The maximum size of e820 map array for EFI systems is defined as
E820_X_MAX (E820MAX + 3 * MAX_NUMNODES).
In x86_64 defconfig, this ends up with E820_X_MAX = 320, e820 and e820_saved
are 6404 bytes each.
With larger configs, for example Fedora kernels, E820_X_MAX = 3200, e820
and e820_saved are 64004 bytes each. Most of this space is wasted.
Typical machines have some 20-30 e820 areas at most.
After previous patch, e820 and e820_saved are pointers to e280 maps.
Change them to initially point to maps which are __initdata.
At the very end of kernel init, just before __init[data] sections are freed
in free_initmem(), allocate smaller blocks, copy maps there,
and change pointers.
The late switch makes sure that all functions which can be used to change
e820 maps are no longer accessible (they are all __init functions).
Run-tested.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160918182125.21000-1-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch turns e820 and e820_saved into pointers to e820 tables,
of the same size as before.
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160917213927.1787-2-dvlasenk@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Default implementation expects 6 pages maximum are needed for low page
allocations. If KASLR memory randomization is enabled, the worse case
of e820 layout would require 12 pages (no large pages). It is due to the
PUD level randomization and the variable e820 memory layout.
This bug was found while doing extensive testing of KASLR memory
randomization on different type of hardware.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Cc: Aleksey Makarov <aleksey.makarov@linaro.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: kernel-hardening@lists.openwall.com
Fixes: 021182e52f ("Enable KASLR for physical mapping memory regions")
Link: http://lkml.kernel.org/r/1470762665-88032-2-git-send-email-thgarnie@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There was only one use of __initdata_refok and __exit_refok
__init_refok was used 46 times against 82 for __ref.
Those definitions are obsolete since commit 312b1485fb ("Introduce new
section reference annotations tags: __ref, __refdata, __refconst")
This patch removes the following compatibility definitions and replaces
them treewide.
/* compatibility defines */
#define __init_refok __ref
#define __initdata_refok __refdata
#define __exit_refok __ref
I can also provide separate patches if necessary.
(One patch per tree and check in 1 month or 2 to remove old definitions)
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1466796271-3043-1-git-send-email-fabf@skynet.be
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Randomizes the virtual address space of kernel memory regions for
x86_64. This first patch adds the infrastructure and does not randomize
any region. The following patches will randomize the physical memory
mapping, vmalloc and vmemmap regions.
This security feature mitigates exploits relying on predictable kernel
addresses. These addresses can be used to disclose the kernel modules
base addresses or corrupt specific structures to elevate privileges
bypassing the current implementation of KASLR. This feature can be
enabled with the CONFIG_RANDOMIZE_MEMORY option.
The order of each memory region is not changed. The feature looks at the
available space for the regions based on different configuration options
and randomizes the base and space between each. The size of the physical
memory mapping is the available physical memory. No performance impact
was detected while testing the feature.
Entropy is generated using the KASLR early boot functions now shared in
the lib directory (originally written by Kees Cook). Randomization is
done on PGD & PUD page table levels to increase possible addresses. The
physical memory mapping code was adapted to support PUD level virtual
addresses. This implementation on the best configuration provides 30,000
possible virtual addresses in average for each memory region. An
additional low memory page is used to ensure each CPU can start with a
PGD aligned virtual address (for realmode).
x86/dump_pagetable was updated to correctly display each region.
Updated documentation on x86_64 memory layout accordingly.
Performance data, after all patches in the series:
Kernbench shows almost no difference (-+ less than 1%):
Before:
Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.63 (1.2695)
User Time 1034.89 (1.18115) System Time 87.056 (0.456416) Percent CPU 1092.9
(13.892) Context Switches 199805 (3455.33) Sleeps 97907.8 (900.636)
After:
Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.489 (1.10636)
User Time 1034.86 (1.36053) System Time 87.764 (0.49345) Percent CPU 1095
(12.7715) Context Switches 199036 (4298.1) Sleeps 97681.6 (1031.11)
Hackbench shows 0% difference on average (hackbench 90 repeated 10 times):
attemp,before,after 1,0.076,0.069 2,0.072,0.069 3,0.066,0.066 4,0.066,0.068
5,0.066,0.067 6,0.066,0.069 7,0.067,0.066 8,0.063,0.067 9,0.067,0.065
10,0.068,0.071 average,0.0677,0.0677
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/1466556426-32664-6-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use a separate global variable to define the trampoline PGD used to
start other processors. This change will allow KALSR memory
randomization to change the trampoline PGD to be correctly aligned with
physical memory.
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Kuleshov <kuleshovmail@gmail.com>
Cc: Alexander Popov <alpopov@ptsecurity.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: kernel-hardening@lists.openwall.com
Cc: linux-doc@vger.kernel.org
Link: http://lkml.kernel.org/r/1466556426-32664-5-git-send-email-keescook@chromium.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Usually, after we have found the proper microcode blob for the current
machine, we stash it away for later use with save_microcode_in_initrd().
However, with builtin microcode which doesn't come from the initrd, we
don't call that function because CONFIG_BLK_DEV_INITRD=n and even if
set, we don't have a valid initrd.
In order to fix this, let's make save_microcode_in_initrd() an
fs_initcall which runs before rootfs_initcall() as this was the time it
was called previously through:
rootfs_initcall(populate_rootfs)
|-> free_initrd()
|-> free_initrd_mem()
|-> save_microcode_in_initrd()
Also, we make it run independently from initrd functionality being
present or not.
And since it is called in the microcode loader only now, we can also
make it static.
Reported-and-tested-by: Jim Bos <jim876@xs4all.nl>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # v4.6
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1465225850-7352-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use static_cpu_has() in __flush_tlb_all() due to the time-sensitivity of
this one.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1459266123-21878-10-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
we want to couple all debugging features with debug_pagealloc_enabled()
and not with the config option CONFIG_DEBUG_PAGEALLOC.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can use debug_pagealloc_enabled() to check if we can map the identity
mapping with 2MB pages. We can also add the state into the dump_stack
output.
The patch does not touch the code for the 1GB pages, which ignored
CONFIG_DEBUG_PAGEALLOC. Do we need to fence this as well?
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1/ Add support for the ACPI 6.0 NFIT hot add mechanism to process
updates of the NFIT at runtime.
2/ Teach the coredump implementation how to filter out DAX mappings.
3/ Introduce NUMA hints for allocations made by the pmem driver, and as
a side effect all devm allocations now hint their NUMA node by
default.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWQX2sAAoJEB7SkWpmfYgCWsEQAK7w/xM9zClVY/DDlFJxFtYq
DZJ4faPj+E3FMTiJIEDzjtRgQvOFE+wmJtntYsCqKH/QZmpnyk9jeT/CbJzEEL2k
WsAk+qHGLcVUlSb36blwN1RFzYqC+IDYThewJqUvxDbOwL1AbiibbX7gplzZHLhW
+rj3ScVlSNOPRDgGGpkAeLNNsttuKvsGo7nB/JZopm0tV6g14rSK09wQbVhv6S6T
Lu7VGYqnJlkteL9YlzRiROf9hW2ZFCMGJz1YZydPTy3aX3hGTBX4w2qvmsPwBIKP
kW/gCNisVJGk1cZCk4joSJ8i/b3x3fE0zdZ5waivJ5jDvYbUUfyk0KtJkfw207Rl
14yWitUC6aeVuCeOqXHgsjRi+1QVN9Pg7i49xgGiUN1igQiUYRTgQPWZxDv6Zo/s
USrLFQBaRd+hJw+dl7A47lJ3mUF96tPCoQb4LCQ7DVsg5U4J2TvqXLH9Gek/CCZ4
QsMkZDTQlZw4+JEDlzBgg/L7xVty8DadplTADMdjaRhFU3y8zKNJ85Ileokt7KVt
IsBT4+S5HeZLvinZY95932DwAmFp1DtsyENd1BUXL06ddyvlQrFJ6NQaXji4fuDc
EVQmMoTAqDujZFupMAux9vkUBDFj/hmaVD5F7j3+MWP87OCritw/IZn+2LgTaKoX
EmttaYrDr2jJwIaGyw+H
=a2/L
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"Outside of the new ACPI-NFIT hot-add support this pull request is more
notable for what it does not contain, than what it does. There were a
handful of development topics this cycle, dax get_user_pages, dax
fsync, and raw block dax, that need more more iteration and will wait
for 4.5.
The patches to make devm and the pmem driver NUMA aware have been in
-next for several weeks. The hot-add support has not, but is
contained to the NFIT driver and is passing unit tests. The coredump
support is straightforward and was looked over by Jeff. All of it has
received a 0day build success notification across 107 configs.
Summary:
- Add support for the ACPI 6.0 NFIT hot add mechanism to process
updates of the NFIT at runtime.
- Teach the coredump implementation how to filter out DAX mappings.
- Introduce NUMA hints for allocations made by the pmem driver, and
as a side effect all devm allocations now hint their NUMA node by
default"
* tag 'libnvdimm-for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
coredump: add DAX filtering for FDPIC ELF coredumps
coredump: add DAX filtering for ELF coredumps
acpi: nfit: Add support for hot-add
nfit: in acpi_nfit_init, break on a 0-length table
pmem, memremap: convert to numa aware allocations
devm_memremap_pages: use numa_mem_id
devm: make allocations numa aware by default
devm_memremap: convert to return ERR_PTR
devm_memunmap: use devres_release()
pmem: kill memremap_pmem()
x86, mm: quiet arch_add_memory()
Merge the early loader functionality into the driver proper. The
diff is huge but logically, it is simply moving code from the
_early.c files into the main driver.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Jones <davej@codemonkey.org.uk>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Link: http://lkml.kernel.org/r/1445334889-300-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Switch to pr_debug() so that dynamic-debug can disable these messages by
default. This gets noisy in the presence of devm_memremap_pages().
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add comments to the cachemode translation tables to clarify that
the default values are set as minimal supported mode, which are
necessary to handle WC and WT fallback to UC- when they are not
enabled.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Cc: Jan Beulich <jbeulich@suse.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1437588371-28223-1-git-send-email-toshi.kani@hp.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In the case when PAT is disabled on the command line with
"nopat" or when virtualization doesn't support PAT (correctly) -
see
9d34cfdf47 ("x86: Don't rely on VMWare emulating PAT MSR correctly").
we emulate it using the PWT and PCD cache attribute bits. Get
rid of boot_pat_state while at it.
Based on a conglomerate patch from Toshi Kani.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Toshi Kani <toshi.kani@hp.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Elliott@hp.com
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arnd@arndb.de
Cc: hch@lst.de
Cc: hmh@hmh.eng.br
Cc: konrad.wilk@oracle.com
Cc: linux-mm <linux-mm@kvack.org>
Cc: linux-nvdimm@lists.01.org
Cc: stefan.bader@canonical.com
Cc: yigal@plexistor.com
Link: http://lkml.kernel.org/r/1433436928-31903-3-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 mm changes from Ingo Molnar:
"The main changes in this cycle were:
- reduce the x86/32 PAE per task PGD allocation overhead from 4K to
0.032k (Fenghua Yu)
- early_ioremap/memunmap() usage cleanups (Juergen Gross)
- gbpages support cleanups (Luis R Rodriguez)
- improve AMD Bulldozer (family 0x15) ASLR I$ aliasing workaround to
increase randomization by 3 bits (per bootup) (Hector
Marco-Gisbert)
- misc fixlets"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Improve AMD Bulldozer ASLR workaround
x86/mm/pat: Initialize __cachemode2pte_tbl[] and __pte2cachemode_tbl[] in a bit more readable fashion
init.h: Clean up the __setup()/early_param() macros
x86/mm: Simplify probe_page_size_mask()
x86/mm: Further simplify 1 GB kernel linear mappings handling
x86/mm: Use early_param_on_off() for direct_gbpages
init.h: Add early_param_on_off()
x86/mm: Simplify enabling direct_gbpages
x86/mm: Use IS_ENABLED() for direct_gbpages
x86/mm: Unexport set_memory_ro() and set_memory_rw()
x86/mm, efi: Use early_ioremap() in arch/x86/platform/efi/efi-bgrt.c
x86/mm: Use early_memunmap() instead of early_iounmap()
x86/mm/pat: Ensure different messages in STRICT_DEVMEM and PAT cases
x86/mm: Reduce PAE-mode per task pgd allocation overhead from 4K to 32 bytes
The initialization of these two arrays is a bit difficult to follow:
restructure it optically so that a 2D structure shows which bit in
the PTE is set and which not.
Also improve on comments a bit.
No code or data changed:
# arch/x86/mm/init.o:
text data bss dec hex filename
4585 424 29776 34785 87e1 init.o.before
4585 424 29776 34785 87e1 init.o.after
md5:
a82e11ff58bcfd0af3a94662a701f65d init.o.before.asm
a82e11ff58bcfd0af3a94662a701f65d init.o.after.asm
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20150305082135.GB5969@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that we've simplified the gbpages config space, move the
'page_size_mask' initialization into probe_page_size_mask(),
right next to the PSE and PGE enablement lines.
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: JBeulich@suse.com
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: julia.lawall@lip6.fr
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's a bit pointless to allow Kconfig configuration for 1GB kernel
mappings, it's already hidden behind a 'default y' and CONFIG_EXPERT.
Remove this complication and simplify the code by renaming
CONFIG_ENABLE_DIRECT_GBPAGES to CONFIG_X86_DIRECT_GBPAGES and
document the DEBUG_PAGE_ALLOC and KMEMCHECK quirks.
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: JBeulich@suse.com
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: julia.lawall@lip6.fr
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The enabler / disabler is pretty simple, just use the
provided wrappers, this lets us easily relate the variable
to the associated Kconfig entry.
Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: JBeulich@suse.com
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: julia.lawall@lip6.fr
Link: http://lkml.kernel.org/r/1425518654-3403-5-git-send-email-mcgrof@do-not-panic.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
direct_gbpages can be force enabled as an early parameter
but not really have taken effect when DEBUG_PAGEALLOC
or KMEMCHECK is enabled. You can also enable direct_gbpages
right now if you have an x86_64 architecture but your CPU
doesn't really have support for this feature. In both cases
PG_LEVEL_1G won't actually be enabled but direct_gbpages is used
in other areas under the assumptions that PG_LEVEL_1G
was set. Fix this by putting together all requirements
which make this feature sensible to enable under, and only
enable both finally flipping on PG_LEVEL_1G and leaving
PG_LEVEL_1G set when this is true.
We only enable this feature then to be possible on sensible
builds defined by the new ENABLE_DIRECT_GBPAGES. If the
CPU has support for it you can either enable this by using
the DIRECT_GBPAGES option or using the early kernel parameter.
If a platform had support for this you can always force disable
it as well.
Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Dexuan Cui <decui@microsoft.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: JBeulich@suse.com
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: julia.lawall@lip6.fr
Link: http://lkml.kernel.org/r/1425518654-3403-3-git-send-email-mcgrof@do-not-panic.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull misc x86 fixes from Ingo Molnar:
"This contains:
- EFI fixes
- a boot printout fix
- ASLR/kASLR fixes
- intel microcode driver fixes
- other misc fixes
Most of the linecount comes from an EFI revert"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/ASLR: Avoid PAGE_SIZE redefinition for UML subarch
x86/microcode/intel: Handle truncated microcode images more robustly
x86/microcode/intel: Guard against stack overflow in the loader
x86, mm/ASLR: Fix stack randomization on 64-bit systems
x86/mm/init: Fix incorrect page size in init_memory_mapping() printks
x86/mm/ASLR: Propagate base load address calculation
Documentation/x86: Fix path in zero-page.txt
x86/apic: Fix the devicetree build in certain configs
Revert "efi/libstub: Call get_memory_map() to obtain map and desc sizes"
x86/efi: Avoid triple faults during EFI mixed mode calls
With 32-bit non-PAE kernels, we have 2 page sizes available
(at most): 4k and 4M.
Enabling PAE replaces that 4M size with a 2M one (which 64-bit
systems use too).
But, when booting a 32-bit non-PAE kernel, in one of our
early-boot printouts, we say:
init_memory_mapping: [mem 0x00000000-0x000fffff]
[mem 0x00000000-0x000fffff] page 4k
init_memory_mapping: [mem 0x37000000-0x373fffff]
[mem 0x37000000-0x373fffff] page 2M
init_memory_mapping: [mem 0x00100000-0x36ffffff]
[mem 0x00100000-0x003fffff] page 4k
[mem 0x00400000-0x36ffffff] page 2M
init_memory_mapping: [mem 0x37400000-0x377fdfff]
[mem 0x37400000-0x377fdfff] page 4k
Which is obviously wrong. There is no 2M page available. This
is probably because of a badly-named variable: in the map_range
code: PG_LEVEL_2M.
Instead of renaming all the PG_LEVEL_2M's. This patch just
fixes the printout:
init_memory_mapping: [mem 0x00000000-0x000fffff]
[mem 0x00000000-0x000fffff] page 4k
init_memory_mapping: [mem 0x37000000-0x373fffff]
[mem 0x37000000-0x373fffff] page 4M
init_memory_mapping: [mem 0x00100000-0x36ffffff]
[mem 0x00100000-0x003fffff] page 4k
[mem 0x00400000-0x36ffffff] page 4M
init_memory_mapping: [mem 0x37400000-0x377fdfff]
[mem 0x37400000-0x377fdfff] page 4k
BRK [0x03206000, 0x03206fff] PGTABLE
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/20150210212030.665EC267@viggo.jf.intel.com
Signed-off-by: Borislav Petkov <bp@suse.de>
Not just setting it when the feature is available is for
consistency, and may allow Xen to drop its custom clearing of
the flag (unless it needs it cleared earlier than this code
executes). Note that the change is benign to ix86, as the flag
starts out clear there.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/54C215D10200007800058912@mail.emea.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 perf updates from Ingo Molnar:
"This series tightens up RDPMC permissions: currently even highly
sandboxed x86 execution environments (such as seccomp) have permission
to execute RDPMC, which may leak various perf events / PMU state such
as timing information and other CPU execution details.
This 'all is allowed' RDPMC mode is still preserved as the
(non-default) /sys/devices/cpu/rdpmc=2 setting. The new default is
that RDPMC access is only allowed if a perf event is mmap-ed (which is
needed to correctly interpret RDPMC counter values in any case).
As a side effect of these changes CR4 handling is cleaned up in the
x86 code and a shadow copy of the CR4 value is added.
The extra CR4 manipulation adds ~ <50ns to the context switch cost
between rdpmc-capable and rdpmc-non-capable mms"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86: Add /sys/devices/cpu/rdpmc=2 to allow rdpmc for all tasks
perf/x86: Only allow rdpmc if a perf_event is mapped
perf: Pass the event to arch_perf_update_userpage()
perf: Add pmu callbacks to track event mapping and unmapping
x86: Add a comment clarifying LDT context switching
x86: Store a per-cpu shadow copy of CR4
x86: Clean up cr4 manipulation
Pull trivial tree changes from Jiri Kosina:
"Patches from trivial.git that keep the world turning around.
Mostly documentation and comment fixes, and a two corner-case code
fixes from Alan Cox"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial:
kexec, Kconfig: spell "architecture" properly
mm: fix cleancache debugfs directory path
blackfin: mach-common: ints-priority: remove unused function
doubletalk: probe failure causes OOPS
ARM: cache-l2x0.c: Make it clear that cache-l2x0 handles L310 cache controller
msdos_fs.h: fix 'fields' in comment
scsi: aic7xxx: fix comment
ARM: l2c: fix comment
ibmraid: fix writeable attribute with no store method
dynamic_debug: fix comment
doc: usbmon: fix spelling s/unpriviledged/unprivileged/
x86: init_mem_mapping(): use capital BIOS in comment
Context switches and TLB flushes can change individual bits of CR4.
CR4 reads take several cycles, so store a shadow copy of CR4 in a
per-cpu variable.
To avoid wasting a cache line, I added the CR4 shadow to
cpu_tlbstate, which is already touched in switch_mm. The heaviest
users of the cr4 shadow will be switch_mm and __switch_to_xtra, and
__switch_to_xtra is called shortly after switch_mm during context
switch, so the cacheline is likely to be hot.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Vince Weaver <vince@deater.net>
Cc: "hillf.zj" <hillf.zj@alibaba-inc.com>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/3a54dd3353fffbf84804398e00dfdc5b7c1afd7d.1414190806.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CR4 manipulation was split, seemingly at random, between direct
(write_cr4) and using a helper (set/clear_in_cr4). Unfortunately,
the set_in_cr4 and clear_in_cr4 helpers also poke at the boot code,
which only a small subset of users actually wanted.
This patch replaces all cr4 access in functions that don't leave cr4
exactly the way they found it with new helpers cr4_set_bits,
cr4_clear_bits, and cr4_set_bits_and_update_boot.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Vince Weaver <vince@deater.net>
Cc: "hillf.zj" <hillf.zj@alibaba-inc.com>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/495a10bdc9e67016b8fd3945700d46cfd5c12c2f.1414190806.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit 281d4078be ("x86: Make page cache mode a real type")
introduced the symbols __cachemode2pte_tbl and __pte2cachemode_tbl and
exported them via EXPORT_SYMBOL_GPL. The exports are part of a
replacement of code which has been EXPORT_SYMBOL before these changes
resulting in build breakage of out-of-tree non-gpl modules.
Change EXPORT_SYMBOL_GPL to EXPORT-SYMBOL for these two symbols.
Fixes: 281d4078be "x86: Make page cache mode a real type"
Reported-and-tested-by: Steven Noonan <steven@uplinklabs.net>
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Toshi Kani <toshi.kani@hp.com>
Link: http://lkml.kernel.org/r/1421926997-28615-1-git-send-email-jgross@suse.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use capital BIOS in comment. Its cleaner, and allows diference
between BIOS and BIOs.
Signed-off-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
The old scheme can lead to failure in certain cases - the
problem is that after bumping step_size the next (non-final)
iteration is only guaranteed to make available a memory block
the size of what step_size was before. E.g. for a memory block
[0,3004600000) we'd have:
iter start end step amount
1 3004400000 30045fffff 2M 2M
2 3004000000 30043fffff 64M 4M
3 3000000000 3003ffffff 2G 64M
4 2000000000 2fffffffff 64G 64G
Yet to map 64G with 4k pages (as happens e.g. under PV Xen) we
need slightly over 128M, but the first three iterations made
only about 70M available.
The condition (new_mapped_ram_size > mapped_ram_size) for
bumping step_size is just not suitable. Instead we want to bump
it when we know we have enough memory available to cover a block
of the new step_size. And rather than making that condition more
complicated than needed, simply adjust step_size by the largest
possible factor we know we can cover at that point - which is
shifting it left by one less than the difference between page
table level shifts. (Interestingly the original STEP_SIZE_SHIFT
definition had a comment hinting at that having been the
intention, just that it should have been PUD_SHIFT-PMD_SHIFT-1
instead of (PUD_SHIFT-PMD_SHIFT)/2, and of course for non-PAE
32-bit we can't really use these two constants as they're equal
there.)
Furthermore the comment in get_new_step_size() didn't get
updated when the bottom-down mapping logic got added. Yet while
an overflow (flushing step_size to zero) of the shift doesn't
matter for the top-down method, it does for bottom-up because
round_up(x, 0) = 0, and an upper range boundary of zero can't
really work well.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/54945C1E020000780005114E@mail.emea.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Ingo Molnar:
"Misc fixes (mainly Andy's TLS fixes), plus a cleanup"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tls: Disallow unusual TLS segments
x86/tls: Validate TLS entries to protect espfix
MAINTAINERS: Add me as x86 VDSO submaintainer
x86/asm: Unify segment selector defines
x86/asm: Guard against building the 32/64-bit versions of the asm-offsets*.c file directly
x86_64, switch_to(): Load TLS descriptors before switching DS and ES
x86/mm: Use min() instead of min_t() in the e820 printout code
x86/mm: Fix zone ranges boot printout
x86/doc: Update documentation after file shuffling
At the moment there are a lot of places that handle setting or getting
the page cache mode by treating the pgprot bits equal to the cache mode.
This is only true because there are a lot of assumptions about the setup
of the PAT MSR. Otherwise the cache type needs to get translated into
pgprot bits and vice versa.
This patch tries to prepare for that by introducing a separate type
for the cache mode and adding functions to translate between those and
pgprot values.
To avoid too much performance penalty the translation between cache mode
and pgprot values is done via tables which contain the relevant
information. Write-back cache mode is hard-wired to be 0, all other
modes are configurable via those tables. For large pages there are
translation functions as the PAT bit is located at different positions
in the ptes of 4k and large pages.
Based-on-patch-by: Stefan Bader <stefan.bader@canonical.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stefan.bader@canonical.com
Cc: xen-devel@lists.xensource.com
Cc: konrad.wilk@oracle.com
Cc: ville.syrjala@linux.intel.com
Cc: david.vrabel@citrix.com
Cc: jbeulich@suse.com
Cc: toshi.kani@hp.com
Cc: plagnioj@jcrosoft.com
Cc: tomi.valkeinen@ti.com
Cc: bhelgaas@google.com
Link: http://lkml.kernel.org/r/1415019724-4317-2-git-send-email-jgross@suse.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We don't have any good way to figure out what kinds of flushes
are being attempted. Right now, we can try to use the vm
counters, but those only tell us what we actually did with the
hardware (one-by-one vs full) and don't tell us what was actually
_requested_.
This allows us to select out "interesting" TLB flushes that we
might want to optimize (like the ranged ones) and ignore the ones
that we have very little control over (the ones at context
switch).
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/r/20140731154059.4C96CBA5@viggo.jf.intel.com
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The Linux kernel cannot migrate pages used by the kernel. As a result,
kernel pages cannot be hot-removed. So we cannot allocate hotpluggable
memory for the kernel.
In a memory hotplug system, any numa node the kernel resides in should be
unhotpluggable. And for a modern server, each node could have at least
16GB memory. So memory around the kernel image is highly likely
unhotpluggable.
ACPI SRAT (System Resource Affinity Table) contains the memory hotplug
info. But before SRAT is parsed, memblock has already started to allocate
memory for the kernel. So we need to prevent memblock from doing this.
So direct memory mapping page tables setup is the case.
init_mem_mapping() is called before SRAT is parsed. To prevent page
tables being allocated within hotpluggable memory, we will use bottom-up
direction to allocate page tables from the end of kernel image to the
higher memory.
Note:
As for allocating page tables in lower memory, TJ said:
: This is an optional behavior which is triggered by a very specific kernel
: boot param, which I suspect is gonna need to stick around to support
: memory hotplug in the current setup unless we add another layer of address
: translation to support memory hotplug.
As for page tables may occupy too much lower memory if using 4K mapping
(CONFIG_DEBUG_PAGEALLOC and CONFIG_KMEMCHECK both disable using >4k
pages), TJ said:
: But as I said in the same paragraph, parsing SRAT earlier doesn't solve
: the problem in itself either. Ignoring the option if 4k mapping is
: required and memory consumption would be prohibitive should work, no?
: Something like that would be necessary if we're gonna worry about cases
: like this no matter how we implement it, but, frankly, I'm not sure this
: is something worth worrying about.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Create a new function memory_map_top_down to factor out of the top-down
direct memory mapping pagetable setup. This is also a preparation for the
following patch, which will introduce the bottom-up memory mapping. That
said, we will put the two ways of pagetable setup into separate functions,
and choose to use which way in init_mem_mapping, which makes the code more
clear.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current code uses macro to shift by 5, but there is no explanation
why there's no worry about an overflow there.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Jacob Shin <jacob.shin@amd.com>
Link: http://lkml.kernel.org/r/1378519629-10433-1-git-send-email-yinghai@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Dave Hansen reported that systems between 500G and 600G RAM
crash early if DEBUG_PAGEALLOC is selected.
> [ 0.000000] init_memory_mapping: [mem 0x00000000-0x000fffff]
> [ 0.000000] [mem 0x00000000-0x000fffff] page 4k
> [ 0.000000] BRK [0x02086000, 0x02086fff] PGTABLE
> [ 0.000000] BRK [0x02087000, 0x02087fff] PGTABLE
> [ 0.000000] BRK [0x02088000, 0x02088fff] PGTABLE
> [ 0.000000] init_memory_mapping: [mem 0xe80ee00000-0xe80effffff]
> [ 0.000000] [mem 0xe80ee00000-0xe80effffff] page 4k
> [ 0.000000] BRK [0x02089000, 0x02089fff] PGTABLE
> [ 0.000000] BRK [0x0208a000, 0x0208afff] PGTABLE
> [ 0.000000] Kernel panic - not syncing: alloc_low_page: ran out of memory
It turns out that we missed increasing needed pages in BRK to
mapping initial 2M and [0,1M) when we switched to use the #PF
handler to set memory mappings:
> commit 8170e6bed4
> Author: H. Peter Anvin <hpa@zytor.com>
> Date: Thu Jan 24 12:19:52 2013 -0800
>
> x86, 64bit: Use a #PF handler to materialize early mappings on demand
Before that, we had the maping from [0,512M) in head_64.S, and we
can spare two pages [0-1M). After that change, we can not reuse
pages anymore.
When we have more than 512M ram, we need an extra page for pgd page
with [512G, 1024g).
Increase pages in BRK for page table to solve the boot crash.
Reported-by: Dave Hansen <dave.hansen@intel.com>
Bisected-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: <stable@vger.kernel.org> # v3.9 and later
Link: http://lkml.kernel.org/r/1376351004-4015-1-git-send-email-yinghai@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit
8d57470d x86, mm: setup page table in top-down
causes a kernel panic while setting mem=2G.
[mem 0x00000000-0x000fffff] page 4k
[mem 0x7fe00000-0x7fffffff] page 1G
[mem 0x7c000000-0x7fdfffff] page 1G
[mem 0x00100000-0x001fffff] page 4k
[mem 0x00200000-0x7bffffff] page 2M
for last entry is not what we want, we should have
[mem 0x00200000-0x3fffffff] page 2M
[mem 0x40000000-0x7bffffff] page 1G
Actually we merge the continuous ranges with same page size too early.
in this case, before merging we have
[mem 0x00200000-0x3fffffff] page 2M
[mem 0x40000000-0x7bffffff] page 2M
after merging them, will get
[mem 0x00200000-0x7bffffff] page 2M
even we can use 1G page to map
[mem 0x40000000-0x7bffffff]
that will cause problem, because we already map
[mem 0x7fe00000-0x7fffffff] page 1G
[mem 0x7c000000-0x7fdfffff] page 1G
with 1G page, aka [0x40000000-0x7fffffff] is mapped with 1G page already.
During phys_pud_init() for [0x40000000-0x7bffffff], it will not
reuse existing that pud page, and allocate new one then try to use
2M page to map it instead, as page_size_mask does not include
PG_LEVEL_1G. At end will have [7c000000-0x7fffffff] not mapped, loop
in phys_pmd_init stop mapping at 0x7bffffff.
That is right behavoir, it maps exact range with exact page size that
we ask, and we should explicitly call it to map [7c000000-0x7fffffff]
before or after mapping 0x40000000-0x7bffffff.
Anyway we need to make sure ranges' page_size_mask correct and consistent
after split_mem_range for each range.
Fix that by calling adjust_range_size_mask before merging range
with same page size.
-v2: update change log.
-v3: add more explanation why [7c000000-0x7fffffff] is not mapped, and
it causes panic.
Bisected-by: "Xie, ChanglongX" <changlongx.xie@intel.com>
Bisected-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Reported-and-tested-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1370015587-20835-1-git-send-email-yinghai@kernel.org
Cc: <stable@vger.kernel.org> v3.9
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Two sets of comments were lost during patch-series shuffling:
- comments for init_range_memory_mapping()
- comments in init_mem_mapping that is helpful for reminding people
that the pagetable is setup top-down
The comments were written by Yinghai in his patch in:
https://lkml.org/lkml/2012/11/28/620
This patch reintroduces them.
Originally-From: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/518BC776.7010506@gmail.com
[ Tidied it all up a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use common help functions to free reserved pages.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Henrik reported that his MacAir 3.1 would not boot with
| commit 8d57470d8f
| Date: Fri Nov 16 19:38:58 2012 -0800
|
| x86, mm: setup page table in top-down
It turns out that we do not calculate the real_end properly:
We try to get 2M size with 4K alignment, and later will round down
to 2M, so we will get less then 2M for first mapping, in extreme
case could be only 4K only. In Henrik's system it has (1M-32K) as
last usable rage is [mem 0x7f9db000-0x7fef8fff].
The problem is exposed when EFI booting have several holes and it
will force mapping to use PTE instead as we only map usable areas.
To fix it, just make it be 2M aligned, so we can be guaranteed to be
able to use large pages to map it.
Reported-by: Henrik Rydberg <rydberg@euromail.se>
Bisected-by: Henrik Rydberg <rydberg@euromail.se>
Tested-by: Henrik Rydberg <rydberg@euromail.se>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQX4nQ7_1kg5RL_vh56rmcSHXUi1ExrZX7CwED4NGMnHfg@mail.gmail.com
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Before initrd image is freed, copy valid ucode patches from initrd image
to kernel memory. The saved ucode will be used to update AP in resume
or hotplug.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Link: http://lkml.kernel.org/r/1356075872-3054-12-git-send-email-fenghua.yu@intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We should set mappings only for usable memory ranges under max_pfn
Otherwise causes same problem that is fixed by
x86, mm: Only direct map addresses that are marked as E820_RAM
This patch exposes pfn_mapped array, and only sets ident mapping for ranges
in that array.
This patch relies on new kernel_ident_mapping_init that could handle existing
pgd/pud between different calls.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-25-git-send-email-yinghai@kernel.org
Cc: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Linear mode (CR0.PG = 0) is mutually exclusive with 64-bit mode; all
64-bit code has to use page tables. This makes it awkward before we
have first set up properly all-covering page tables to access objects
that are outside the static kernel range.
So far we have dealt with that simply by mapping a fixed amount of
low memory, but that fails in at least two upcoming use cases:
1. We will support load and run kernel, struct boot_params, ramdisk,
command line, etc. above the 4 GiB mark.
2. need to access ramdisk early to get microcode to update that as
early possible.
We could use early_iomap to access them too, but it will make code to
messy and hard to be unified with 32 bit.
Hence, set up a #PF table and use a fixed number of buffers to set up
page tables on demand. If the buffers fill up then we simply flush
them and start over. These buffers are all in __initdata, so it does
not increase RAM usage at runtime.
Thus, with the help of the #PF handler, we can set the final kernel
mapping from blank, and switch to init_level4_pgt later.
During the switchover in head_64.S, before #PF handler is available,
we use three pages to handle kernel crossing 1G, 512G boundaries with
sharing page by playing games with page aliasing: the same page is
mapped twice in the higher-level tables with appropriate wraparound.
The kernel region itself will be properly mapped; other mappings may
be spurious.
early_make_pgtable is using kernel high mapping address to access pages
to set page table.
-v4: Add phys_base offset to make kexec happy, and add
init_mapping_kernel() - Yinghai
-v5: fix compiling with xen, and add back ident level3 and level2 for xen
also move back init_level4_pgt from BSS to DATA again.
because we have to clear it anyway. - Yinghai
-v6: switch to init_level4_pgt in init_mem_mapping. - Yinghai
-v7: remove not needed clear_page for init_level4_page
it is with fill 512,8,0 already in head_64.S - Yinghai
-v8: we need to keep that handler alive until init_mem_mapping and don't
let early_trap_init to trash that early #PF handler.
So split early_trap_pf_init out and move it down. - Yinghai
-v9: switchover only cover kernel space instead of 1G so could avoid
touch possible mem holes. - Yinghai
-v11: change far jmp back to far return to initial_code, that is needed
to fix failure that is reported by Konrad on AMD systems. - Yinghai
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-12-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
During debugging loading kernel above 4G, found that one page is not used
in pre-allocated BRK area for early page allocation.
pgt_buf_top is address that can not be used, so should check if that new
end is above that top, otherwise last page will not be used.
Fix that checking and also add print out for allocation from pre-allocated
BRK area to catch possible bugs later.
But after we get back that page for pgt, it tiggers one bug in pgt allocation
with xen: We need to avoid to use page as pgt to map range that is
overlapping with that pgt page.
Add checking about overlapping, when it happens, use memblock allocation
instead. That fixes crash on Xen PV guest with 2G that Stefan found.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-2-git-send-email-yinghai@kernel.org
Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Tested-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
after_bootmem has different meaning in 32bit and 64bit.
32bit: after bootmem is ready
64bit: after bootmem is distroyed
Let's merget them make 32bit the same as 64bit.
for 32bit, it is mixing alloc_bootmem_pages, and alloc_low_page under
after_bootmem is set or not set.
alloc_bootmem is just wrapper for memblock for x86.
Now we have alloc_low_page() with memblock too. We can drop bootmem path
now, and only alloc_low_page only.
At the same time, we make alloc_low_page could handle real after_bootmem
for 32bit, because alloc_bootmem_pages could fallback to use slab too.
At last move after_bootmem set position for 32bit the same as 64bit.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-40-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Put it in mm/init.c, and call it from probe_page_mask().
init_mem_mapping is calling probe_page_mask at first.
So calling sequence is not changed.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-32-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
On 32bit, before patcheset that only set page table for ram, we only
call that one time.
Now, we are calling that during every init_memory_mapping if we have holes
under max_low_pfn.
We should only call it one time after all ranges under max_low_page get
mapped just like we did before.
Also that could avoid the risk to run out of pgt_buf in BRK.
Need to update page_table_range_init() to count the pages for kmap page table
at first, and use new added alloc_low_pages() to get pages in sequence.
That will conform to the requirement that pages need to be in low to high order.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-30-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
32bit kmap mapping needs pages to be used for low to high.
At this point those pages are still from pgt_buf_* from BRK, so it is
ok now.
But we want to move early_ioremap_page_table_range_init() out of
init_memory_mapping() and only call it one time later, that will
make page_table_range_init/page_table_kmap_check/alloc_low_page to
use memblock to get page.
memblock allocation for pages are from high to low.
So will get panic from page_table_kmap_check() that has BUG_ON to do
ordering checking.
This patch add alloc_low_pages to make it possible to allocate serveral
pages at first, and hand out pages one by one from low to high.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-28-git-send-email-yinghai@kernel.org
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Page table area are pre-mapped now after
x86, mm: setup page table in top-down
x86, mm: Remove early_memremap workaround for page table accessing on 64bit
mapping_pagetable_reserve is not used anymore, so remove it.
Also remove operation in mask_rw_pte(), as modified allow_low_page
always return pages that are already mapped, moreover
xen_alloc_pte_init, xen_alloc_pmd_init, etc, will mark the page RO
before hooking it into the pagetable automatically.
-v2: add changelog about mask_rw_pte() from Stefano.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-27-git-send-email-yinghai@kernel.org
Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
They are almost same except 64 bit need to handle after_bootmem case.
Add mm_internal.h to make that alloc_low_page() only to be accessible
from arch/x86/mm/init*.c
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-25-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Get pgt_buf early from BRK, and use it to map PMD_SIZE from top at first.
Then use mapped pages to map more ranges below, and keep looping until
all pages get mapped.
alloc_low_page will use page from BRK at first, after that buffer is used
up, will use memblock to find and reserve pages for page table usage.
Introduce min_pfn_mapped to make sure find new pages from mapped ranges,
that will be updated when lower pages get mapped.
Also add step_size to make sure that don't try to map too big range with
limited mapped pages initially, and increase the step_size when we have
more mapped pages on hand.
We don't need to call pagetable_reserve anymore, reserve work is done
in alloc_low_page() directly.
At last we can get rid of calculation and find early pgt related code.
-v2: update to after fix_xen change,
also use MACRO for initial pgt_buf size and add comments with it.
-v3: skip big reserved range in memblock.reserved near end.
-v4: don't need fix_xen change now.
-v5: add changelog about moving about reserving pagetable to alloc_low_page.
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-22-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We could map small range in the middle of big range at first, so should use
big page size at first to avoid using small page size to break down page table.
Only can set big page bit when that range has ram area around it.
-v2: fix 32bit boundary checking. We can not count ram above max_low_pfn
for 32 bit.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-19-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Currently direct mappings are created for [ 0 to max_low_pfn<<PAGE_SHIFT )
and [ 4GB to max_pfn<<PAGE_SHIFT ), which may include regions that are not
backed by actual DRAM. This is fine for holes under 4GB which are covered
by fixed and variable range MTRRs to be UC. However, we run into trouble
on higher memory addresses which cannot be covered by MTRRs.
Our system with 1TB of RAM has an e820 that looks like this:
BIOS-e820: [mem 0x0000000000000000-0x00000000000983ff] usable
BIOS-e820: [mem 0x0000000000098400-0x000000000009ffff] reserved
BIOS-e820: [mem 0x00000000000d0000-0x00000000000fffff] reserved
BIOS-e820: [mem 0x0000000000100000-0x00000000c7ebffff] usable
BIOS-e820: [mem 0x00000000c7ec0000-0x00000000c7ed7fff] ACPI data
BIOS-e820: [mem 0x00000000c7ed8000-0x00000000c7ed9fff] ACPI NVS
BIOS-e820: [mem 0x00000000c7eda000-0x00000000c7ffffff] reserved
BIOS-e820: [mem 0x00000000fec00000-0x00000000fec0ffff] reserved
BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved
BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved
BIOS-e820: [mem 0x0000000100000000-0x000000e037ffffff] usable
BIOS-e820: [mem 0x000000e038000000-0x000000fcffffffff] reserved
BIOS-e820: [mem 0x0000010000000000-0x0000011ffeffffff] usable
and so direct mappings are created for huge memory hole between
0x000000e038000000 to 0x0000010000000000. Even though the kernel never
generates memory accesses in that region, since the page tables mark
them incorrectly as being WB, our (AMD) processor ends up causing a MCE
while doing some memory bookkeeping/optimizations around that area.
This patch iterates through e820 and only direct maps ranges that are
marked as E820_RAM, and keeps track of those pfn ranges. Depending on
the alignment of E820 ranges, this may possibly result in using smaller
size (i.e. 4K instead of 2M or 1G) page tables.
-v2: move changes from setup.c to mm/init.c, also use for_each_mem_pfn_range
instead. - Yinghai Lu
-v3: add calculate_all_table_space_size() to get correct needed page table
size. - Yinghai Lu
-v4: fix add_pfn_range_mapped() to get correct max_low_pfn_mapped when
mem map does have hole under 4g that is found by Konard on xen
domU with 8g ram. - Yinghai
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Link: http://lkml.kernel.org/r/1353123563-3103-16-git-send-email-yinghai@kernel.org
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
It should take physical address range that will need to be mapped.
find_early_table_space should take range that pgt buff should be in.
Separating page table size calculating and finding early page table to
reduce confusing.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-9-git-send-email-yinghai@kernel.org
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
We should not do that in every calling of init_memory_mapping.
At the same time need to move down early_memtest, and could remove after_bootmem
checking.
-v2: fix one early_memtest with 32bit by passing max_pfn_mapped instead.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-8-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
After
| commit 8548c84da2
| Author: Takashi Iwai <tiwai@suse.de>
| Date: Sun Oct 23 23:19:12 2011 +0200
|
| x86: Fix S4 regression
|
| Commit 4b239f458 ("x86-64, mm: Put early page table high") causes a S4
| regression since 2.6.39, namely the machine reboots occasionally at S4
| resume. It doesn't happen always, overall rate is about 1/20. But,
| like other bugs, once when this happens, it continues to happen.
|
| This patch fixes the problem by essentially reverting the memory
| assignment in the older way.
Have some page table around 512M again, that will prevent kdump to find 512M
under 768M.
We need revert that reverting, so we could put page table high again for 64bit.
Takashi agreed that S4 regression could be something else.
https://lkml.org/lkml/2012/6/15/182
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-6-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Now init_memory_mapping is called two times, later will be called for every
ram ranges.
Could put all related init_mem calling together and out of setup.c.
Actually, it reverts commit 1bbbbe7
x86: Exclude E820_RESERVED regions and memory holes above 4 GB from direct mapping.
will address that later with complete solution include handling hole under 4g.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-5-git-send-email-yinghai@kernel.org
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
So make init_memory_mapping smaller and readable.
-v2: use 0 instead of nr_range as input parameter found by Yasuaki Ishimatsu.
Suggested-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-3-git-send-email-yinghai@kernel.org
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Now we pass around use_gbpages and use_pse for calculating page table size,
Later we will need to call init_memory_mapping for every ram range one by one,
that mean those calculation will be done several times.
Those information are the same for all ram range and could be stored in
page_size_mask and could be probed it one time only.
Move that probing code out of init_memory_mapping into separated function
probe_page_size_mask(), and call it before all init_memory_mapping.
Suggested-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1353123563-3103-2-git-send-email-yinghai@kernel.org
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Commit
844ab6f9 x86, mm: Find_early_table_space based on ranges that are actually being mapped
added back some lines back wrongly that has been removed in commit
7b16bbf97 Revert "x86/mm: Fix the size calculation of mapping tables"
remove them again.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQW_vuaYQbmagVnxT2DGsYc=9tNeAbdBq53sYkitPOwxSQ@mail.gmail.com
Acked-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Current logic finds enough space for direct mapping page tables from 0
to end. Instead, we only need to find enough space to cover mr[0].start
to mr[nr_range].end -- the range that is actually being mapped by
init_memory_mapping()
This is needed after 1bbbbe779a, to address
the panic reported here:
https://lkml.org/lkml/2012/10/20/160https://lkml.org/lkml/2012/10/21/157
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Link: http://lkml.kernel.org/r/20121024195311.GB11779@jshin-Toonie
Tested-by: Tom Rini <trini@ti.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Commit:
722bc6b167 x86/mm: Fix the size calculation of mapping tables
Tried to address the issue that the first 2/4M should use 4k pages
if PSE enabled, but extra counts should only be valid for x86_32.
This commit caused a kdump regression: the kdump kernel hangs.
Work is in progress to fundamentally fix the various page table
initialization issues that we have, via the design suggested
by H. Peter Anvin, but it's not ready yet to be merged.
So, to get a working kdump revert to the last known working version,
which is the revert of this commit and of a followup fix (which was
incomplete):
bd2753b2dd x86/mm: Only add extra pages count for the first memory range during pre-allocation
Tested kdump on physical and virtual machines.
Signed-off-by: Dave Young <dyoung@redhat.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: Flavio Leitner <fbl@redhat.com>
Tested-by: Flavio Leitner <fbl@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Flavio Leitner <fbl@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: ianfang.cn@gmail.com
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Robin found this regression:
| I just tried to boot an 8TB system. It fails very early in boot with:
| Kernel panic - not syncing: Cannot find space for the kernel page tables
git bisect commit 722bc6b167.
A git revert of that commit does boot past that point on the 8TB
configuration.
That commit will add up extra pages for all memory range even
above 4g.
Try to limit that extra page count adding to first entry only.
Bisected-by: Robin Holt <holt@sgi.com>
Tested-by: Robin Holt <holt@sgi.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/CAE9FiQUj3wyzQxtq9yzBNc9u220p8JZ1FYHG7t%3DMOzJ%3D9BZMYA@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 mm changes from Ingo Molnar:
"This tree includes a micro-optimization that avoids cr3 switches
during idling; it fixes corner cases and there's also small cleanups"
Fix up trivial context conflict with the percpu_xx -> this_cpu_xx
changes.
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86-64: Fix accounting in kernel_physical_mapping_init()
x86/tlb: Clean up and unify TLB_FLUSH_ALL definition
x86: Drop obsolete ARCH_BOOTMEM support
x86, tlb: Switch cr3 in leave_mm() only when needed
x86/mm: Fix the size calculation of mapping tables
For machines that enable PSE, the first 2/4M memory region still uses
4K pages, so needs more PTEs in this case, but
find_early_table_space() doesn't count this.
This patch fixes it.
The bug was found via code review, no misbehavior of the kernel
was observed.
Signed-off-by: WANG Cong <xiyou.wangcong@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: <ianfang.cn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-kq6a00qe33h7c7ais2xsywnh@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/numa: Add constraints check for nid parameters
mm, x86: Remove debug_pagealloc_enabled
x86/mm: Initialize high mem before free_all_bootmem()
arch/x86/kernel/e820.c: quiet sparse noise about plain integer as NULL pointer
arch/x86/kernel/e820.c: Eliminate bubble sort from sanitize_e820_map()
x86: Fix mmap random address range
x86, mm: Unify zone_sizes_init()
x86, mm: Prepare zone_sizes_init() for unification
x86, mm: Use max_low_pfn for ZONE_NORMAL on 64-bit
x86, mm: Wrap ZONE_DMA32 with CONFIG_ZONE_DMA32
x86, mm: Use max_pfn instead of highend_pfn
x86, mm: Move zone init from paging_init() on 64-bit
x86, mm: Use MAX_DMA_PFN for ZONE_DMA on 32-bit
Conflicts & resolutions:
* arch/x86/xen/setup.c
dc91c728fd "xen: allow extra memory to be in multiple regions"
24aa07882b "memblock, x86: Replace memblock_x86_reserve/free..."
conflicted on xen_add_extra_mem() updates. The resolution is
trivial as the latter just want to replace
memblock_x86_reserve_range() with memblock_reserve().
* drivers/pci/intel-iommu.c
166e9278a3 "x86/ia64: intel-iommu: move to drivers/iommu/"
5dfe8660a3 "bootmem: Replace work_with_active_regions() with..."
conflicted as the former moved the file under drivers/iommu/.
Resolved by applying the chnages from the latter on the moved
file.
* mm/Kconfig
6661672053 "memblock: add NO_BOOTMEM config symbol"
c378ddd53f "memblock, x86: Make ARCH_DISCARD_MEMBLOCK a config option"
conflicted trivially. Both added config options. Just
letting both add their own options resolves the conflict.
* mm/memblock.c
d1f0ece6cd "mm/memblock.c: small function definition fixes"
ed7b56a799 "memblock: Remove memblock_memory_can_coalesce()"
confliected. The former updates function removed by the
latter. Resolution is trivial.
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that zone_sizes_init() is identical on 32-bit and 64-bit,
move the code to arch/x86/mm/init.c and use it for both
architectures.
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Link: http://lkml.kernel.org/r/1320155902-10424-7-git-send-email-penberg@kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit 4b239f458 ("x86-64, mm: Put early page table high") causes a S4
regression since 2.6.39, namely the machine reboots occasionally at S4
resume. It doesn't happen always, overall rate is about 1/20. But,
like other bugs, once when this happens, it continues to happen.
This patch fixes the problem by essentially reverting the memory
assignment in the older way.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Cc: <stable@kernel.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Yinghai Lu <yinghai.lu@oracle.com>
[ We'll hopefully find the real fix, but that's too late for 3.1 now ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Other than sanity check and debug message, the x86 specific version of
memblock reserve/free functions are simple wrappers around the generic
versions - memblock_reserve/free().
This patch adds debug messages with caller identification to the
generic versions and replaces x86 specific ones and kills them.
arch/x86/include/asm/memblock.h and arch/x86/mm/memblock.c are empty
after this change and removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1310462166-31469-14-git-send-email-tj@kernel.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
25818f0f28 (memblock: Make MEMBLOCK_ERROR be 0) thankfully made
MEMBLOCK_ERROR 0 and there already are codes which expect error return
to be 0. There's no point in keeping MEMBLOCK_ERROR around. End its
misery.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1310457490-3356-6-git-send-email-tj@kernel.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Fold all the mmu_gather rework patches into one for submission
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Miller <davem@davemloft.net>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Tony Luck <tony.luck@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With CONFIG_DEBUG_SECTION_MISMATCH=y I see these warnings in next-20110415:
LD vmlinux.o
MODPOST vmlinux.o
WARNING: vmlinux.o(.text+0x1ba48): Section mismatch in reference from the function native_pagetable_reserve() to the function .init.text:memblock_x86_reserve_range()
The function native_pagetable_reserve() references
the function __init memblock_x86_reserve_range().
This is often because native_pagetable_reserve lacks a __init
annotation or the annotation of memblock_x86_reserve_range is wrong.
This patch fixes the issue.
Thanks to pipacs from PaX project for help on IRC.
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Introduce a new x86_init hook called pagetable_reserve that at the end
of init_memory_mapping is used to reserve a range of memory addresses for
the kernel pagetable pages we used and free the other ones.
On native it just calls memblock_x86_reserve_range while on xen it also
takes care of setting the spare memory previously allocated
for kernel pagetable pages from RO to RW, so that it can be used for
other purposes.
A detailed explanation of the reason why this hook is needed follows.
As a consequence of the commit:
commit 4b239f458c
Author: Yinghai Lu <yinghai@kernel.org>
Date: Fri Dec 17 16:58:28 2010 -0800
x86-64, mm: Put early page table high
at some point init_memory_mapping is going to reach the pagetable pages
area and map those pages too (mapping them as normal memory that falls
in the range of addresses passed to init_memory_mapping as argument).
Some of those pages are already pagetable pages (they are in the range
pgt_buf_start-pgt_buf_end) therefore they are going to be mapped RO and
everything is fine.
Some of these pages are not pagetable pages yet (they fall in the range
pgt_buf_end-pgt_buf_top; for example the page at pgt_buf_end) so they
are going to be mapped RW. When these pages become pagetable pages and
are hooked into the pagetable, xen will find that the guest has already
a RW mapping of them somewhere and fail the operation.
The reason Xen requires pagetables to be RO is that the hypervisor needs
to verify that the pagetables are valid before using them. The validation
operations are called "pinning" (more details in arch/x86/xen/mmu.c).
In order to fix the issue we mark all the pages in the entire range
pgt_buf_start-pgt_buf_top as RO, however when the pagetable allocation
is completed only the range pgt_buf_start-pgt_buf_end is reserved by
init_memory_mapping. Hence the kernel is going to crash as soon as one
of the pages in the range pgt_buf_end-pgt_buf_top is reused (b/c those
ranges are RO).
For this reason we need a hook to reserve the kernel pagetable pages we
used and free the other ones so that they can be reused for other
purposes.
On native it just means calling memblock_x86_reserve_range, on Xen it
also means marking RW the pagetable pages that we allocated before but
that haven't been used before.
Another way to fix this is without using the hook is by adding a 'if
(xen_pv_domain)' in the 'init_memory_mapping' code and calling the Xen
counterpart, but that is just nasty.
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>