command line:
This patch reduces the average latency in my tests from 14us to 11us.
Daniel writes:
Paolo asked for numbers from kvm-unit-tests/tscdeadline_latency
benchmark on mainline. The test was run 1000 times on
tip/sched/core 4.4.0-rc8-01134-g0905f04:
./x86-run x86/tscdeadline_latency.flat -cpu host
with idle=poll.
The test seems not to deliver really stable numbers though most of
them are smaller. Paolo write:
"Anything above ~10000 cycles means that the host went to C1 or
lower---the number means more or less nothing in that case.
The mean shows an improvement indeed."
Before:
min max mean std
count 1000.000000 1000.000000 1000.000000 1000.000000
mean 5162.596000 2019270.084000 5824.491541 20681.645558
std 75.431231 622607.723969 89.575700 6492.272062
min 4466.000000 23928.000000 5537.926500 585.864966
25% 5163.000000 1613252.750000 5790.132275 16683.745433
50% 5175.000000 2281919.000000 5834.654000 23151.990026
75% 5190.000000 2382865.750000 5861.412950 24148.206168
max 5228.000000 4175158.000000 6254.827300 46481.048691
After
min max mean std
count 1000.000000 1000.00000 1000.000000 1000.000000
mean 5143.511000 2076886.10300 5813.312474 21207.357565
std 77.668322 610413.09583 86.541500 6331.915127
min 4427.000000 25103.00000 5529.756600 559.187707
25% 5148.000000 1691272.75000 5784.889825 17473.518244
50% 5160.000000 2308328.50000 5832.025000 23464.837068
75% 5172.000000 2393037.75000 5853.177675 24223.969976
max 5222.000000 3922458.00000 6186.720500 42520.379830
[Patch was originaly based on the swait implementation found in the -rt
tree. Daniel ported it to mainline's version and gathered the
benchmark numbers for tscdeadline_latency test.]
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-4-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Program irq injection during program irq intercepts is the last candidates
that injects nullifying irqs and relies on delivery to do the right thing.
As we should not rely on the icptcode during any delivery (because that
value will not be migrated), let's add a flag, telling prog IRQ delivery
to not rewind the PSW in case of nullifying prog IRQs.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We have to migrate the program irq ilc and someday we will have to
specify the ilc without KVM trying to autodetect the value.
Let's reuse one of the spare fields in our program irq that should
always be set to 0 by user space. Because we also want to make use
of 0 ilcs ("not available"), we need a validity indicator.
If no valid ilc is given, we try to autodetect the ilc via the current
icptcode and icptstatus + parameter and store the valid ilc in the
irq structure.
This has a nice effect: QEMU's making use of KVM_S390_IRQ /
KVM_S390_SET_IRQ_STATE / KVM_S390_GET_IRQ_STATE for migration will
directly migrate the ilc without any changes.
Please note that we use bit 0 as validity and bit 1,2 for the ilc, so
by applying the ilc mask we directly get the ilen which is usually what
we work with.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We have some confusion about ilc vs. ilen in our current code. So let's
correctly use the term ilen when dealing with (ilc << 1).
Program irq injection didn't take care of the correct ilc in case of
irqs triggered by EXECUTE functions, let's provide one function
kvm_s390_get_ilen() to take care of all that.
Also, manually specifying in intercept handlers the size of the
instruction (and sometimes overwriting that value for EXECUTE internally)
doesn't make too much sense. So also provide the functions:
- kvm_s390_retry_instr to retry the currently intercepted instruction
- kvm_s390_rewind_psw to rewind the PSW without internal overwrites
- kvm_s390_forward_psw to forward the PSW
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Pull s390 updates from Martin Schwidefsky:
"Among the traditional bug fixes and cleanups are some improvements:
- A tool to generated the facility lists, generating the bit fields
by hand has been a source of bugs in the past
- The spinlock loop is reordered to avoid bursts of hypervisor calls
- Add support for the open-for-business interface to the service
element
- The get_cpu call is added to the vdso
- A set of tracepoints is defined for the common I/O layer
- The deprecated sclp_cpi module is removed
- Update default configuration"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (56 commits)
s390/sclp: fix possible control register corruption
s390: fix normalization bug in exception table sorting
s390/configs: update default configurations
s390/vdso: optimize getcpu system call
s390: drop smp_mb in vdso_init
s390: rename struct _lowcore to struct lowcore
s390/mem_detect: use unsigned longs
s390/ptrace: get rid of long longs in psw_bits
s390/sysinfo: add missing SYSIB 1.2.2 multithreading fields
s390: get rid of CONFIG_SCHED_MC and CONFIG_SCHED_BOOK
s390/Kconfig: remove pointless 64 bit dependencies
s390/dasd: fix failfast for disconnected devices
s390/con3270: testing return kzalloc retval
s390/hmcdrv: constify hmcdrv_ftp_ops structs
s390/cio: add NULL test
s390/cio: Change I/O instructions from inline to normal functions
s390/cio: Introduce common I/O layer tracepoints
s390/cio: Consolidate inline assemblies and related data definitions
s390/cio: Fix incorrect xsch opcode specification
s390/cio: Remove unused inline assemblies
...
Finally get rid of the leading underscore. I tried this already two or
three years ago, however Michael Holzheu objected since this would
break the crash utility (again).
However Michael integrated support for the new name into the crash
utility back then, so it doesn't break if the name will be changed
now. So finally get rid of the ever confusing leading underscore.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
If CPUSTAT_ECALL_PEND isn't set, we can't have an external call pending,
so we can directly avoid taking the lock.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch adds code that performs transparent switch to Extended
SCA on addition of 65th VCPU in a VM. Disposal of ESCA is added too.
The entier ESCA functionality, however, is still not enabled.
The enablement will be provided in a separate patch.
This patch also uses read/write lock protection of SCA and its subfields for
possible disposal at the BSCA-to-ESCA transition. While only Basic SCA needs such
a protection (for the swap), any SCA access is now guarded.
Signed-off-by: Eugene (jno) Dvurechenski <jno@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch updates the routines (sca_*) to provide transparent access
to and manipulation on the data for both Basic and Extended SCA in use.
The kvm.arch.sca is generalized to (void *) to handle BSCA/ESCA cases.
Also the kvm.arch.use_esca flag is provided.
The actual functionality is kept the same.
Signed-off-by: Eugene (jno) Dvurechenski <jno@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch adds new structures and updates some existing ones to
provide the base for Extended SCA functionality.
The old sca_* structures were renamed to bsca_* to keep things uniform.
The access to fields of SIGP controls were turned into bitfields instead
of hardcoded bitmasks.
Signed-off-by: Eugene (jno) Dvurechenski <jno@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch generalizes access to the SIGP controls, which is a part of SCA.
This is to prepare for upcoming introduction of Extended SCA support.
Signed-off-by: Eugene (jno) Dvurechenski <jno@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
For now, VCPUs were always created sequentially with incrementing
VCPU ids. Therefore, the index in the VCPUs array matched the id.
As sequential creation might change with cpu hotplug, let's use
the correct lookup function to find a VCPU by id, not array index.
Let's also use kvm_lookup_vcpu() for validation of the sending VCPU
on external call injection.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: stable@vger.kernel.org # db27a7a KVM: Provide function for VCPU lookup by id
Commit 383d0b0501 ("KVM: s390: handle pending local interrupts via
bitmap") introduced a possible memory overwrite from user space.
User space could pass an invalid emergency signal code (sending VCPU)
and therefore exceed the bitmap. Let's take care of this case and
check that the id is in the valid range.
Reviewed-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org # v3.19+ db27a7a KVM: Provide function for VCPU lookup by id
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's factor this out and always use get_tod_clock_fast() when
reading the guest TOD.
STORE CLOCK FAST does not do serialization and, therefore, might
result in some fuzziness between different processors in a way
that subsequent calls on different CPUs might have time stamps that
are earlier. This semantics is fine though for all KVM use cases.
To make it obvious that the new function has STORE CLOCK FAST
semantics we name it kvm_s390_get_tod_clock_fast.
With this patch, we only have a handful of places were we
have to care about STP sync (using preempt_disable() logic).
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
PER events can always co-exist with other program interrupts.
For now, we always overwrite all program interrupt parameters when
injecting any type of program interrupt.
Let's handle that correctly by only overwriting the relevant portion of
the program interrupt parameters. Therefore we can now inject PER events
and ordinary program interrupts concurrently, resulting in no loss of
program interrupts. This will especially by helpful when manually detecting
PER events later - as both types might be triggered during one SIE exit.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
The main reason to keep program injection in kernel separated until now
was that we were able to do some checking, if really only the owning
thread injects program interrupts (via waitqueue_active(li->wq)).
This BUG_ON was never triggered and the chances of really hitting it, if
another thread injected a program irq to another vcpu, were very small.
Let's drop this check and turn kvm_s390_inject_program_int() and
kvm_s390_inject_prog_irq() into simple inline functions that makes use of
kvm_s390_inject_vcpu().
__must_check can be dropped as they are implicitely given by
kvm_s390_inject_vcpu(), to avoid ugly long function prototypes.
Reviewed-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's get rid of the local variable and exit directly if we found
any pending interrupt. This is not only faster, but also better
readable.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We can remove that double check.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
No need to separate pending and floating irqs when setting interception
requests. Let's do it for all equally.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We don't care about program event recording irqs (synchronous
program irqs) but asynchronous irqs when checking for disabled
wait. Machine checks were missing.
Let's directly switch to the functions we have for that purpose
instead of testing once again for magic bits.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
the float int structure is no longer used in __inject_vm.
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Pull locking and atomic updates from Ingo Molnar:
"Main changes in this cycle are:
- Extend atomic primitives with coherent logic op primitives
(atomic_{or,and,xor}()) and deprecate the old partial APIs
(atomic_{set,clear}_mask())
The old ops were incoherent with incompatible signatures across
architectures and with incomplete support. Now every architecture
supports the primitives consistently (by Peter Zijlstra)
- Generic support for 'relaxed atomics':
- _acquire/release/relaxed() flavours of xchg(), cmpxchg() and {add,sub}_return()
- atomic_read_acquire()
- atomic_set_release()
This came out of porting qwrlock code to arm64 (by Will Deacon)
- Clean up the fragile static_key APIs that were causing repeat bugs,
by introducing a new one:
DEFINE_STATIC_KEY_TRUE(name);
DEFINE_STATIC_KEY_FALSE(name);
which define a key of different types with an initial true/false
value.
Then allow:
static_branch_likely()
static_branch_unlikely()
to take a key of either type and emit the right instruction for the
case. To be able to know the 'type' of the static key we encode it
in the jump entry (by Peter Zijlstra)
- Static key self-tests (by Jason Baron)
- qrwlock optimizations (by Waiman Long)
- small futex enhancements (by Davidlohr Bueso)
- ... and misc other changes"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (63 commits)
jump_label/x86: Work around asm build bug on older/backported GCCs
locking, ARM, atomics: Define our SMP atomics in terms of _relaxed() operations
locking, include/llist: Use linux/atomic.h instead of asm/cmpxchg.h
locking/qrwlock: Make use of _{acquire|release|relaxed}() atomics
locking/qrwlock: Implement queue_write_unlock() using smp_store_release()
locking/lockref: Remove homebrew cmpxchg64_relaxed() macro definition
locking, asm-generic: Add _{relaxed|acquire|release}() variants for 'atomic_long_t'
locking, asm-generic: Rework atomic-long.h to avoid bulk code duplication
locking/atomics: Add _{acquire|release|relaxed}() variants of some atomic operations
locking, compiler.h: Cast away attributes in the WRITE_ONCE() magic
locking/static_keys: Make verify_keys() static
jump label, locking/static_keys: Update docs
locking/static_keys: Provide a selftest
jump_label: Provide a self-test
s390/uaccess, locking/static_keys: employ static_branch_likely()
x86, tsc, locking/static_keys: Employ static_branch_likely()
locking/static_keys: Add selftest
locking/static_keys: Add a new static_key interface
locking/static_keys: Rework update logic
locking/static_keys: Add static_key_{en,dis}able() helpers
...
If the host has STP enabled, the TOD of the host will be changed during
synchronization phases. These are performed during a stop_machine() call.
As the guest TOD is based on the host TOD, we have to make sure that:
- no VCPU is in the SIE (implicitly guaranteed via stop_machine())
- manual guest TOD calculations are not affected
"Epoch" is the guest TOD clock delta to the host TOD clock. We have to
adjust that value during the STP synchronization and make sure that code
that accesses the epoch won't get interrupted in between (via disabling
preemption).
Signed-off-by: Fan Zhang <zhangfan@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch adds names for missing irq types to the trace events.
In order to identify adapter irqs, the define is moved from
interrupt.c to the other basic irq defines in uapi/linux/kvm.h.
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This reworks the debug logging for interrupt related logs.
Several changes:
- unify program int/irq
- improve decoding (e.g. use mcic instead of parm64 for machine
check injection)
- remove useless interrupt type number (the name is enough)
- rename "interrupt:" to "deliver:" as the other side is called "inject"
- use log level 3 for state changing and/or seldom events (like machine
checks, restart..)
- use log level 4 for frequent events
- use 0x prefix for hex numbers
- add pfault done logging
- move some tracing outside spinlock
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: Jens Freimann <jfrei@linux.vnet.ibm.com>