Changed passing argument as "0 to NULL" which resolves below sparse warning
arch/x86/kvm/x86.c:3096:61: warning: Using plain integer as NULL pointer
Signed-off-by: Hariprasad Kelam <hariprasad.kelam@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Invoking the 64-bit variation on a 32-bit kenrel will crash the guest,
trigger a WARN, and/or lead to a buffer overrun in the host, e.g.
rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and
thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64.
KVM allows userspace to report long mode support via CPUID, even though
the guest is all but guaranteed to crash if it actually tries to enable
long mode. But, a pure 32-bit guest that is ignorant of long mode will
happily plod along.
SMM complicates things as 64-bit CPUs use a different SMRAM save state
area. KVM handles this correctly for 64-bit kernels, e.g. uses the
legacy save state map if userspace has hid long mode from the guest,
but doesn't fare well when userspace reports long mode support on a
32-bit host kernel (32-bit KVM doesn't support 64-bit guests).
Since the alternative is to crash the guest, e.g. by not loading state
or explicitly requesting shutdown, unconditionally use the legacy SMRAM
save state map for 32-bit KVM. If a guest has managed to get far enough
to handle SMIs when running under a weird/buggy userspace hypervisor,
then don't deliberately crash the guest since there are no downsides
(from KVM's perspective) to allow it to continue running.
Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Neither AMD nor Intel CPUs have an EFER field in the legacy SMRAM save
state area, i.e. don't save/restore EFER across SMM transitions. KVM
somewhat models this, e.g. doesn't clear EFER on entry to SMM if the
guest doesn't support long mode. But during RSM, KVM unconditionally
clears EFER so that it can get back to pure 32-bit mode in order to
start loading CRs with their actual non-SMM values.
Clear EFER only when it will be written when loading the non-SMM state
so as to preserve bits that can theoretically be set on 32-bit vCPUs,
e.g. KVM always emulates EFER_SCE.
And because CR4.PAE is cleared only to play nice with EFER, wrap that
code in the long mode check as well. Note, this may result in a
compiler warning about cr4 being consumed uninitialized. Re-read CR4
even though it's technically unnecessary, as doing so allows for more
readable code and RSM emulation is not a performance critical path.
Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1. Stop dancing around the issue of HF_SMM_MASK being set when
loading SMSTATE into architectural state, e.g. by toggling it for
problematic flows, and simply clear HF_SMM_MASK prior to loading
architectural state (from SMRAM save state area).
Reported-by: Jon Doron <arilou@gmail.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Fixes: 5bea5123cb ("KVM: VMX: check nested state and CR4.VMXE against SMM")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Prepare for clearing HF_SMM_MASK prior to loading state from the SMRAM
save state map, i.e. kvm_smm_changed() needs to be called after state
has been loaded and so cannot be done automatically when setting
hflags from RSM.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
RSM emulation is currently broken on VMX when the interrupted guest has
CR4.VMXE=1. Rather than dance around the issue of HF_SMM_MASK being set
when loading SMSTATE into architectural state, ideally RSM emulation
itself would be reworked to clear HF_SMM_MASK prior to loading non-SMM
architectural state.
Ostensibly, the only motivation for having HF_SMM_MASK set throughout
the loading of state from the SMRAM save state area is so that the
memory accesses from GET_SMSTATE() are tagged with role.smm. Load
all of the SMRAM save state area from guest memory at the beginning of
RSM emulation, and load state from the buffer instead of reading guest
memory one-by-one.
This paves the way for clearing HF_SMM_MASK prior to loading state,
and also aligns RSM with the enter_smm() behavior, which fills a
buffer and writes SMRAM save state in a single go.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Issue was discovered when running kvm-unit-tests on KVM running as L1 on
top of Hyper-V.
When vmx_instruction_intercept unit-test attempts to run RDPMC to test
RDPMC-exiting, it is intercepted by L1 KVM which it's EXIT_REASON_RDPMC
handler raise #GP because vCPU exposed by Hyper-V doesn't support PMU.
Instead of unit-test expectation to be reflected with EXIT_REASON_RDPMC.
The reason vmx_instruction_intercept unit-test attempts to run RDPMC
even though Hyper-V doesn't support PMU is because L1 expose to L2
support for RDPMC-exiting. Which is reasonable to assume that is
supported only in case CPU supports PMU to being with.
Above issue can easily be simulated by modifying
vmx_instruction_intercept config in x86/unittests.cfg to run QEMU with
"-cpu host,+vmx,-pmu" and run unit-test.
To handle issue, change KVM to expose RDPMC-exiting only when guest
supports PMU.
Reported-by: Saar Amar <saaramar@microsoft.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Before this change, reading a VMware pseduo PMC will succeed even when
PMU is not supported by guest. This can easily be seen by running
kvm-unit-test vmware_backdoors with "-cpu host,-pmu" option.
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
guest xcr0 could leak into host when MCE happens in guest mode. Because
do_machine_check() could schedule out at a few places.
For example:
kvm_load_guest_xcr0
...
kvm_x86_ops->run(vcpu) {
vmx_vcpu_run
vmx_complete_atomic_exit
kvm_machine_check
do_machine_check
do_memory_failure
memory_failure
lock_page
In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule
out, host cpu has guest xcr0 loaded (0xff).
In __switch_to {
switch_fpu_finish
copy_kernel_to_fpregs
XRSTORS
If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will
generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in
and tries to reinitialize fpu by restoring init fpu state. Same story as
last #GP, except we get DOUBLE FAULT this time.
Cc: stable@vger.kernel.org
Signed-off-by: WANG Chao <chao.wang@ucloud.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
I noticed that apic test from kvm-unit-tests always hangs on my EPYC 7401P,
the hanging test nmi-after-sti is trying to deliver 30000 NMIs and tracing
shows that we're sometimes able to deliver a few but never all.
When we're trying to inject an NMI we may fail to do so immediately for
various reasons, however, we still need to inject it so enable_nmi_window()
arms nmi_singlestep mode. #DB occurs as expected, but we're not checking
for pending NMIs before entering the guest and unless there's a different
event to process, the NMI will never get delivered.
Make KVM_REQ_EVENT request on the vCPU from db_interception() to make sure
pending NMIs are checked and possibly injected.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Only clear the valid bit when invalidate logical APIC id entry.
The current logic clear the valid bit, but also set the rest of
the bits (including reserved bits) to 1.
Fixes: 98d90582be ('svm: Fix AVIC DFR and LDR handling')
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit bb218fbcfa.
As Oren Twaig pointed out the old discussion:
https://patchwork.kernel.org/patch/8292231/
that the change coud potentially cause an extra IPI to be sent to
the destination vcpu because the AVIC hardware already set the IRR bit
before the incomplete IPI #VMEXIT with id=1 (target vcpu is not running).
Since writting to ICR and ICR2 will also set the IRR. If something triggers
the destination vcpu to get scheduled before the emulation finishes, then
this could result in an additional IPI.
Also, the issue mentioned in the commit bb218fbcfa was misdiagnosed.
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Oren Twaig <oren@scalemp.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM bases its memory usage limits on the total number of guest pages
across all memslots. However, those limits, and the calculations to
produce them, use 32 bit unsigned integers. This can result in overflow
if a VM has more guest pages that can be represented by a u32. As a
result of this overflow, KVM can use a low limit on the number of MMU
pages it will allocate. This makes KVM unable to map all of guest memory
at once, prompting spurious faults.
Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch
introduced no new failures.
Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The remaining failures of vmx.flat when EPT is disabled are caused by
incorrectly reflecting VMfails to the L1 hypervisor. What happens is
that nested_vmx_restore_host_state corrupts the guest CR3, reloading it
with the host's shadow CR3 instead, because it blindly loads GUEST_CR3
from the vmcs01.
For simplicity let's just always use hardware VMCS checks when EPT is
disabled. This way, nested_vmx_restore_host_state is not reached at
all (or at least shouldn't be reached).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As mentioned in the comment, there are some special cases where we can simply
clear the TPR shadow bit from the CPU-based execution controls in the vmcs02.
Handle them so that we can remove some XFAILs from vmx.flat.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Referring to the "VIRTUALIZING MSR-BASED APIC ACCESSES" chapter of the
SDM, when "virtualize x2APIC mode" is 1 and "APIC-register
virtualization" is 0, a RDMSR of 808H should return the VTPR from the
virtual APIC page.
However, for nested, KVM currently fails to disable the read intercept
for this MSR. This means that a RDMSR exit takes precedence over
"virtualize x2APIC mode", and KVM passes through L1's TPR to L2,
instead of sourcing the value from L2's virtual APIC page.
This patch fixes the issue by disabling the read intercept, in VMCS02,
for the VTPR when "APIC-register virtualization" is 0.
The issue described above and fix prescribed here, were verified with
a related patch in kvm-unit-tests titled "Test VMX's virtualize x2APIC
mode w/ nested".
Signed-off-by: Marc Orr <marcorr@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Fixes: c992384bde ("KVM: vmx: speed up MSR bitmap merge")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The nested_vmx_prepare_msr_bitmap() function doesn't directly guard the
x2APIC MSR intercepts with the "virtualize x2APIC mode" MSR. As a
result, we discovered the potential for a buggy or malicious L1 to get
access to L0's x2APIC MSRs, via an L2, as follows.
1. L1 executes WRMSR(IA32_SPEC_CTRL, 1). This causes the spec_ctrl
variable, in nested_vmx_prepare_msr_bitmap() to become true.
2. L1 disables "virtualize x2APIC mode" in VMCS12.
3. L1 enables "APIC-register virtualization" in VMCS12.
Now, KVM will set VMCS02's x2APIC MSR intercepts from VMCS12, and then
set "virtualize x2APIC mode" to 0 in VMCS02. Oops.
This patch closes the leak by explicitly guarding VMCS02's x2APIC MSR
intercepts with VMCS12's "virtualize x2APIC mode" control.
The scenario outlined above and fix prescribed here, were verified with
a related patch in kvm-unit-tests titled "Add leak scenario to
virt_x2apic_mode_test".
Note, it looks like this issue may have been introduced inadvertently
during a merge---see 15303ba5d1.
Signed-off-by: Marc Orr <marcorr@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This ensures that the address and length provided to DBG_DECRYPT and
DBG_ENCRYPT do not cause an overflow.
At the same time, pass the actual number of pages pinned in memory to
sev_unpin_memory() as a cleanup.
Reported-by: Cfir Cohen <cfir@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
get_num_contig_pages() could potentially overflow int so make its type
consistent with its usage.
Reported-by: Cfir Cohen <cfir@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Most (all?) x86 platforms provide a port IO based reset mechanism, e.g.
OUT 92h or CF9h. Userspace may emulate said mechanism, i.e. reset a
vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM
that it is doing a reset, e.g. Qemu jams vCPU state and resumes running.
To avoid corruping %rip after such a reset, commit 0967b7bf1c ("KVM:
Skip pio instruction when it is emulated, not executed") changed the
behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the
instruction prior to exiting to userspace. Full emulation doesn't need
such tricks becase re-emulating the instruction will naturally handle
%rip being changed to point at the reset vector.
Updating %rip prior to executing to userspace has several drawbacks:
- Userspace sees the wrong %rip on the exit, e.g. if PIO emulation
fails it will likely yell about the wrong address.
- Single step exits to userspace for are effectively dropped as
KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO.
- Behavior of PIO emulation is different depending on whether it
goes down the fast path or the slow path.
Rather than skip the PIO instruction before exiting to userspace,
snapshot the linear %rip and cancel PIO completion if the current
value does not match the snapshot. For a 64-bit vCPU, i.e. the most
common scenario, the snapshot and comparison has negligible overhead
as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra
VMREAD in this case.
All other alternatives to snapshotting the linear %rip that don't
rely on an explicit reset announcenment suffer from one corner case
or another. For example, canceling PIO completion on any write to
%rip fails if userspace does a save/restore of %rip, and attempting to
avoid that issue by canceling PIO only if %rip changed then fails if PIO
collides with the reset %rip. Attempting to zero in on the exact reset
vector won't work for APs, which means adding more hooks such as the
vCPU's MP_STATE, and so on and so forth.
Checking for a linear %rip match technically suffers from corner cases,
e.g. userspace could theoretically rewrite the underlying code page and
expect a different instruction to execute, or the guest hardcodes a PIO
reset at 0xfffffff0, but those are far, far outside of what can be
considered normal operation.
Fixes: 432baf60ee ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O")
Cc: <stable@vger.kernel.org>
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When userspace initializes guest vCPUs it may want to zero all supported
MSRs including Hyper-V related ones including HV_X64_MSR_STIMERn_CONFIG/
HV_X64_MSR_STIMERn_COUNT. With commit f3b138c5d8 ("kvm/x86: Update SynIC
timers on guest entry only") we began doing stimer_mark_pending()
unconditionally on every config change.
The issue I'm observing manifests itself as following:
- Qemu writes 0 to STIMERn_{CONFIG,COUNT} MSRs and marks all stimers as
pending in stimer_pending_bitmap, arms KVM_REQ_HV_STIMER;
- kvm_hv_has_stimer_pending() starts returning true;
- kvm_vcpu_has_events() starts returning true;
- kvm_arch_vcpu_runnable() starts returning true;
- when kvm_arch_vcpu_ioctl_run() gets into
(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED) case:
- kvm_vcpu_block() gets in 'kvm_vcpu_check_block(vcpu) < 0' and returns
immediately, avoiding normal wait path;
- -EAGAIN is returned from kvm_arch_vcpu_ioctl_run() immediately forcing
userspace to retry.
So instead of normal wait path we get a busy loop on all secondary vCPUs
before they get INIT signal. This seems to be undesirable, especially given
that this happens even when Hyper-V extensions are not used.
Generally, it seems to be pointless to mark an stimer as pending in
stimer_pending_bitmap and arm KVM_REQ_HV_STIMER as the only thing
kvm_hv_process_stimers() will do is clear the corresponding bit. We may
just not mark disabled timers as pending instead.
Fixes: f3b138c5d8 ("kvm/x86: Update SynIC timers on guest entry only")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since MSR_IA32_ARCH_CAPABILITIES is emualted unconditionally even if
host doesn't suppot it. We should move it to array emulated_msrs from
arry msrs_to_save, to report to userspace that guest support this msr.
Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host
userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES
regardless of hardware support under the pretense that KVM fully
emulates MSR_IA32_ARCH_CAPABILITIES. Unfortunately, only VMX hosts
handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS
also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts).
Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so
that it's emulated on AMD hosts.
Fixes: 1eaafe91a0 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported")
Cc: stable@vger.kernel.org
Reported-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace kvm_flush_remote_tlbs with kvm_flush_remote_tlbs_with_address
in slot_handle_level_range. When range based flushes are not enabled
kvm_flush_remote_tlbs_with_address falls back to kvm_flush_remote_tlbs.
This changes the behavior of many functions that indirectly use
slot_handle_level_range, iff the range based flushes are enabled. The
only potential problem I see with this is that kvm->tlbs_dirty will be
cleared less often, however the only caller of slot_handle_level_range that
checks tlbs_dirty is kvm_mmu_notifier_invalidate_range_start which
checks it and does a kvm_flush_remote_tlbs after calling
kvm_unmap_hva_range anyway.
Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and
without this patch. The patch introduced no new failures.
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* nr_mmu_pages would be non-zero only if kvm->arch.n_requested_mmu_pages is
non-zero.
* nr_mmu_pages is always non-zero, since kvm_mmu_calculate_mmu_pages()
never return zero.
Based on these two reasons, we can merge the two *if* clause and use the
return value from kvm_mmu_calculate_mmu_pages() directly. This simplify
the code and also eliminate the possibility for reader to believe
nr_mmu_pages would be zero.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checks on VMX Controls" in Intel SDM vol 3C, the
following check is performed on vmentry of L2 guests:
On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP
field and the IA32_SYSENTER_EIP field must each contain a canonical
address.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Errata#1096:
On a nested data page fault when CR.SMAP=1 and the guest data read
generates a SMAP violation, GuestInstrBytes field of the VMCB on a
VMEXIT will incorrectly return 0h instead the correct guest
instruction bytes .
Recommend Workaround:
To determine what instruction the guest was executing the hypervisor
will have to decode the instruction at the instruction pointer.
The recommended workaround can not be implemented for the SEV
guest because guest memory is encrypted with the guest specific key,
and instruction decoder will not be able to decode the instruction
bytes. If we hit this errata in the SEV guest then log the message
and request a guest shutdown.
Reported-by: Venkatesh Srinivas <venkateshs@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The cr4_pae flag is a bit of a misnomer, its purpose is really to track
whether the guest PTE that is being shadowed is a 4-byte entry or an
8-byte entry. Prior to supporting nested EPT, the size of the gpte was
reflected purely by CR4.PAE. KVM fudged things a bit for direct sptes,
but it was mostly harmless since the size of the gpte never mattered.
Now that a spte may be tracking an indirect EPT entry, relying on
CR4.PAE is wrong and ill-named.
For direct shadow pages, force the gpte_size to '1' as they are always
8-byte entries; EPT entries can only be 8-bytes and KVM always uses
8-byte entries for NPT and its identity map (when running with EPT but
not unrestricted guest).
Likewise, nested EPT entries are always 8-bytes. Nested EPT presents a
unique scenario as the size of the entries are not dictated by CR4.PAE,
but neither is the shadow page a direct map. To handle this scenario,
set cr0_wp=1 and smap_andnot_wp=1, an otherwise impossible combination,
to denote a nested EPT shadow page. Use the information to avoid
incorrectly zapping an unsync'd indirect page in __kvm_sync_page().
Providing a consistent and accurate gpte_size fixes a bug reported by
Vitaly where fast_cr3_switch() always fails when switching from L2 to
L1 as kvm_mmu_get_page() would force role.cr4_pae=0 for direct pages,
whereas kvm_calc_mmu_role_common() would set it according to CR4.PAE.
Fixes: 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed")
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly zero out quadrant and invalid instead of inheriting them from
the root_mmu. Functionally, this patch is a nop as we (should) never
set quadrant for a direct mapped (EPT) root_mmu and nested EPT is only
allowed if EPT is used for L1, and the root_mmu will never be invalid at
this point.
Explicitly setting flags sets the stage for repurposing the legacy
paging bits in role, e.g. nxe, cr0_wp, and sm{a,e}p_andnot_wp, at which
point 'smm' would be the only flag to be inherited from root_mmu.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
for 32-bit guests
s390: interrupt cleanup, introduction of the Guest Information Block,
preparation for processor subfunctions in cpu models
PPC: bug fixes and improvements, especially related to machine checks
and protection keys
x86: many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations; plus AVIC fixes.
Generic: memcg accounting
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
=XIzU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- some cleanups
- direct physical timer assignment
- cache sanitization for 32-bit guests
s390:
- interrupt cleanup
- introduction of the Guest Information Block
- preparation for processor subfunctions in cpu models
PPC:
- bug fixes and improvements, especially related to machine checks
and protection keys
x86:
- many, many cleanups, including removing a bunch of MMU code for
unnecessary optimizations
- AVIC fixes
Generic:
- memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
kvm: vmx: fix formatting of a comment
KVM: doc: Document the life cycle of a VM and its resources
MAINTAINERS: Add KVM selftests to existing KVM entry
Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
KVM: PPC: Fix compilation when KVM is not enabled
KVM: Minor cleanups for kvm_main.c
KVM: s390: add debug logging for cpu model subfunctions
KVM: s390: implement subfunction processor calls
arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
KVM: arm/arm64: Remove unused timer variable
KVM: PPC: Book3S: Improve KVM reference counting
KVM: PPC: Book3S HV: Fix build failure without IOMMU support
Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
x86: kvmguest: use TSC clocksource if invariant TSC is exposed
KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
...
This reverts commit 71883a62fc.
The above commit contains an optimization to kvm_zap_gfn_range which
uses gfn-limited TLB flushes, if enabled. If using these limited flushes,
kvm_zap_gfn_range passes lock_flush_tlb=false to slot_handle_level_range
which creates a race when the function unlocks to call cond_resched.
See an example of this race below:
CPU 0 CPU 1 CPU 3
// zap_direct_gfn_range
mmu_lock()
// *ptep == pte_1
*ptep = 0
if (lock_flush_tlb)
flush_tlbs()
mmu_unlock()
// In invalidate range
// MMU notifier
mmu_lock()
if (pte != 0)
*ptep = 0
flush = true
if (flush)
flush_remote_tlbs()
mmu_unlock()
return
// Host MM reallocates
// page previously
// backing guest memory.
// Guest accesses
// invalid page
// through pte_1
// in its TLB!!
Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and
without this patch. The patch introduced no new failures.
Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Previously, commit 7dcd575520 ("x86/kvm/mmu: check if tdp/shadow
MMU reconfiguration is needed") offered some optimization to avoid
the unnecessary reconfiguration. Yet one scenario is broken - when
cpuid changes VM's maximum physical address width, reconfiguration
is needed to reset the reserved bits. Also, the TDP may need to
reset its shadow_root_level when this value is changed.
To fix this, a new field, maxphyaddr, is introduced in the extended
role structure to keep track of the configured guest physical address
width.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Previously, 'commit 372fddf709 ("x86/mm: Introduce the 'no5lvl' kernel
parameter")' cleared X86_FEATURE_LA57 in boot_cpu_data, if Linux chooses
to not run in 5-level paging mode. Yet boot_cpu_data is queried by
do_cpuid_ent() as the host capability later when creating vcpus, and Qemu
will not be able to detect this feature and create VMs with LA57 feature.
As discussed earlier, VMs can still benefit from extended linear address
width, e.g. to enhance features like ASLR. So we would like to fix this,
by return the true hardware capability when Qemu queries.
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 14c07ad89f ("x86/kvm/mmu: introduce guest_mmu") brought one subtle
change: previously, when switching back from L2 to L1, we were resetting
MMU hooks (like mmu->get_cr3()) in kvm_init_mmu() called from
nested_vmx_load_cr3() and now we do that in nested_ept_uninit_mmu_context()
when we re-target vcpu->arch.mmu pointer.
The change itself looks logical: if nested_ept_init_mmu_context() changes
something than nested_ept_uninit_mmu_context() restores it back. There is,
however, one thing: the following call chain:
nested_vmx_load_cr3()
kvm_mmu_new_cr3()
__kvm_mmu_new_cr3()
fast_cr3_switch()
cached_root_available()
now happens with MMU hooks pointing to the new MMU (root MMU in our case)
while previously it was happening with the old one. cached_root_available()
tries to stash current root but it is incorrect to read current CR3 with
mmu->get_cr3(), we need to use old_mmu->get_cr3() which in case we're
switching from L2 to L1 is guest_mmu. (BTW, in shadow page tables case this
is a non-issue because we don't switch MMU).
While we could've tried to guess that we're switching between MMUs and call
the right ->get_cr3() from cached_root_available() this seems to be overly
complicated. Instead, just stash the corresponding CR3 when setting
root_hpa and make cached_root_available() use the stashed value.
Fixes: 14c07ad89f ("x86/kvm/mmu: introduce guest_mmu")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...via a new helper, __kvm_mmu_zap_all(). An alternative to passing a
'bool mmio_only' would be to pass a callback function to filter the
shadow page, i.e. to make __kvm_mmu_zap_all() generic and reusable, but
zapping all shadow pages is a last resort, i.e. making the helper less
extensible is a feature of sorts. And the explicit MMIO parameter makes
it easy to preserve the WARN_ON_ONCE() if a restart is triggered when
zapping MMIO sptes.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Paolo expressed a concern that kvm_mmu_zap_mmio_sptes() could have a
quadratic runtime[1], i.e. restarting the spte walk while zapping only
MMIO sptes could result in re-walking large portions of the list over
and over due to the non-MMIO sptes encountered before the restart not
being removed.
At the time, the concern was legitimate as the walk was restarted when
any spte was zapped. But that is no longer the case as the walk is now
restarted iff one or more children have been zapped, which is necessary
because zapping children makes the active_mmu_pages list unstable.
Furthermore, it should be impossible for an MMIO spte to have children,
i.e. zapping an MMIO spte should never result in zapping children. In
other words, kvm_mmu_zap_mmio_sptes() should never restart its walk, and
so should always execute in linear time. WARN if this assertion fails.
Although it should never be needed, leave the restart logic in place.
In normal operation, the cost is at worst an extra CMP+Jcc, and if for
some reason the list does become unstable, not restarting would likely
crash KVM, or worse, the kernel.
[1] https://patchwork.kernel.org/patch/10756589/#22452085
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The return value of kvm_mmu_prepare_zap_page() has evolved to become
overloaded to convey two separate pieces of information. 1) was at
least one page zapped and 2) has the list of MMU pages become unstable.
In it's original incarnation (as kvm_mmu_zap_page()), there was no
return value at all. Commit 0738541396 ("KVM: MMU: awareness of new
kvm_mmu_zap_page behaviour") added a return value in preparation for
commit 4731d4c7a0 ("KVM: MMU: out of sync shadow core"). Although
the return value was of type 'int', it was actually used as a boolean
to indicate whether or not active_mmu_pages may have become unstable due
to zapping children. Walking a list with list_for_each_entry_safe()
only protects against deleting/moving the current entry, i.e. zapping a
child page would break iteration due to modifying any number of entries.
Later, commit 60c8aec6e2 ("KVM: MMU: use page array in unsync walk")
modified mmu_zap_unsync_children() to return an approximation of the
number of children zapped. This was not intentional, it was simply a
side effect of how the code was written.
The unintented side affect was then morphed into an actual feature by
commit 77662e0028 ("KVM: MMU: fix kvm_mmu_zap_page() and its calling
path"), which modified kvm_mmu_change_mmu_pages() to use the number of
zapped pages when determining the number of MMU pages in use by the VM.
Finally, commit 54a4f0239f ("KVM: MMU: make kvm_mmu_zap_page() return
the number of pages it actually freed") added the initial page to the
return value to make its behavior more consistent with what most users
would expect. Incorporating the initial parent page in the return value
of kvm_mmu_zap_page() breaks the original usage of restarting a list
walk on a non-zero return value to handle a potentially unstable list,
i.e. walks will unnecessarily restart when any page is zapped.
Fix this by restoring the original behavior of kvm_mmu_zap_page(), i.e.
return a boolean to indicate that the list may be unstable and move the
number of zapped children to a dedicated parameter. Since the majority
of callers to kvm_mmu_prepare_zap_page() don't care about either return
value, preserve the current definition of kvm_mmu_prepare_zap_page() by
making it a wrapper of a new helper, __kvm_mmu_prepare_zap_page(). This
avoids having to update every call site and also provides cleaner code
for functions that only care about the number of pages zapped.
Fixes: 54a4f0239f ("KVM: MMU: make kvm_mmu_zap_page() return
the number of pages it actually freed")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove x86 KVM's fast invalidate mechanism, i.e. revert all patches
from the original series[1], now that all users of the fast invalidate
mechanism are gone.
This reverts commit 5304b8d37c.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Call cond_resched_lock() when zapping all sptes to reschedule if needed
or to release and reacquire mmu_lock in case of contention. There is no
need to flush or zap when temporarily dropping mmu_lock as zapping all
sptes is done only when the owning userspace VMM has exited or when the
VM is being destroyed, i.e. there is no interplay with memslots or MMIO
generations to worry about.
Be paranoid and restart the walk if mmu_lock is dropped to avoid any
potential issues with consuming a stale iterator. The overhead in doing
so is negligible as at worst there will be a few root shadow pages at
the head of the list, i.e. the iterator is essentially the head of the
list already.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...to guarantee forward progress. When zapped, root pages are marked
invalid and moved to the head of the active pages list until they are
explicitly freed. Theoretically, having unzappable root pages at the
head of the list could prevent kvm_mmu_zap_all() from making forward
progress were a future patch to add a loop restart after processing a
page, e.g. to drop mmu_lock on contention.
Although kvm_mmu_prepare_zap_page() can theoretically take action on
invalid pages, e.g. to zap unsync children, functionally it's not
necessary (root pages will be re-zapped when freed) and practically
speaking the odds of e.g. @unsync or @unsync_children becoming %true
while zapping all pages is basically nil.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Revert to a slow kvm_mmu_zap_all() for kvm_arch_flush_shadow_all().
Flushing all shadow entries is only done during VM teardown, i.e.
kvm_arch_flush_shadow_all() is only called when the associated MM struct
is being released or when the VM instance is being freed.
Although the performance of teardown itself isn't critical, KVM should
still voluntarily schedule to play nice with the rest of the kernel;
but that can be done without the fast invalidate mechanism in a future
patch.
This reverts commit 6ca18b6950.
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...as part of removing x86 KVM's fast invalidate mechanism, i.e. this
is one part of a revert all patches from the series that introduced the
mechanism[1].
This reverts commit 2248b02321.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
...as part of removing x86 KVM's fast invalidate mechanism, i.e. this
is one part of a revert all patches from the series that introduced the
mechanism[1].
This reverts commit 35006126f0.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unwinding optimizations related to obsolete pages is a step towards
removing x86 KVM's fast invalidate mechanism, i.e. this is one part of
a revert all patches from the series that introduced the mechanism[1].
This reverts commit e7d11c7a89.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unwinding optimizations related to obsolete pages is a step towards
removing x86 KVM's fast invalidate mechanism, i.e. this is one part of
a revert all patches from the series that introduced the mechanism[1].
This reverts commit f34d251d66.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unwinding optimizations related to obsolete pages is a step towards
removing x86 KVM's fast invalidate mechanism, i.e. this is one part of
a revert all patches from the series that introduced the mechanism[1].
This reverts commit 365c886860.
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unwinding usage of is_obsolete() is a step towards removing x86's fast
invalidate mechanism, i.e. this is one part of a revert all patches from
the series that introduced the mechanism[1].
This is a partial revert of commit 05988d728d ("KVM: MMU: reduce
KVM_REQ_MMU_RELOAD when root page is zapped").
[1] https://lkml.kernel.org/r/1369960590-14138-1-git-send-email-xiaoguangrong@linux.vnet.ibm.com
Cc: Xiao Guangrong <guangrong.xiao@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>