Commit Graph

359 Commits

Author SHA1 Message Date
Linus Torvalds
3431a940bb Merge branch 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 AVX512 status update from Ingo Molnar:
 "This adds a new ABI that the main scheduler probably doesn't want to
  deal with but HPC job schedulers might want to use: the
  AVX512_elapsed_ms field in the new /proc/<pid>/arch_status task status
  file, which allows the user-space job scheduler to cluster such tasks,
  to avoid turbo frequency drops"

* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  Documentation/filesystems/proc.txt: Add arch_status file
  x86/process: Add AVX-512 usage elapsed time to /proc/pid/arch_status
  proc: Add /proc/<pid>/arch_status
2019-07-08 17:28:57 -07:00
Sebastian Andrzej Siewior
7891bc0ab7 x86/fpu: Inline fpu__xstate_clear_all_cpu_caps()
All fpu__xstate_clear_all_cpu_caps() does is to invoke one simple
function since commit

  73e3a7d2a7 ("x86/fpu: Remove the explicit clearing of XSAVE dependent features")

so invoke that function directly and remove the wrapper.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190704060743.rvew4yrjd6n33uzx@linutronix.de
2019-07-07 12:01:47 +02:00
Sebastian Andrzej Siewior
9838e3bff0 x86/fpu: Make 'no387' and 'nofxsr' command line options useful
The command line option `no387' is designed to disable the FPU
entirely. This only 'works' with CONFIG_MATH_EMULATION enabled.

But on 64bit this cannot work because user space expects SSE to work which
required basic FPU support. MATH_EMULATION does not help because SSE is not
emulated.

The command line option `nofxsr' should also be limited to 32bit because
FXSR is part of the required flags on 64bit so turning it off is not
possible.

Clearing X86_FEATURE_FPU without emulation enabled will not work anyway and
hang in fpu__init_system_early_generic() before the console is enabled.

Setting additioal dependencies, ensures that the CPU still boots on a
modern CPU. Otherwise, dropping FPU will leave FXSR enabled causing the
kernel to crash early in fpu__init_system_mxcsr().

With XSAVE support it will crash in fpu__init_cpu_xstate(). The problem is
that xsetbv() with XMM set and SSE cleared is not allowed.  That means
XSAVE has to be disabled. The XSAVE support is disabled in
fpu__init_system_xstate_size_legacy() but it is too late. It can be
removed, it has been added in commit

  1f999ab5a1 ("x86, xsave: Disable xsave in i387 emulation mode")

to use `no387' on a CPU with XSAVE support.

All this happens before console output.

After hat, the next possible crash is in RAID6 detect code because MMX
remained enabled. With a 3DNOW enabled config it will explode in memcpy()
for instance due to kernel_fpu_begin() but this is unconditionally enabled.

This is enough to boot a Debian Wheezy on a 32bit qemu "host" CPU which
supports everything up to XSAVES, AVX2 without 3DNOW. Later, Debian
increased the minimum requirements to i686 which means it does not boot
userland atleast due to CMOV.

After masking the additional features it still keeps SSE4A and 3DNOW*
enabled (if present on the host) but those are unused in the kernel.

Restrict `no387' and `nofxsr' otions to 32bit only. Add dependencies for
FPU, FXSR to additionaly mask CMOV, MMX, XSAVE if FXSR or FPU is cleared.

Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190703083247.57kjrmlxkai3vpw3@linutronix.de
2019-07-07 12:01:46 +02:00
Christoph Hellwig
466329bf40 x86/fpu: Remove the fpu__save() export
This function is only use by the core FPU code.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190604071524.12835-4-hch@lst.de
2019-06-17 12:21:26 +02:00
Christoph Hellwig
6d79d86f96 x86/fpu: Simplify kernel_fpu_begin()
Merge two helpers into the main function, remove a pointless local
variable and flatten a conditional.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190604071524.12835-3-hch@lst.de
2019-06-17 12:19:49 +02:00
Christoph Hellwig
b78ea19ac2 x86/fpu: Simplify kernel_fpu_end()
Remove two little helpers and merge them into kernel_fpu_end() to
streamline the function.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190604071524.12835-2-hch@lst.de
2019-06-17 10:43:43 +02:00
Christoph Hellwig
8d3289f2fa x86/fpu: Don't use current->mm to check for a kthread
current->mm can be non-NULL if a kthread calls use_mm(). Check for
PF_KTHREAD instead to decide when to store user mode FP state.

Fixes: 2722146eb7 ("x86/fpu: Remove fpu->initialized")
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190604175411.GA27477@lst.de
2019-06-13 20:57:49 +02:00
Aubrey Li
0c608dad2a x86/process: Add AVX-512 usage elapsed time to /proc/pid/arch_status
AVX-512 components usage can result in turbo frequency drop. So it's useful
to expose AVX-512 usage elapsed time as a heuristic hint for user space job
schedulers to cluster the AVX-512 using tasks together.

Examples:
$ while [ 1 ]; do cat /proc/tid/arch_status | grep AVX512; sleep 1; done
AVX512_elapsed_ms:      4
AVX512_elapsed_ms:      8
AVX512_elapsed_ms:      4

This means that 4 milliseconds have elapsed since the tsks AVX512 usage was
detected when the task was scheduled out.

$ cat /proc/tid/arch_status | grep AVX512
AVX512_elapsed_ms:      -1

'-1' indicates that no AVX512 usage was recorded for this task.

The time exposed is not necessarily accurate when the arch_status file is
read as the AVX512 usage is only evaluated when a task is scheduled
out. Accurate usage information can be obtained with performance counters.

[ tglx: Massaged changelog ]

Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: peterz@infradead.org
Cc: hpa@zytor.com
Cc: ak@linux.intel.com
Cc: tim.c.chen@linux.intel.com
Cc: dave.hansen@intel.com
Cc: arjan@linux.intel.com
Cc: adobriyan@gmail.com
Cc: aubrey.li@intel.com
Cc: linux-api@vger.kernel.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linux API <linux-api@vger.kernel.org>
Link: https://lkml.kernel.org/r/20190606012236.9391-2-aubrey.li@linux.intel.com
2019-06-12 11:42:13 +02:00
Sebastian Andrzej Siewior
aab8445c4e x86/fpu: Update kernel's FPU state before using for the fsave header
In commit

  39388e80f9 ("x86/fpu: Don't save fxregs for ia32 frames in copy_fpstate_to_sigframe()")

I removed the statement

|       if (ia32_fxstate)
|               copy_fxregs_to_kernel(fpu);

and argued that it was wrongly merged because the content was already
saved in kernel's state.

This was wrong: It is required to write it back because it is only
saved on the user-stack and save_fsave_header() reads it from task's
FPU-state. I missed that part…

Save x87 FPU state unless thread's FPU registers are already up to date.

Fixes: 39388e80f9 ("x86/fpu: Don't save fxregs for ia32 frames in copy_fpstate_to_sigframe()")
Reported-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Eric Biggers <ebiggers@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190607142915.y52mfmgk5lvhll7n@linutronix.de
2019-06-08 11:45:15 +02:00
Hugh Dickins
b81ff1013e x86/fpu: Use fault_in_pages_writeable() for pre-faulting
Since commit

   d9c9ce34ed ("x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails")

get_user_pages_unlocked() pre-faults user's memory if a write generates
a page fault while the handler is disabled.

This works in general and uncovered a bug as reported by Mike
Rapoport¹. It has been pointed out that this function may be fragile
and a simple pre-fault as in fault_in_pages_writeable() would be a
better solution. Better as in taste and simplicity: that write (as
performed by the alternative function) performs exactly the same
faulting of memory as before. This was suggested by Hugh Dickins and
Andrew Morton.

Use fault_in_pages_writeable() for pre-faulting user's stack.

  [ bigeasy: Write commit message. ]
  [ bp: Massage some. ]

¹ https://lkml.kernel.org/r/1557844195-18882-1-git-send-email-rppt@linux.ibm.com

Fixes: d9c9ce34ed ("x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails")
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190529072540.g46j4kfeae37a3iu@linutronix.de
Link: https://lkml.kernel.org/r/1557844195-18882-1-git-send-email-rppt@linux.ibm.com
2019-06-06 19:15:17 +02:00
Thomas Gleixner
ec8f24b7fa treewide: Add SPDX license identifier - Makefile/Kconfig
Add SPDX license identifiers to all Make/Kconfig files which:

 - Have no license information of any form

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

  GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 10:50:46 +02:00
Thomas Gleixner
457c899653 treewide: Add SPDX license identifier for missed files
Add SPDX license identifiers to all files which:

 - Have no license information of any form

 - Have EXPORT_.*_SYMBOL_GPL inside which was used in the
   initial scan/conversion to ignore the file

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

  GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 10:50:45 +02:00
Sebastian Andrzej Siewior
d9c9ce34ed x86/fpu: Fault-in user stack if copy_fpstate_to_sigframe() fails
In the compacted form, XSAVES may save only the XMM+SSE state but skip
FP (x87 state).

This is denoted by header->xfeatures = 6. The fastpath
(copy_fpregs_to_sigframe()) does that but _also_ initialises the FP
state (cwd to 0x37f, mxcsr as we do, remaining fields to 0).

The slowpath (copy_xstate_to_user()) leaves most of the FP
state untouched. Only mxcsr and mxcsr_flags are set due to
xfeatures_mxcsr_quirk(). Now that XFEATURE_MASK_FP is set
unconditionally, see

  04944b793e ("x86: xsave: set FP, SSE bits in the xsave header in the user sigcontext"),

on return from the signal, random garbage is loaded as the FP state.

Instead of utilizing copy_xstate_to_user(), fault-in the user memory
and retry the fast path. Ideally, the fast path succeeds on the second
attempt but may be retried again if the memory is swapped out due
to memory pressure. If the user memory can not be faulted-in then
get_user_pages() returns an error so we don't loop forever.

Fault in memory via get_user_pages_unlocked() so
copy_fpregs_to_sigframe() succeeds without a fault.

Fixes: 69277c98f5 ("x86/fpu: Always store the registers in copy_fpstate_to_sigframe()")
Reported-by: Kurt Kanzenbach <kurt.kanzenbach@linutronix.de>
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: "linux-mm@kvack.org" <linux-mm@kvack.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190502171139.mqtegctsg35cir2e@linutronix.de
2019-05-06 09:49:40 +02:00
Sebastian Andrzej Siewior
06b251dff7 x86/fpu: Restore regs in copy_fpstate_to_sigframe() in order to use the fastpath
If a task is scheduled out and receives a signal then it won't be
able to take the fastpath because the registers aren't available. The
slowpath is more expensive compared to XRSTOR + XSAVE which usually
succeeds.

Here are some clock_gettime() numbers from a bigger box with AVX512
during bootup:

- __fpregs_load_activate() takes 140ns - 350ns. If it was the most recent
  FPU context on the CPU then the optimisation in __fpregs_load_activate()
  will skip the load (which was disabled during the test).

- copy_fpregs_to_sigframe() takes 200ns - 450ns if it succeeds. On a
  pagefault it is 1.8us - 3us usually in the 2.6us area.

- The slowpath takes 1.5us - 6us. Usually in the 2.6us area.

My testcases (including lat_sig) take the fastpath without
__fpregs_load_activate(). I expect this to be the majority.

Since the slowpath is in the >1us area it makes sense to load the
registers and attempt to save them directly. The direct save may fail
but should only happen on the first invocation or after fork() while the
page is read-only.

 [ bp: Massage a bit. ]

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-27-bigeasy@linutronix.de
2019-04-12 20:16:15 +02:00
Sebastian Andrzej Siewior
da2f32fb8d x86/fpu: Add a fastpath to copy_fpstate_to_sigframe()
Try to save the FPU registers directly to the userland stack frame if
the CPU holds the FPU registers for the current task. This has to be
done with the pagefault disabled because we can't fault (while the FPU
registers are locked) and therefore the operation might fail. If it
fails try the slowpath which can handle faults.

 [ bp: Massage a bit. ]

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-26-bigeasy@linutronix.de
2019-04-12 20:05:36 +02:00
Sebastian Andrzej Siewior
1d731e731c x86/fpu: Add a fastpath to __fpu__restore_sig()
The previous commits refactor the restoration of the FPU registers so
that they can be loaded from in-kernel memory. This overhead can be
avoided if the load can be performed without a pagefault.

Attempt to restore FPU registers by invoking
copy_user_to_fpregs_zeroing(). If it fails try the slowpath which can
handle pagefaults.

 [ bp: Add a comment over the fastpath to be able to find one's way
   around the function. ]

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-25-bigeasy@linutronix.de
2019-04-12 20:04:49 +02:00
Rik van Riel
5f409e20b7 x86/fpu: Defer FPU state load until return to userspace
Defer loading of FPU state until return to userspace. This gives
the kernel the potential to skip loading FPU state for tasks that
stay in kernel mode, or for tasks that end up with repeated
invocations of kernel_fpu_begin() & kernel_fpu_end().

The fpregs_lock/unlock() section ensures that the registers remain
unchanged. Otherwise a context switch or a bottom half could save the
registers to its FPU context and the processor's FPU registers would
became random if modified at the same time.

KVM swaps the host/guest registers on entry/exit path. This flow has
been kept as is. First it ensures that the registers are loaded and then
saves the current (host) state before it loads the guest's registers. The
swap is done at the very end with disabled interrupts so it should not
change anymore before theg guest is entered. The read/save version seems
to be cheaper compared to memcpy() in a micro benchmark.

Each thread gets TIF_NEED_FPU_LOAD set as part of fork() / fpu__copy().
For kernel threads, this flag gets never cleared which avoids saving /
restoring the FPU state for kernel threads and during in-kernel usage of
the FPU registers.

 [
   bp: Correct and update commit message and fix checkpatch warnings.
   s/register/registers/ where it is used in plural.
   minor comment corrections.
   remove unused trace_x86_fpu_activate_state() TP.
 ]

Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Waiman Long <longman@redhat.com>
Cc: x86-ml <x86@kernel.org>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Link: https://lkml.kernel.org/r/20190403164156.19645-24-bigeasy@linutronix.de
2019-04-12 19:34:47 +02:00
Sebastian Andrzej Siewior
c2ff9e9a3d x86/fpu: Merge the two code paths in __fpu__restore_sig()
The ia32_fxstate case (32bit with fxsr) and the other (64bit frames or
32bit frames without fxsr) restore both from kernel memory and sanitize
the content.

The !ia32_fxstate version restores missing xstates from "init state"
while the ia32_fxstate doesn't and skips it.

Merge the two code paths and keep the !ia32_fxstate one. Copy only the
user_i387_ia32_struct data structure in the ia32_fxstate.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-23-bigeasy@linutronix.de
2019-04-12 15:41:25 +02:00
Sebastian Andrzej Siewior
926b21f37b x86/fpu: Restore from kernel memory on the 64-bit path too
The 64-bit case (both 64-bit and 32-bit frames) loads the new state from
user memory.

However, doing this is not desired if the FPU state is going to be
restored on return to userland: it would be required to disable
preemption in order to avoid a context switch which would set
TIF_NEED_FPU_LOAD. If this happens before the restore operation then the
loaded registers would become volatile.

Furthermore, disabling preemption while accessing user memory requires
to disable the pagefault handler. An error during FXRSTOR would then
mean that either a page fault occurred (and it would have to be retried
with enabled page fault handler) or a #GP occurred because the xstate is
bogus (after all, the signal handler can modify it).

In order to avoid that mess, copy the FPU state from userland, validate
it and then load it. The copy_kernel_…() helpers are basically just
like the old helpers except that they operate on kernel memory and the
fault handler just sets the error value and the caller handles it.

copy_user_to_fpregs_zeroing() and its helpers remain and will be used
later for a fastpath optimisation.

 [ bp: Clarify commit message. ]

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-22-bigeasy@linutronix.de
2019-04-12 15:02:41 +02:00
Sebastian Andrzej Siewior
e0d3602f93 x86/fpu: Inline copy_user_to_fpregs_zeroing()
Start refactoring __fpu__restore_sig() by inlining
copy_user_to_fpregs_zeroing(). The original function remains and will be
used to restore from userland memory if possible.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-21-bigeasy@linutronix.de
2019-04-11 20:45:20 +02:00
Rik van Riel
a352a3b7b7 x86/fpu: Prepare copy_fpstate_to_sigframe() for TIF_NEED_FPU_LOAD
The FPU registers need only to be saved if TIF_NEED_FPU_LOAD is not set.
Otherwise this has been already done and can be skipped.

 [ bp: Massage a bit. ]

Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-19-bigeasy@linutronix.de
2019-04-11 18:20:04 +02:00
Rik van Riel
69277c98f5 x86/fpu: Always store the registers in copy_fpstate_to_sigframe()
copy_fpstate_to_sigframe() stores the registers directly to user space.
This is okay because the FPU registers are valid and saving them
directly avoids saving them into kernel memory and making a copy.

However, this cannot be done anymore if the FPU registers are going
to be restored on the return to userland. It is possible that the FPU
registers will be invalidated in the middle of the save operation and
this should be done with disabled preemption / BH.

Save the FPU registers to the task's FPU struct and copy them to the
user memory later on.

Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-18-bigeasy@linutronix.de
2019-04-11 18:08:57 +02:00
Sebastian Andrzej Siewior
abd16d68d6 x86/fpu: Use a feature number instead of mask in two more helpers
After changing the argument of __raw_xsave_addr() from a mask to
number Dave suggested to check if it makes sense to do the same for
get_xsave_addr(). As it turns out it does.

Only get_xsave_addr() needs the mask to check if the requested feature
is part of what is supported/saved and then uses the number again. The
shift operation is cheaper compared to fls64() (find last bit set).
Also, the feature number uses less opcode space compared to the mask. :)

Make the get_xsave_addr() argument a xfeature number instead of a mask
and fix up its callers.

Furthermore, use xfeature_nr and xfeature_mask consistently.

This results in the following changes to the kvm code:

  feature -> xfeature_mask
  index -> xfeature_nr

Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Siarhei Liakh <Siarhei.Liakh@concurrent-rt.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-12-bigeasy@linutronix.de
2019-04-10 18:20:27 +02:00
Sebastian Andrzej Siewior
07baeb04f3 x86/fpu: Make __raw_xsave_addr() use a feature number instead of mask
Most users of __raw_xsave_addr() use a feature number, shift it to a
mask and then __raw_xsave_addr() shifts it back to the feature number.

Make __raw_xsave_addr() use the feature number as an argument.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-11-bigeasy@linutronix.de
2019-04-10 16:33:45 +02:00
Sebastian Andrzej Siewior
0169f53e0d x86/fpu: Remove user_fpu_begin()
user_fpu_begin() sets fpu_fpregs_owner_ctx to task's fpu struct. This is
always the case since there is no lazy FPU anymore.

fpu_fpregs_owner_ctx is used during context switch to decide if it needs
to load the saved registers or if the currently loaded registers are
valid. It could be skipped during a

  taskA -> kernel thread -> taskA

switch because the switch to the kernel thread would not alter the CPU's
sFPU tate.

Since this field is always updated during context switch and
never invalidated, setting it manually (in user context) makes no
difference. A kernel thread with kernel_fpu_begin() block could
set fpu_fpregs_owner_ctx to NULL but a kernel thread does not use
user_fpu_begin().

This is a leftover from the lazy-FPU time.

Remove user_fpu_begin(), it does not change fpu_fpregs_owner_ctx's
content.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-9-bigeasy@linutronix.de
2019-04-10 15:58:44 +02:00
Sebastian Andrzej Siewior
2722146eb7 x86/fpu: Remove fpu->initialized
The struct fpu.initialized member is always set to one for user tasks
and zero for kernel tasks. This avoids saving/restoring the FPU
registers for kernel threads.

The ->initialized = 0 case for user tasks has been removed in previous
changes, for instance, by doing an explicit unconditional init at fork()
time for FPU-less systems which was otherwise delayed until the emulated
opcode.

The context switch code (switch_fpu_prepare() + switch_fpu_finish())
can't unconditionally save/restore registers for kernel threads. Not
only would it slow down the switch but also load a zeroed xcomp_bv for
XSAVES.

For kernel_fpu_begin() (+end) the situation is similar: EFI with runtime
services uses this before alternatives_patched is true. Which means that
this function is used too early and it wasn't the case before.

For those two cases, use current->mm to distinguish between user and
kernel thread. For kernel_fpu_begin() skip save/restore of the FPU
registers.

During the context switch into a kernel thread don't do anything. There
is no reason to save the FPU state of a kernel thread.

The reordering in __switch_to() is important because the current()
pointer needs to be valid before switch_fpu_finish() is invoked so ->mm
is seen of the new task instead the old one.

N.B.: fpu__save() doesn't need to check ->mm because it is called by
user tasks only.

 [ bp: Massage. ]

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-8-bigeasy@linutronix.de
2019-04-10 15:42:40 +02:00
Sebastian Andrzej Siewior
39388e80f9 x86/fpu: Don't save fxregs for ia32 frames in copy_fpstate_to_sigframe()
In commit

  72a671ced6 ("x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels")

the 32bit and 64bit path of the signal delivery code were merged.

The 32bit version:

  int save_i387_xstate_ia32(void __user *buf)
  …
         if (cpu_has_xsave)
                 return save_i387_xsave(fp);
         if (cpu_has_fxsr)
                 return save_i387_fxsave(fp);

The 64bit version:

  int save_i387_xstate(void __user *buf)
  …
         if (user_has_fpu()) {
                 if (use_xsave())
                         err = xsave_user(buf);
                 else
                         err = fxsave_user(buf);

                 if (unlikely(err)) {
                         __clear_user(buf, xstate_size);
                         return err;

The merge:

  int save_xstate_sig(void __user *buf, void __user *buf_fx, int size)
  …
         if (user_has_fpu()) {
                 /* Save the live register state to the user directly. */
                 if (save_user_xstate(buf_fx))
                         return -1;
                 /* Update the thread's fxstate to save the fsave header. */
                 if (ia32_fxstate)
                         fpu_fxsave(&tsk->thread.fpu);

I don't think that we needed to save the FPU registers to ->thread.fpu
because the registers were stored in buf_fx. Today the state will be
restored from buf_fx after the signal was handled (I assume that this
was also the case with lazy-FPU).

Since commit

  66463db4fc ("x86, fpu: shift drop_init_fpu() from save_xstate_sig() to handle_signal()")

it is ensured that the signal handler starts with clear/fresh set of FPU
registers which means that the previous store is futile.

Remove the copy_fxregs_to_kernel() call because task's FPU state is
cleared later in handle_signal() via fpu__clear().

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-7-bigeasy@linutronix.de
2019-04-10 14:46:35 +02:00
Sebastian Andrzej Siewior
fbcc9e0c37 x86/fpu: Remove fpu->initialized usage in copy_fpstate_to_sigframe()
With lazy-FPU support the (now named variable) ->initialized was set to
true if the CPU's FPU registers were holding a valid state of the
FPU registers for the active process. If it was set to false then the
FPU state was saved in fpu->state and the FPU was deactivated.

With lazy-FPU gone, ->initialized is always true for user threads and
kernel threads never call this function so ->initialized is always true
in copy_fpstate_to_sigframe().

The using_compacted_format() check is also a leftover from the lazy-FPU
time. In the

  ->initialized == false

case copy_to_user() would copy the compacted buffer while userland would
expect the non-compacted format instead. So in order to save the FPU
state in the non-compacted form it issues XSAVE to save the *current*
FPU state.

If the FPU is not enabled, the attempt raises the FPU trap, the trap
restores the FPU contents and re-enables the FPU and XSAVE is invoked
again and succeeds.

*This* does not longer work since commit

  bef8b6da95 ("x86/fpu: Handle #NM without FPU emulation as an error")

Remove the check for ->initialized because it is always true and remove
the false condition. Update the comment to reflect that the state is
always live.

 [ bp: Massage. ]

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-6-bigeasy@linutronix.de
2019-04-09 20:48:11 +02:00
Sebastian Andrzej Siewior
88f5260a3b x86/fpu: Always init the state in fpu__clear()
fpu__clear() only initializes the state if the CPU has FPU support.
This initialisation is also required for FPU-less systems and takes
place in math_emulate(). Since fpu__initialize() only performs the
initialization if ->initialized is zero it does not matter that it
is invoked each time an opcode is emulated. It makes the removal of
->initialized easier if the struct is also initialized in the FPU-less
case at the same time.

Move fpu__initialize() before the FPU feature check so it is also
performed in the FPU-less case too.

 [ bp: Massage a bit. ]

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Bill Metzenthen <billm@melbpc.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-5-bigeasy@linutronix.de
2019-04-09 19:28:06 +02:00
Sebastian Andrzej Siewior
60e528d6ce x86/fpu: Remove preempt_disable() in fpu__clear()
The preempt_disable() section was introduced in commit

  a10b6a16cd ("x86/fpu: Make the fpu state change in fpu__clear() scheduler-atomic")

and it was said to be temporary.

fpu__initialize() initializes the FPU struct to its initial value and
then sets ->initialized to 1. The last part is the important one.
The content of the state does not matter because it gets set via
copy_init_fpstate_to_fpregs().

A preemption here has little meaning because the registers will always be
set to the same content after copy_init_fpstate_to_fpregs(). A softirq
with a kernel_fpu_begin() could also force to save FPU's registers after
fpu__initialize() without changing the outcome here.

Remove the preempt_disable() section in fpu__clear(), preemption here
does not hurt.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-4-bigeasy@linutronix.de
2019-04-09 19:27:46 +02:00
Sebastian Andrzej Siewior
6dd677a044 x86/fpu: Remove fpu__restore()
There are no users of fpu__restore() so it is time to remove it. The
comment regarding fpu__restore() and TS bit is stale since commit

  b3b0870ef3 ("i387: do not preload FPU state at task switch time")

and has no meaning since.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aubrey Li <aubrey.li@intel.com>
Cc: Babu Moger <Babu.Moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dmitry Safonov <dima@arista.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: linux-doc@vger.kernel.org
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-3-bigeasy@linutronix.de
2019-04-09 19:27:42 +02:00
Sebastian Andrzej Siewior
39ea9baffd x86/fpu: Remove fpu->initialized usage in __fpu__restore_sig()
This is a preparation for the removal of the ->initialized member in the
fpu struct.

__fpu__restore_sig() is deactivating the FPU via fpu__drop() and then
setting manually ->initialized followed by fpu__restore(). The result is
that it is possible to manipulate fpu->state and the state of registers
won't be saved/restored on a context switch which would overwrite
fpu->state:

fpu__drop(fpu):
  ...
  fpu->initialized = 0;
  preempt_enable();

  <--- context switch

Don't access the fpu->state while the content is read from user space
and examined/sanitized. Use a temporary kmalloc() buffer for the
preparation of the FPU registers and once the state is considered okay,
load it. Should something go wrong, return with an error and without
altering the original FPU registers.

The removal of fpu__initialize() is a nop because fpu->initialized is
already set for the user task.

 [ bp: Massage a bit. ]

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190403164156.19645-2-bigeasy@linutronix.de
2019-04-09 19:27:29 +02:00
Jann Horn
89833fab15 x86/fpu: Fix __user annotations
In save_xstate_epilog(), use __user when type-casting userspace
pointers.

In setup_sigcontext() and x32_setup_rt_frame(), cast the userspace
pointers to 'unsigned long __user *' before writing into them. These
pointers are originally '__u32 __user *' or '__u64 __user *', causing
sparse to complain when a userspace pointer is written into them. The
casts are okay because the pointers always point to pointer-sized
values.

Thanks to Luc Van Oostenryck and Al Viro for explaining this to me.

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mukesh Ojha <mojha@codeaurora.org>
Cc: Qiaowei Ren <qiaowei.ren@intel.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190329214652.258477-3-jannh@google.com
2019-04-03 14:12:40 +02:00
Sergey Senozhatsky
653a561bb2 x86/fpu: Move init_xstate_size() to __init section
WARNING: vmlinux.o(.text.unlikely+0x1c05): Section mismatch in
         reference from the function init_xstate_size() to the
         function .init.text:get_xsave_size()

WARNING: vmlinux.o(.text.unlikely+0x1c19): Section mismatch in
         reference from the function init_xstate_size() to the
         function .init.text:get_xsaves_size()

Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Link: https://lkml.kernel.org/r/20190108130225.5066-2-sergey.senozhatsky@gmail.com
2019-02-08 14:32:34 +01:00
Linus Torvalds
96d4f267e4 Remove 'type' argument from access_ok() function
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.

It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access.  But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.

A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model.  And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.

This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.

There were a couple of notable cases:

 - csky still had the old "verify_area()" name as an alias.

 - the iter_iov code had magical hardcoded knowledge of the actual
   values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
   really used it)

 - microblaze used the type argument for a debug printout

but other than those oddities this should be a total no-op patch.

I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something.  Any missed conversion should be trivially fixable, though.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-03 18:57:57 -08:00
Linus Torvalds
d6e867a6ae Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu updates from Ingo Molnar:
 "Misc preparatory changes for an upcoming FPU optimization that will
  delay the loading of FPU registers to return-to-userspace"

* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/fpu: Don't export __kernel_fpu_{begin,end}()
  x86/fpu: Update comment for __raw_xsave_addr()
  x86/fpu: Add might_fault() to user_insn()
  x86/pkeys: Make init_pkru_value static
  x86/thread_info: Remove _TIF_ALLWORK_MASK
  x86/process/32: Remove asm/math_emu.h include
  x86/fpu: Use unsigned long long shift in xfeature_uncompacted_offset()
2018-12-26 17:37:51 -08:00
Borislav Petkov
ad3bc25a32 x86/kernel: Fix more -Wmissing-prototypes warnings
... with the goal of eventually enabling -Wmissing-prototypes by
default. At least on x86.

Make functions static where possible, otherwise add prototypes or make
them visible through includes.

asm/trace/ changes courtesy of Steven Rostedt <rostedt@goodmis.org>.

Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> # ACPI + cpufreq bits
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: linux-acpi@vger.kernel.org
2018-12-08 12:24:35 +01:00
Sebastian Andrzej Siewior
12209993e9 x86/fpu: Don't export __kernel_fpu_{begin,end}()
There is one user of __kernel_fpu_begin() and before invoking it,
it invokes preempt_disable(). So it could invoke kernel_fpu_begin()
right away. The 32bit version of arch_efi_call_virt_setup() and
arch_efi_call_virt_teardown() does this already.

The comment above *kernel_fpu*() claims that before invoking
__kernel_fpu_begin() preemption should be disabled and that KVM is a
good example of doing it. Well, KVM doesn't do that since commit

  f775b13eed ("x86,kvm: move qemu/guest FPU switching out to vcpu_run")

so it is not an example anymore.

With EFI gone as the last user of __kernel_fpu_{begin|end}(), both can
be made static and not exported anymore.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Rik van Riel <riel@surriel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181129150210.2k4mawt37ow6c2vq@linutronix.de
2018-12-04 12:37:28 +01:00
Sebastian Andrzej Siewior
2f2fcc40a9 x86/fpu: Update comment for __raw_xsave_addr()
The comment above __raw_xsave_addr() claims that the function does not
work for compacted buffers and was introduced in:

  b8b9b6ba9d ("x86/fpu: Allow setting of XSAVE state")

In this commit, the function was factored out of get_xsave_addr() and
this function claims that it works with "standard format or compacted
format of xsave area". It accesses the "xstate_comp_offsets" variable
for the actual offset and it was introduced in commit

  7496d6458f ("Define kernel API to get address of each state in xsave area")

Based on the code (back then and now):
- xstate_offsets holds the standard offset.
- if compacted mode is not supported then xstate_comp_offsets gets the
  xstate_offsets copied.
- if compacted mode is supported then xstate_comp_offsets will hold the
  offset for the compacted buffer.

Based on that the function works for compacted buffers as long as the
CPU supports it and this what we care about.

Remove the "Note:" which is not accurate.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Rik van Riel <riel@surriel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181128222035.2996-7-bigeasy@linutronix.de
2018-12-03 19:27:14 +01:00
Sebastian Andrzej Siewior
d084523901 x86/fpu: Use unsigned long long shift in xfeature_uncompacted_offset()
The xfeature mask is 64-bit so a shift from a number to its mask should
have ULL suffix or else bits above position 31 will be lost. This is not
a problem now but should XFEATURE_MASK_SUPERVISOR gain a bit >31 then
this check won't catch it.

Use BIT_ULL() to compute a mask from a number.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Rik van Riel <riel@surriel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181128222035.2996-2-bigeasy@linutronix.de
2018-12-03 18:40:28 +01:00
Sebastian Andrzej Siewior
68239654ac x86/fpu: Disable bottom halves while loading FPU registers
The sequence

  fpu->initialized = 1;		/* step A */
  preempt_disable();		/* step B */
  fpu__restore(fpu);
  preempt_enable();

in __fpu__restore_sig() is racy in regard to a context switch.

For 32bit frames, __fpu__restore_sig() prepares the FPU state within
fpu->state. To ensure that a context switch (switch_fpu_prepare() in
particular) does not modify fpu->state it uses fpu__drop() which sets
fpu->initialized to 0.

After fpu->initialized is cleared, the CPU's FPU state is not saved
to fpu->state during a context switch. The new state is loaded via
fpu__restore(). It gets loaded into fpu->state from userland and
ensured it is sane. fpu->initialized is then set to 1 in order to avoid
fpu__initialize() doing anything (overwrite the new state) which is part
of fpu__restore().

A context switch between step A and B above would save CPU's current FPU
registers to fpu->state and overwrite the newly prepared state. This
looks like a tiny race window but the Kernel Test Robot reported this
back in 2016 while we had lazy FPU support. Borislav Petkov made the
link between that report and another patch that has been posted. Since
the removal of the lazy FPU support, this race goes unnoticed because
the warning has been removed.

Disable bottom halves around the restore sequence to avoid the race. BH
need to be disabled because BH is allowed to run (even with preemption
disabled) and might invoke kernel_fpu_begin() by doing IPsec.

 [ bp: massage commit message a bit. ]

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: stable@vger.kernel.org
Cc: x86-ml <x86@kernel.org>
Link: http://lkml.kernel.org/r/20181120102635.ddv3fvavxajjlfqk@linutronix.de
Link: https://lkml.kernel.org/r/20160226074940.GA28911@pd.tnic
2018-11-20 17:22:42 +01:00
Sebastian Andrzej Siewior
6aa676761d x86/fpu: Remove second definition of fpu in __fpu__restore_sig()
Commit:

  c5bedc6847 ("x86/fpu: Get rid of PF_USED_MATH usage, convert it to fpu->fpstate_active")

introduced the 'fpu' variable at top of __restore_xstate_sig(),
which now shadows the other definition:

  arch/x86/kernel/fpu/signal.c:318:28: warning: symbol 'fpu' shadows an earlier one
  arch/x86/kernel/fpu/signal.c:271:20: originally declared here

Remove the shadowed definition of 'fpu', as the two definitions are the same.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: c5bedc6847 ("x86/fpu: Get rid of PF_USED_MATH usage, convert it to fpu->fpstate_active")
Link: http://lkml.kernel.org/r/20181016202525.29437-3-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-17 12:30:31 +02:00
Nicolai Stange
447ae31667 x86: Don't include linux/irq.h from asm/hardirq.h
The next patch in this series will have to make the definition of
irq_cpustat_t available to entering_irq().

Inclusion of asm/hardirq.h into asm/apic.h would cause circular header
dependencies like

  asm/smp.h
    asm/apic.h
      asm/hardirq.h
        linux/irq.h
          linux/topology.h
            linux/smp.h
              asm/smp.h

or

  linux/gfp.h
    linux/mmzone.h
      asm/mmzone.h
        asm/mmzone_64.h
          asm/smp.h
            asm/apic.h
              asm/hardirq.h
                linux/irq.h
                  linux/irqdesc.h
                    linux/kobject.h
                      linux/sysfs.h
                        linux/kernfs.h
                          linux/idr.h
                            linux/gfp.h

and others.

This causes compilation errors because of the header guards becoming
effective in the second inclusion: symbols/macros that had been defined
before wouldn't be available to intermediate headers in the #include chain
anymore.

A possible workaround would be to move the definition of irq_cpustat_t
into its own header and include that from both, asm/hardirq.h and
asm/apic.h.

However, this wouldn't solve the real problem, namely asm/harirq.h
unnecessarily pulling in all the linux/irq.h cruft: nothing in
asm/hardirq.h itself requires it. Also, note that there are some other
archs, like e.g. arm64, which don't have that #include in their
asm/hardirq.h.

Remove the linux/irq.h #include from x86' asm/hardirq.h.

Fix resulting compilation errors by adding appropriate #includes to *.c
files as needed.

Note that some of these *.c files could be cleaned up a bit wrt. to their
set of #includes, but that should better be done from separate patches, if
at all.

Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-08-05 09:53:13 +02:00
Ingo Molnar
b3d9a13681 Merge branch 'linus' into x86/asm, to pick up fixes and resolve conflicts
Conflicts:
	arch/x86/kernel/cpu/Makefile

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-07 10:53:06 +01:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Andi Kleen
73e3a7d2a7 x86/fpu: Remove the explicit clearing of XSAVE dependent features
Clearing a CPU feature with setup_clear_cpu_cap() clears all features
which depend on it. Expressing feature dependencies in one place is
easier to maintain than keeping functions like
fpu__xstate_clear_all_cpu_caps() up to date.

The features which depend on XSAVE have their dependency expressed in the
dependency table, so its sufficient to clear X86_FEATURE_XSAVE.

Remove the explicit clearing of XSAVE dependent features.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20171013215645.23166-6-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-17 17:14:57 +02:00
Andi Kleen
ccb18db2ab x86/fpu: Make XSAVE check the base CPUID features before enabling
Before enabling XSAVE, not only check the XSAVE specific CPUID bits,
but also the base CPUID features of the respective XSAVE feature.
This allows to disable individual XSAVE states using the existing
clearcpuid= option, which can be useful for performance testing
and debugging, and also in general avoids inconsistencies.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20171013215645.23166-5-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-17 17:14:57 +02:00
Andi Kleen
0c2a3913d6 x86/fpu: Parse clearcpuid= as early XSAVE argument
With a followon patch we want to make clearcpuid affect the XSAVE
configuration. But xsave is currently initialized before arguments
are parsed. Move the clearcpuid= parsing into the special
early xsave argument parsing code.

Since clearcpuid= contains a = we need to keep the old __setup
around as a dummy, otherwise it would end up as a environment
variable in init's environment.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20171013215645.23166-4-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-17 17:14:57 +02:00
Eric Biggers
738f48cb5f x86/fpu: Use using_compacted_format() instead of open coded X86_FEATURE_XSAVES
This is the canonical method to use.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kevin Hao <haokexin@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Halcrow <mhalcrow@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Yu-cheng Yu <yu-cheng.yu@intel.com>
Cc: kernel-hardening@lists.openwall.com
Link: http://lkml.kernel.org/r/20170924105913.9157-11-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-26 09:43:48 +02:00
Eric Biggers
98c0fad9d6 x86/fpu: Use validate_xstate_header() to validate the xstate_header in copy_user_to_xstate()
Tighten the checks in copy_user_to_xstate().

Signed-off-by: Eric Biggers <ebiggers@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kevin Hao <haokexin@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Halcrow <mhalcrow@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Yu-cheng Yu <yu-cheng.yu@intel.com>
Cc: kernel-hardening@lists.openwall.com
Link: http://lkml.kernel.org/r/20170924105913.9157-10-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-26 09:43:48 +02:00