Description is almost copied from commit fb05e7a89f ("net: don't wait
for order-3 page allocation").
I saw excessive direct memory reclaim/compaction triggered by slub. This
causes performance issues and add latency. Slub uses high-order
allocation to reduce internal fragmentation and management overhead. But,
direct memory reclaim/compaction has high overhead and the benefit of
high-order allocation can't compensate the overhead of both work.
This patch makes auxiliary high-order allocation atomic. If there is no
memory pressure and memory isn't fragmented, the alloction will still
success, so we don't sacrifice high-order allocation's benefit here. If
the atomic allocation fails, direct memory reclaim/compaction will not be
triggered, allocation fallback to low-order immediately, hence the direct
memory reclaim/compaction overhead is avoided. In the allocation failure
case, kswapd is waken up and trying to make high-order freepages, so
allocation could success next time.
Following is the test to measure effect of this patch.
System: QEMU, CPU 8, 512 MB
Mem: 25% memory is allocated at random position to make fragmentation.
Memory-hogger occupies 150 MB memory.
Workload: hackbench -g 20 -l 1000
Average result by 10 runs (Base va Patched)
elapsed_time(s): 4.3468 vs 2.9838
compact_stall: 461.7 vs 73.6
pgmigrate_success: 28315.9 vs 7256.1
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Eric Dumazet <edumazet@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sysfs_slab_add() shouldn't call kobject_put at error path: this puts last
reference of kmem-cache kobject and frees it. Kmem cache will be freed
second time at error path in kmem_cache_create().
For example this happens when slub debug was enabled in runtime and
somebody creates new kmem cache:
# echo 1 | tee /sys/kernel/slab/*/sanity_checks
# modprobe configfs
"configfs_dir_cache" cannot be merged because existing slab have debug and
cannot create new slab because unique name ":t-0000096" already taken.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Initializing a new slab can introduce rather large latencies because most
of the initialization runs always with interrupts disabled.
There is no point in doing so. The newly allocated slab is not visible
yet, so there is no reason to protect it against concurrent alloc/free.
Move the expensive parts of the initialization into allocate_slab(), so
for all allocations with GFP_WAIT set, interrupts are enabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
First piece: acceleration of retrieval of per cpu objects
If we are allocating lots of objects then it is advantageous to disable
interrupts and avoid the this_cpu_cmpxchg() operation to get these objects
faster.
Note that we cannot do the fast operation if debugging is enabled, because
we would have to add extra code to do all the debugging checks. And it
would not be fast anyway.
Note also that the requirement of having interrupts disabled avoids having
to do processor flag operations.
Allocate as many objects as possible in the fast way and then fall back to
the generic implementation for the rest of the objects.
Measurements on CPU CPU i7-4790K @ 4.00GHz
Baseline normal fastpath (alloc+free cost): 42 cycles(tsc) 10.554 ns
Bulk- fallback - this-patch
1 - 57 cycles(tsc) 14.432 ns - 48 cycles(tsc) 12.155 ns improved 15.8%
2 - 50 cycles(tsc) 12.746 ns - 37 cycles(tsc) 9.390 ns improved 26.0%
3 - 48 cycles(tsc) 12.180 ns - 33 cycles(tsc) 8.417 ns improved 31.2%
4 - 48 cycles(tsc) 12.015 ns - 32 cycles(tsc) 8.045 ns improved 33.3%
8 - 46 cycles(tsc) 11.526 ns - 30 cycles(tsc) 7.699 ns improved 34.8%
16 - 45 cycles(tsc) 11.418 ns - 32 cycles(tsc) 8.205 ns improved 28.9%
30 - 80 cycles(tsc) 20.246 ns - 73 cycles(tsc) 18.328 ns improved 8.8%
32 - 79 cycles(tsc) 19.946 ns - 72 cycles(tsc) 18.208 ns improved 8.9%
34 - 78 cycles(tsc) 19.659 ns - 71 cycles(tsc) 17.987 ns improved 9.0%
48 - 86 cycles(tsc) 21.516 ns - 82 cycles(tsc) 20.566 ns improved 4.7%
64 - 93 cycles(tsc) 23.423 ns - 89 cycles(tsc) 22.480 ns improved 4.3%
128 - 100 cycles(tsc) 25.170 ns - 99 cycles(tsc) 24.871 ns improved 1.0%
158 - 102 cycles(tsc) 25.549 ns - 101 cycles(tsc) 25.375 ns improved 1.0%
250 - 101 cycles(tsc) 25.344 ns - 100 cycles(tsc) 25.182 ns improved 1.0%
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the basic infrastructure for alloc/free operations on pointer arrays.
It includes a generic function in the common slab code that is used in
this infrastructure patch to create the unoptimized functionality for slab
bulk operations.
Allocators can then provide optimized allocation functions for situations
in which large numbers of objects are needed. These optimization may
avoid taking locks repeatedly and bypass metadata creation if all objects
in slab pages can be used to provide the objects required.
Allocators can extend the skeletons provided and add their own code to the
bulk alloc and free functions. They can keep the generic allocation and
freeing and just fall back to those if optimizations would not work (like
for example when debugging is on).
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With this patchset the SLUB allocator now has both bulk alloc and free
implemented.
This patchset mostly optimizes the "fastpath" where objects are available
on the per CPU fastpath page. This mostly amortize the less-heavy
none-locked cmpxchg_double used on fastpath.
The "fallback" bulking (e.g __kmem_cache_free_bulk) provides a good basis
for comparison. Measurements[1] of the fallback functions
__kmem_cache_{free,alloc}_bulk have been copied from slab_common.c and
forced "noinline" to force a function call like slab_common.c.
Measurements on CPU CPU i7-4790K @ 4.00GHz
Baseline normal fastpath (alloc+free cost): 42 cycles(tsc) 10.601 ns
Measurements last-patch with disabled debugging:
Bulk- fallback - this-patch
1 - 57 cycles(tsc) 14.448 ns - 44 cycles(tsc) 11.236 ns improved 22.8%
2 - 51 cycles(tsc) 12.768 ns - 28 cycles(tsc) 7.019 ns improved 45.1%
3 - 48 cycles(tsc) 12.232 ns - 22 cycles(tsc) 5.526 ns improved 54.2%
4 - 48 cycles(tsc) 12.025 ns - 19 cycles(tsc) 4.786 ns improved 60.4%
8 - 46 cycles(tsc) 11.558 ns - 18 cycles(tsc) 4.572 ns improved 60.9%
16 - 45 cycles(tsc) 11.458 ns - 18 cycles(tsc) 4.658 ns improved 60.0%
30 - 45 cycles(tsc) 11.499 ns - 18 cycles(tsc) 4.568 ns improved 60.0%
32 - 79 cycles(tsc) 19.917 ns - 65 cycles(tsc) 16.454 ns improved 17.7%
34 - 78 cycles(tsc) 19.655 ns - 63 cycles(tsc) 15.932 ns improved 19.2%
48 - 68 cycles(tsc) 17.049 ns - 50 cycles(tsc) 12.506 ns improved 26.5%
64 - 80 cycles(tsc) 20.009 ns - 63 cycles(tsc) 15.929 ns improved 21.3%
128 - 94 cycles(tsc) 23.749 ns - 86 cycles(tsc) 21.583 ns improved 8.5%
158 - 97 cycles(tsc) 24.299 ns - 90 cycles(tsc) 22.552 ns improved 7.2%
250 - 102 cycles(tsc) 25.681 ns - 98 cycles(tsc) 24.589 ns improved 3.9%
Benchmarking shows impressive improvements in the "fastpath" with a small
number of objects in the working set. Once the working set increases,
resulting in activating the "slowpath" (that contains the heavier locked
cmpxchg_double) the improvement decreases.
I'm currently working on also optimizing the "slowpath" (as network stack
use-case hits this), but this patchset should provide a good foundation
for further improvements. Rest of my patch queue in this area needs some
more work, but preliminary results are good. I'm attending Netfilter
Workshop[2] next week, and I'll hopefully return working on further
improvements in this area.
This patch (of 6):
s/succedd/succeed/
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit c48a11c7ad ("netvm: propagate page->pfmemalloc to skb") added
checks for page->pfmemalloc to __skb_fill_page_desc():
if (page->pfmemalloc && !page->mapping)
skb->pfmemalloc = true;
It assumes page->mapping == NULL implies that page->pfmemalloc can be
trusted. However, __delete_from_page_cache() can set set page->mapping
to NULL and leave page->index value alone. Due to being in union, a
non-zero page->index will be interpreted as true page->pfmemalloc.
So the assumption is invalid if the networking code can see such a page.
And it seems it can. We have encountered this with a NFS over loopback
setup when such a page is attached to a new skbuf. There is no copying
going on in this case so the page confuses __skb_fill_page_desc which
interprets the index as pfmemalloc flag and the network stack drops
packets that have been allocated using the reserves unless they are to
be queued on sockets handling the swapping which is the case here and
that leads to hangs when the nfs client waits for a response from the
server which has been dropped and thus never arrive.
The struct page is already heavily packed so rather than finding another
hole to put it in, let's do a trick instead. We can reuse the index
again but define it to an impossible value (-1UL). This is the page
index so it should never see the value that large. Replace all direct
users of page->pfmemalloc by page_is_pfmemalloc which will hide this
nastiness from unspoiled eyes.
The information will get lost if somebody wants to use page->index
obviously but that was the case before and the original code expected
that the information should be persisted somewhere else if that is
really needed (e.g. what SLAB and SLUB do).
[akpm@linux-foundation.org: fix blooper in slub]
Fixes: c48a11c7ad ("netvm: propagate page->pfmemalloc to skb")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Debugged-by: Vlastimil Babka <vbabka@suse.com>
Debugged-by: Jiri Bohac <jbohac@suse.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: David Miller <davem@davemloft.net>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@vger.kernel.org> [3.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch moves the initialization of the size_index table slightly
earlier so that the first few kmem_cache_node's can be safely allocated
when KMALLOC_MIN_SIZE is large.
There are currently two ways to generate indices into kmalloc_caches (via
kmalloc_index() and via the size_index table in slab_common.c) and on some
arches (possibly only MIPS) they potentially disagree with each other
until create_kmalloc_caches() has been called. It seems that the
intention is that the size_index table is a fast equivalent to
kmalloc_index() and that create_kmalloc_caches() patches the table to
return the correct value for the cases where kmalloc_index()'s
if-statements apply.
The failing sequence was:
* kmalloc_caches contains NULL elements
* kmem_cache_init initialises the element that 'struct
kmem_cache_node' will be allocated to. For 32-bit Mips, this is a
56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7).
* init_list is called which calls kmalloc_node to allocate a 'struct
kmem_cache_node'.
* kmalloc_slab selects the kmem_caches element using
size_index[size_index_elem(size)]. For MIPS, size is 56, and the
expression returns 6.
* This element of kmalloc_caches is NULL and allocation fails.
* If it had not already failed, it would have called
create_kmalloc_caches() at this point which would have changed
size_index[size_index_elem(size)] to 7.
I don't believe the bug to be LLVM specific but GCC doesn't normally
encounter the problem. I haven't been able to identify exactly what GCC
is doing better (probably inlining) but it seems that GCC is managing to
optimize to the point that it eliminates the problematic allocations.
This theory is supported by the fact that GCC can be made to fail in the
same way by changing inline, __inline, __inline__, and __always_inline in
include/linux/compiler-gcc.h such that they don't actually inline things.
Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
tree since it doesn't work reliably on non-scalar types.
This patch removes the rest of the usages of ACCESS_ONCE, and use the new
READ_ONCE API for the read accesses. This makes things cleaner, instead
of using separate/multiple sets of APIs.
Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the normal return values for bool functions
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By moving the O option detection into the switch statement, we allow this
parameter to be combined with other options correctly. Previously options
like slub_debug=OFZ would only detect the 'o' and use DEBUG_DEFAULT_FLAGS
to fill in the rest of the flags.
Signed-off-by: Chris J Arges <chris.j.arges@canonical.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 9aabf810a6 ("mm/slub: optimize alloc/free fastpath by removing
preemption on/off") introduced an occasional hang for kernels built with
CONFIG_PREEMPT && !CONFIG_SMP.
The problem is the following loop the patch introduced to
slab_alloc_node and slab_free:
do {
tid = this_cpu_read(s->cpu_slab->tid);
c = raw_cpu_ptr(s->cpu_slab);
} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
GCC 4.9 has been observed to hoist the load of c and c->tid above the
loop for !SMP kernels (as in this case raw_cpu_ptr(x) is compile-time
constant and does not force a reload). On arm64 the generated assembly
looks like:
ldr x4, [x0,#8]
loop:
ldr x1, [x0,#8]
cmp x1, x4
b.ne loop
If the thread is preempted between the load of c->tid (into x1) and tid
(into x4), and an allocation or free occurs in another thread (bumping
the cpu_slab's tid), the thread will be stuck in the loop until
s->cpu_slab->tid wraps, which may be forever in the absence of
allocations/frees on the same CPU.
This patch changes the loop condition to access c->tid with READ_ONCE.
This ensures that the value is reloaded even when the compiler would
otherwise assume it could cache the value, and also ensures that the
load will not be torn.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Steve Capper <steve.capper@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With this patch kasan will be able to catch bugs in memory allocated by
slub. Initially all objects in newly allocated slab page, marked as
redzone. Later, when allocation of slub object happens, requested by
caller number of bytes marked as accessible, and the rest of the object
(including slub's metadata) marked as redzone (inaccessible).
We also mark object as accessible if ksize was called for this object.
There is some places in kernel where ksize function is called to inquire
size of really allocated area. Such callers could validly access whole
allocated memory, so it should be marked as accessible.
Code in slub.c and slab_common.c files could validly access to object's
metadata, so instrumentation for this files are disabled.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Signed-off-by: Dmitry Chernenkov <dmitryc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's ok for slub to access memory that marked by kasan as inaccessible
(object's metadata). Kasan shouldn't print report in that case because
these accesses are valid. Disabling instrumentation of slub.c code is not
enough to achieve this because slub passes pointer to object's metadata
into external functions like memchr_inv().
We don't want to disable instrumentation for memchr_inv() because this is
quite generic function, and we don't want to miss bugs.
metadata_access_enable/metadata_access_disable used to tell KASan where
accesses to metadata starts/end, so we could temporarily disable KASan
reports.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove static and add function declarations to linux/slub_def.h so it
could be used by kernel address sanitizer.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
printk and friends can now format bitmaps using '%*pb[l]'. cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.
* This is an equivalent conversion but the whole function should be
converted to use scnprinf famiily of functions rather than
performing custom output length predictions in multiple places.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To speed up further allocations SLUB may store empty slabs in per cpu/node
partial lists instead of freeing them immediately. This prevents per
memcg caches destruction, because kmem caches created for a memory cgroup
are only destroyed after the last page charged to the cgroup is freed.
To fix this issue, this patch resurrects approach first proposed in [1].
It forbids SLUB to cache empty slabs after the memory cgroup that the
cache belongs to was destroyed. It is achieved by setting kmem_cache's
cpu_partial and min_partial constants to 0 and tuning put_cpu_partial() so
that it would drop frozen empty slabs immediately if cpu_partial = 0.
The runtime overhead is minimal. From all the hot functions, we only
touch relatively cold put_cpu_partial(): we make it call
unfreeze_partials() after freezing a slab that belongs to an offline
memory cgroup. Since slab freezing exists to avoid moving slabs from/to a
partial list on free/alloc, and there can't be allocations from dead
caches, it shouldn't cause any overhead. We do have to disable preemption
for put_cpu_partial() to achieve that though.
The original patch was accepted well and even merged to the mm tree.
However, I decided to withdraw it due to changes happening to the memcg
core at that time. I had an idea of introducing per-memcg shrinkers for
kmem caches, but now, as memcg has finally settled down, I do not see it
as an option, because SLUB shrinker would be too costly to call since SLUB
does not keep free slabs on a separate list. Besides, we currently do not
even call per-memcg shrinkers for offline memcgs. Overall, it would
introduce much more complexity to both SLUB and memcg than this small
patch.
Regarding to SLAB, there's no problem with it, because it shrinks
per-cpu/node caches periodically. Thanks to list_lru reparenting, we no
longer keep entries for offline cgroups in per-memcg arrays (such as
memcg_cache_params->memcg_caches), so we do not have to bother if a
per-memcg cache will be shrunk a bit later than it could be.
[1] http://thread.gmane.org/gmane.linux.kernel.mm/118649/focus=118650
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is supposed to return 0 if the cache has no remaining objects and 1
otherwise, while currently it always returns 0. Fix it.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLUB's version of __kmem_cache_shrink() not only removes empty slabs, but
also tries to rearrange the partial lists to place slabs filled up most to
the head to cope with fragmentation. To achieve that, it allocates a
temporary array of lists used to sort slabs by the number of objects in
use. If the allocation fails, the whole procedure is aborted.
This is unacceptable for the kernel memory accounting extension of the
memory cgroup, where we want to make sure that kmem_cache_shrink()
successfully discarded empty slabs. Although the allocation failure is
utterly unlikely with the current page allocator implementation, which
retries GFP_KERNEL allocations of order <= 2 infinitely, it is better not
to rely on that.
This patch therefore makes __kmem_cache_shrink() allocate the array on
stack instead of calling kmalloc, which may fail. The array size is
chosen to be equal to 32, because most SLUB caches store not more than 32
objects per slab page. Slab pages with <= 32 free objects are sorted
using the array by the number of objects in use and promoted to the head
of the partial list, while slab pages with > 32 free objects are left in
the end of the list without any ordering imposed on them.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sometimes, we need to iterate over all memcg copies of a particular root
kmem cache. Currently, we use memcg_cache_params->memcg_caches array for
that, because it contains all existing memcg caches.
However, it's a bad practice to keep all caches, including those that
belong to offline cgroups, in this array, because it will be growing
beyond any bounds then. I'm going to wipe away dead caches from it to
save space. To still be able to perform iterations over all memcg caches
of the same kind, let us link them into a list.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, kmem_cache stores a pointer to struct memcg_cache_params
instead of embedding it. The rationale is to save memory when kmem
accounting is disabled. However, the memcg_cache_params has shrivelled
drastically since it was first introduced:
* Initially:
struct memcg_cache_params {
bool is_root_cache;
union {
struct kmem_cache *memcg_caches[0];
struct {
struct mem_cgroup *memcg;
struct list_head list;
struct kmem_cache *root_cache;
bool dead;
atomic_t nr_pages;
struct work_struct destroy;
};
};
};
* Now:
struct memcg_cache_params {
bool is_root_cache;
union {
struct {
struct rcu_head rcu_head;
struct kmem_cache *memcg_caches[0];
};
struct {
struct mem_cgroup *memcg;
struct kmem_cache *root_cache;
};
};
};
So the memory saving does not seem to be a clear win anymore.
OTOH, keeping a pointer to memcg_cache_params struct instead of embedding
it results in touching one more cache line on kmem alloc/free hot paths.
Besides, it makes linking kmem caches in a list chained by a field of
struct memcg_cache_params really painful due to a level of indirection,
while I want to make them linked in the following patch. That said, let
us embed it.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We had to insert a preempt enable/disable in the fastpath a while ago in
order to guarantee that tid and kmem_cache_cpu are retrieved on the same
cpu. It is the problem only for CONFIG_PREEMPT in which scheduler can
move the process to other cpu during retrieving data.
Now, I reach the solution to remove preempt enable/disable in the
fastpath. If tid is matched with kmem_cache_cpu's tid after tid and
kmem_cache_cpu are retrieved by separate this_cpu operation, it means
that they are retrieved on the same cpu. If not matched, we just have
to retry it.
With this guarantee, preemption enable/disable isn't need at all even if
CONFIG_PREEMPT, so this patch removes it.
I saw roughly 5% win in a fast-path loop over kmem_cache_alloc/free in
CONFIG_PREEMPT. (14.821 ns -> 14.049 ns)
Below is the result of Christoph's slab_test reported by Jesper Dangaard
Brouer.
* Before
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 49 cycles kfree -> 62 cycles
10000 times kmalloc(16) -> 48 cycles kfree -> 64 cycles
10000 times kmalloc(32) -> 53 cycles kfree -> 70 cycles
10000 times kmalloc(64) -> 64 cycles kfree -> 77 cycles
10000 times kmalloc(128) -> 74 cycles kfree -> 84 cycles
10000 times kmalloc(256) -> 84 cycles kfree -> 114 cycles
10000 times kmalloc(512) -> 83 cycles kfree -> 116 cycles
10000 times kmalloc(1024) -> 81 cycles kfree -> 120 cycles
10000 times kmalloc(2048) -> 104 cycles kfree -> 136 cycles
10000 times kmalloc(4096) -> 142 cycles kfree -> 165 cycles
10000 times kmalloc(8192) -> 238 cycles kfree -> 226 cycles
10000 times kmalloc(16384) -> 403 cycles kfree -> 264 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 68 cycles
10000 times kmalloc(16)/kfree -> 68 cycles
10000 times kmalloc(32)/kfree -> 69 cycles
10000 times kmalloc(64)/kfree -> 68 cycles
10000 times kmalloc(128)/kfree -> 68 cycles
10000 times kmalloc(256)/kfree -> 68 cycles
10000 times kmalloc(512)/kfree -> 74 cycles
10000 times kmalloc(1024)/kfree -> 75 cycles
10000 times kmalloc(2048)/kfree -> 74 cycles
10000 times kmalloc(4096)/kfree -> 74 cycles
10000 times kmalloc(8192)/kfree -> 75 cycles
10000 times kmalloc(16384)/kfree -> 510 cycles
* After
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
10000 times kmalloc(8) -> 46 cycles kfree -> 61 cycles
10000 times kmalloc(16) -> 46 cycles kfree -> 63 cycles
10000 times kmalloc(32) -> 49 cycles kfree -> 69 cycles
10000 times kmalloc(64) -> 57 cycles kfree -> 76 cycles
10000 times kmalloc(128) -> 66 cycles kfree -> 83 cycles
10000 times kmalloc(256) -> 84 cycles kfree -> 110 cycles
10000 times kmalloc(512) -> 77 cycles kfree -> 114 cycles
10000 times kmalloc(1024) -> 80 cycles kfree -> 116 cycles
10000 times kmalloc(2048) -> 102 cycles kfree -> 131 cycles
10000 times kmalloc(4096) -> 135 cycles kfree -> 163 cycles
10000 times kmalloc(8192) -> 238 cycles kfree -> 218 cycles
10000 times kmalloc(16384) -> 399 cycles kfree -> 262 cycles
2. Kmalloc: alloc/free test
10000 times kmalloc(8)/kfree -> 65 cycles
10000 times kmalloc(16)/kfree -> 66 cycles
10000 times kmalloc(32)/kfree -> 65 cycles
10000 times kmalloc(64)/kfree -> 66 cycles
10000 times kmalloc(128)/kfree -> 66 cycles
10000 times kmalloc(256)/kfree -> 71 cycles
10000 times kmalloc(512)/kfree -> 72 cycles
10000 times kmalloc(1024)/kfree -> 71 cycles
10000 times kmalloc(2048)/kfree -> 71 cycles
10000 times kmalloc(4096)/kfree -> 71 cycles
10000 times kmalloc(8192)/kfree -> 65 cycles
10000 times kmalloc(16384)/kfree -> 511 cycles
Most of the results are better than before.
Note that this change slightly worses performance in !CONFIG_PREEMPT,
roughly 0.3%. Implementing each case separately would help performance,
but, since it's so marginal, I didn't do that. This would help
maintanance since we have same code for all cases.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we fail to allocate from the current node's stock, we look for free
objects on other nodes before calling the page allocator (see
get_any_partial). While checking other nodes we respect cpuset
constraints by calling cpuset_zone_allowed. We enforce hardwall check.
As a result, we will fallback to the page allocator even if there are some
pages cached on other nodes, but the current cpuset doesn't have them set.
However, the page allocator uses softwall check for kernel allocations,
so it may allocate from one of the other nodes in this case.
Therefore we should use softwall cpuset check in get_any_partial to
conform with the cpuset check in the page allocator.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Suppose task @t that belongs to a memory cgroup @memcg is going to
allocate an object from a kmem cache @c. The copy of @c corresponding to
@memcg, @mc, is empty. Then if kmem_cache_alloc races with the memory
cgroup destruction we can access the memory cgroup's copy of the cache
after it was destroyed:
CPU0 CPU1
---- ----
[ current=@t
@mc->memcg_params->nr_pages=0 ]
kmem_cache_alloc(@c):
call memcg_kmem_get_cache(@c);
proceed to allocation from @mc:
alloc a page for @mc:
...
move @t from @memcg
destroy @memcg:
mem_cgroup_css_offline(@memcg):
memcg_unregister_all_caches(@memcg):
kmem_cache_destroy(@mc)
add page to @mc
We could fix this issue by taking a reference to a per-memcg cache, but
that would require adding a per-cpu reference counter to per-memcg caches,
which would look cumbersome.
Instead, let's take a reference to a memory cgroup, which already has a
per-cpu reference counter, in the beginning of kmem_cache_alloc to be
dropped in the end, and move per memcg caches destruction from css offline
to css free. As a side effect, per-memcg caches will be destroyed not one
by one, but all at once when the last page accounted to the memory cgroup
is freed. This doesn't sound as a high price for code readability though.
Note, this patch does add some overhead to the kmem_cache_alloc hot path,
but it is pretty negligible - it's just a function call plus a per cpu
counter decrement, which is comparable to what we already have in
memcg_kmem_get_cache. Besides, it's only relevant if there are memory
cgroups with kmem accounting enabled. I don't think we can find a way to
handle this race w/o it, because alloc_page called from kmem_cache_alloc
may sleep so we can't flush all pending kmallocs w/o reference counting.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup update from Tejun Heo:
"cpuset got simplified a bit. cgroup core got a fix on unified
hierarchy and grew some effective css related interfaces which will be
used for blkio support for writeback IO traffic which is currently
being worked on"
* 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: implement cgroup_get_e_css()
cgroup: add cgroup_subsys->css_e_css_changed()
cgroup: add cgroup_subsys->css_released()
cgroup: fix the async css offline wait logic in cgroup_subtree_control_write()
cgroup: restructure child_subsys_mask handling in cgroup_subtree_control_write()
cgroup: separate out cgroup_calc_child_subsys_mask() from cgroup_refresh_child_subsys_mask()
cpuset: lock vs unlock typo
cpuset: simplify cpuset_node_allowed API
cpuset: convert callback_mutex to a spinlock
The code goes BUG, but doesn't tell us which bits were unexpectedly set.
Print that out.
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adding __printf(3, 4) to slab_err exposed following:
mm/slub.c: In function `check_slab':
mm/slub.c:852:4: warning: format `%u' expects argument of type `unsigned int', but argument 4 has type `const char *' [-Wformat=]
s->name, page->objects, maxobj);
^
mm/slub.c:852:4: warning: too many arguments for format [-Wformat-extra-args]
mm/slub.c:857:4: warning: format `%u' expects argument of type `unsigned int', but argument 4 has type `const char *' [-Wformat=]
s->name, page->inuse, page->objects);
^
mm/slub.c:857:4: warning: too many arguments for format [-Wformat-extra-args]
mm/slub.c: In function `on_freelist':
mm/slub.c:905:4: warning: format `%d' expects argument of type `int', but argument 5 has type `long unsigned int' [-Wformat=]
"should be %d", page->objects, max_objects);
Fix first two warnings by removing redundant s->name.
Fix the last by changing type of max_object from unsigned long to int.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some code in mm/slab.c and mm/slub.c use whitespaces in indent.
Clean them up.
Signed-off-by: LQYMGT <lqymgt@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current cpuset API for checking if a zone/node is allowed to allocate
from looks rather awkward. We have hardwall and softwall versions of
cpuset_node_allowed with the softwall version doing literally the same
as the hardwall version if __GFP_HARDWALL is passed to it in gfp flags.
If it isn't, the softwall version may check the given node against the
enclosing hardwall cpuset, which it needs to take the callback lock to
do.
Such a distinction was introduced by commit 02a0e53d82 ("cpuset:
rework cpuset_zone_allowed api"). Before, we had the only version with
the __GFP_HARDWALL flag determining its behavior. The purpose of the
commit was to avoid sleep-in-atomic bugs when someone would mistakenly
call the function without the __GFP_HARDWALL flag for an atomic
allocation. The suffixes introduced were intended to make the callers
think before using the function.
However, since the callback lock was converted from mutex to spinlock by
the previous patch, the softwall check function cannot sleep, and these
precautions are no longer necessary.
So let's simplify the API back to the single check.
Suggested-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Slab merge is good feature to reduce fragmentation. Now, it is only
applied to SLUB, but, it would be good to apply it to SLAB. This patch is
preparation step to apply slab merge to SLAB by commonizing slab merge
logic.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the SLUB code to search for partial slabs on the nearest node with
memory in the presence of memoryless nodes. Additionally, do not consider
it to be an ALLOC_NODE_MISMATCH (and deactivate the slab) when a
memoryless-node specified allocation goes off-node.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Han Pingtian <hanpt@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Anton Blanchard <anton@samba.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tracing of mergeable slabs as well as uses of failslab are confusing since
the objects of multiple slab caches will be affected. Moreover this
creates a situation where a mergeable slab will become unmergeable.
If tracing or failslab testing is desired then it may be best to switch
merging off for starters.
Signed-off-by: Christoph Lameter <cl@linux.com>
Tested-by: WANG Chao <chaowang@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function is never called for memcg caches, because they are
unmergeable, so remove the dead code.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We mark some slab caches (e.g. kmem_cache_node) as unmergeable by
setting refcount to -1, and their alias should be 0, not refcount-1, so
correct it here.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The return statement goes with the cmpxchg_double() condition so it needs
to be indented another tab.
Also these days the fashion is to line function parameters up, and it
looks nicer that way because then the "freelist_new" is not at the same
indent level as the "return 1;".
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a kmem_cache is created with ctor, each object in the kmem_cache
will be initialized before ready to use. While in slub implementation,
the first object will be initialized twice.
This patch reduces the duplication of initialization of the first
object.
Fix commit 7656c72b ("SLUB: add macros for scanning objects in a slab").
Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two versions of alloc/free hooks now - one for
CONFIG_SLUB_DEBUG=y and another one for CONFIG_SLUB_DEBUG=n.
I see no reason why calls to other debugging subsystems (LOCKDEP,
DEBUG_ATOMIC_SLEEP, KMEMCHECK and FAILSLAB) are hidden under SLUB_DEBUG.
All this features should work regardless of SLUB_DEBUG config, as all of
them already have own Kconfig options.
This also fixes failslab for CONFIG_SLUB_DEBUG=n configuration. It
simply has not worked before because should_failslab() call was in a
hook hidden under "#ifdef CONFIG_SLUB_DEBUG #else".
Note: There is one concealed change in allocation path for SLUB_DEBUG=n
and all other debugging features disabled. The might_sleep_if() call
can generate some code even if DEBUG_ATOMIC_SLEEP=n. For
PREEMPT_VOLUNTARY=y might_sleep() inserts _cond_resched() call, but I
think it should be ok.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
resiliency_test() is only called for bootstrap, so it may be moved to
init.text and freed after boot.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make use of the new node functions in mm/slab.h to reduce code size and
simplify.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The patchset provides two new functions in mm/slab.h and modifies SLAB
and SLUB to use these. The kmem_cache_node structure is shared between
both allocators and the use of common accessors will allow us to move
more code into slab_common.c in the future.
This patch (of 3):
These functions allow to eliminate repeatedly used code in both SLAB and
SLUB and also allow for the insertion of debugging code that may be
needed in the development process.
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
min_partial means minimum number of slab cached in node partial list.
So, if nr_partial is less than it, we keep newly empty slab on node
partial list rather than freeing it. But if nr_partial is equal or
greater than it, it means that we have enough partial slabs so should
free newly empty slab. Current implementation missed the equal case so
if we set min_partial is 0, then, at least one slab could be cached.
This is critical problem to kmemcg destroying logic because it doesn't
works properly if some slabs is cached. This patch fixes this problem.
Fixes 91cb69620284 ("slub: make dead memcg caches discard free slabs
immediately").
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, if allocation constraint to node is NUMA_NO_NODE, we search a
partial slab on numa_node_id() node. This doesn't work properly on a
system having memoryless nodes, since it can have no memory on that node
so there must be no partial slab on that node.
On that node, page allocation always falls back to numa_mem_id() first.
So searching a partial slab on numa_node_id() in that case is the proper
solution for the memoryless node case.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Han Pingtian <hanpt@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace places where __get_cpu_var() is used for an address calculation
with this_cpu_ptr().
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have two pairs of kmemcg-related functions that are called on
slab alloc/free. The first is memcg_{bind,release}_pages that count the
total number of pages allocated on a kmem cache. The second is
memcg_{un}charge_slab that {un}charge slab pages to kmemcg resource
counter. Let's just merge them to keep the code clean.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we create a sl[au]b cache, we allocate kmem_cache_node structures
for each online NUMA node. To handle nodes taken online/offline, we
register memory hotplug notifier and allocate/free kmem_cache_node
corresponding to the node that changes its state for each kmem cache.
To synchronize between the two paths we hold the slab_mutex during both
the cache creationg/destruction path and while tuning per-node parts of
kmem caches in memory hotplug handler, but that's not quite right,
because it does not guarantee that a newly created cache will have all
kmem_cache_nodes initialized in case it races with memory hotplug. For
instance, in case of slub:
CPU0 CPU1
---- ----
kmem_cache_create: online_pages:
__kmem_cache_create: slab_memory_callback:
slab_mem_going_online_callback:
lock slab_mutex
for each slab_caches list entry
allocate kmem_cache node
unlock slab_mutex
lock slab_mutex
init_kmem_cache_nodes:
for_each_node_state(node, N_NORMAL_MEMORY)
allocate kmem_cache node
add kmem_cache to slab_caches list
unlock slab_mutex
online_pages (continued):
node_states_set_node
As a result we'll get a kmem cache with not all kmem_cache_nodes
allocated.
To avoid issues like that we should hold get/put_online_mems() during
the whole kmem cache creation/destruction/shrink paths, just like we
deal with cpu hotplug. This patch does the trick.
Note, that after it's applied, there is no need in taking the slab_mutex
for kmem_cache_shrink any more, so it is removed from there.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmem_cache_{create,destroy,shrink} need to get a stable value of
cpu/node online mask, because they init/destroy/access per-cpu/node
kmem_cache parts, which can be allocated or destroyed on cpu/mem
hotplug. To protect against cpu hotplug, these functions use
{get,put}_online_cpus. However, they do nothing to synchronize with
memory hotplug - taking the slab_mutex does not eliminate the
possibility of race as described in patch 2.
What we need there is something like get_online_cpus, but for memory.
We already have lock_memory_hotplug, which serves for the purpose, but
it's a bit of a hammer right now, because it's backed by a mutex. As a
result, it imposes some limitations to locking order, which are not
desirable, and can't be used just like get_online_cpus. That's why in
patch 1 I substitute it with get/put_online_mems, which work exactly
like get/put_online_cpus except they block not cpu, but memory hotplug.
[ v1 can be found at https://lkml.org/lkml/2014/4/6/68. I NAK'ed it by
myself, because it used an rw semaphore for get/put_online_mems,
making them dead lock prune. ]
This patch (of 2):
{un}lock_memory_hotplug, which is used to synchronize against memory
hotplug, is currently backed by a mutex, which makes it a bit of a
hammer - threads that only want to get a stable value of online nodes
mask won't be able to proceed concurrently. Also, it imposes some
strong locking ordering rules on it, which narrows down the set of its
usage scenarios.
This patch introduces get/put_online_mems, which are the same as
get/put_online_cpus, but for memory hotplug, i.e. executing a code
inside a get/put_online_mems section will guarantee a stable value of
online nodes, present pages, etc.
lock_memory_hotplug()/unlock_memory_hotplug() are removed altogether.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently to allocate a page that should be charged to kmemcg (e.g.
threadinfo), we pass __GFP_KMEMCG flag to the page allocator. The page
allocated is then to be freed by free_memcg_kmem_pages. Apart from
looking asymmetrical, this also requires intrusion to the general
allocation path. So let's introduce separate functions that will
alloc/free pages charged to kmemcg.
The new functions are called alloc_kmem_pages and free_kmem_pages. They
should be used when the caller actually would like to use kmalloc, but
has to fall back to the page allocator for the allocation is large.
They only differ from alloc_pages and free_pages in that besides
allocating or freeing pages they also charge them to the kmem resource
counter of the current memory cgroup.
[sfr@canb.auug.org.au: export kmalloc_order() to modules]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have only a few places where we actually want to charge kmem so
instead of intruding into the general page allocation path with
__GFP_KMEMCG it's better to explictly charge kmem there. All kmem
charges will be easier to follow that way.
This is a step towards removing __GFP_KMEMCG. It removes __GFP_KMEMCG
from memcg caches' allocflags. Instead it makes slab allocation path
call memcg_charge_kmem directly getting memcg to charge from the cache's
memcg params.
This also eliminates any possibility of misaccounting an allocation
going from one memcg's cache to another memcg, because now we always
charge slabs against the memcg the cache belongs to. That's why this
patch removes the big comment to memcg_kmem_get_cache.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There used to be only one path out of __slab_alloc(), and ALLOC_SLOWPATH
got bumped in that exit path. Now there are two, and a bunch of gotos.
ALLOC_SLOWPATH can now get set more than once during a single call to
__slab_alloc() which is pretty bogus. Here's the sequence:
1. Enter __slab_alloc(), fall through all the way to the
stat(s, ALLOC_SLOWPATH);
2. hit 'if (!freelist)', and bump DEACTIVATE_BYPASS, jump to
new_slab (goto #1)
3. Hit 'if (c->partial)', bump CPU_PARTIAL_ALLOC, goto redo
(goto #2)
4. Fall through in the same path we did before all the way to
stat(s, ALLOC_SLOWPATH)
5. bump ALLOC_REFILL stat, then return
Doing this is obviously bogus. It keeps us from being able to
accurately compare ALLOC_SLOWPATH vs. ALLOC_FASTPATH. It also means
that the total number of allocs always exceeds the total number of
frees.
This patch moves stat(s, ALLOC_SLOWPATH) to be called from the same
place that __slab_alloc() is. This makes it much less likely that
ALLOC_SLOWPATH will get botched again in the spaghetti-code inside
__slab_alloc().
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the slab or slub allocators cannot allocate additional slab pages,
they emit diagnostic information to the kernel log such as current
number of slabs, number of objects, active objects, etc. This is always
coupled with a page allocation failure warning since it is controlled by
!__GFP_NOWARN.
Suppress this out of memory warning if the allocator is configured
without debug supported. The page allocation failure warning will
indicate it is a failed slab allocation, the order, and the gfp mask, so
this is only useful to diagnose allocator issues.
Since CONFIG_SLUB_DEBUG is already enabled by default for the slub
allocator, there is no functional change with this patch. If debug is
disabled, however, the warnings are now suppressed.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Inspired by Joe Perches suggestion in ntfs logging clean-up.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Joe Perches <joe@perches.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All printk(KERN_foo converted to pr_foo()
Default printk converted to pr_warn()
Coalesce format fragments
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Joe Perches <joe@perches.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After creating a cache for a memcg we should initialize its sysfs attrs
with the values from its parent. That's what memcg_propagate_slab_attrs
is for. Currently it's broken - we clearly muddled root-vs-memcg caches
there. Let's fix it up.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull slab changes from Pekka Enberg:
"The biggest change is byte-sized freelist indices which reduces slab
freelist memory usage:
https://lkml.org/lkml/2013/12/2/64"
* 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
mm: slab/slub: use page->list consistently instead of page->lru
mm/slab.c: cleanup outdated comments and unify variables naming
slab: fix wrongly used macro
slub: fix high order page allocation problem with __GFP_NOFAIL
slab: Make allocations with GFP_ZERO slightly more efficient
slab: make more slab management structure off the slab
slab: introduce byte sized index for the freelist of a slab
slab: restrict the number of objects in a slab
slab: introduce helper functions to get/set free object
slab: factor out calculate nr objects in cache_estimate
Statistics are not critical to the operation of the allocation but
should also not cause too much overhead.
When __this_cpu_inc is altered to check if preemption is disabled this
triggers. Use raw_cpu_inc to avoid the checks. Using this_cpu_ops may
cause interrupt disable/enable sequences on various arches which may
significantly impact allocator performance.
[akpm@linux-foundation.org: add comment]
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The failure paths of sysfs_slab_add don't release the allocation of
'name' made by create_unique_id() a few lines above the context of the
diff below. Create a common exit path to make it more obvious what
needs freeing.
[vdavydov@parallels.com: free the name only if !unmergeable]
Signed-off-by: Dave Jones <davej@fedoraproject.org>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, we try to arrange sysfs entries for memcg caches in the same
manner as for global caches. Apart from turning /sys/kernel/slab into a
mess when there are a lot of kmem-active memcgs created, it actually
does not work properly - we won't create more than one link to a memcg
cache in case its parent is merged with another cache. For instance, if
A is a root cache merged with another root cache B, we will have the
following sysfs setup:
X
A -> X
B -> X
where X is some unique id (see create_unique_id()). Now if memcgs M and
N start to allocate from cache A (or B, which is the same), we will get:
X
X:M
X:N
A -> X
B -> X
A:M -> X:M
A:N -> X:N
Since B is an alias for A, we won't get entries B:M and B:N, which is
confusing.
It is more logical to have entries for memcg caches under the
corresponding root cache's sysfs directory. This would allow us to keep
sysfs layout clean, and avoid such inconsistencies like one described
above.
This patch does the trick. It creates a "cgroup" kset in each root
cache kobject to keep its children caches there.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Otherwise, kzalloc() called from a memcg won't clear the whole object.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a kmem cache is created (kmem_cache_create_memcg()), we first try to
find a compatible cache that already exists and can handle requests from
the new cache, i.e. has the same object size, alignment, ctor, etc. If
there is such a cache, we do not create any new caches, instead we simply
increment the refcount of the cache found and return it.
Currently we do this procedure not only when creating root caches, but
also for memcg caches. However, there is no point in that, because, as
every memcg cache has exactly the same parameters as its parent and cache
merging cannot be turned off in runtime (only on boot by passing
"slub_nomerge"), the root caches of any two potentially mergeable memcg
caches should be merged already, i.e. it must be the same root cache, and
therefore we couldn't even get to the memcg cache creation, because it
already exists.
The only exception is boot caches - they are explicitly forbidden to be
merged by setting their refcount to -1. There are currently only two of
them - kmem_cache and kmem_cache_node, which are used in slab internals (I
do not count kmalloc caches as their refcount is set to 1 immediately
after creation). Since they are prevented from merging preliminary I
guess we should avoid to merge their children too.
So let's remove the useless code responsible for merging memcg caches.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
slab_node() is actually a mempolicy function, so rename it to
mempolicy_slab_node() to make it clearer that it used for processes with
mempolicies.
At the same time, cleanup its code by saving numa_mem_id() in a local
variable (since we require a node with memory, not just any node) and
remove an obsolete comment that assumes the mempolicy is actually passed
into the function.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Tim Hockin <thockin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We release the slab_mutex while calling sysfs_slab_add from
__kmem_cache_create since commit 66c4c35c6b ("slub: Do not hold
slub_lock when calling sysfs_slab_add()"), because kobject_uevent called
by sysfs_slab_add might block waiting for the usermode helper to exec,
which would result in a deadlock if we took the slab_mutex while
executing it.
However, apart from complicating synchronization rules, releasing the
slab_mutex on kmem cache creation can result in a kmemcg-related race.
The point is that we check if the memcg cache exists before going to
__kmem_cache_create, but register the new cache in memcg subsys after
it. Since we can drop the mutex there, several threads can see that the
memcg cache does not exist and proceed to creating it, which is wrong.
Fortunately, recently kobject_uevent was patched to call the usermode
helper with the UMH_NO_WAIT flag, making the deadlock impossible.
Therefore there is no point in releasing the slab_mutex while calling
sysfs_slab_add, so let's simplify kmem_cache_create synchronization and
fix the kmemcg-race mentioned above by holding the slab_mutex during the
whole cache creation path.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Greg KH <greg@kroah.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since put_mems_allowed() is strictly optional, its a seqcount retry, we
don't need to evaluate the function if the allocation was in fact
successful, saving a smp_rmb some loads and comparisons on some relative
fast-paths.
Since the naming, get/put_mems_allowed() does suggest a mandatory
pairing, rename the interface, as suggested by Mel, to resemble the
seqcount interface.
This gives us: read_mems_allowed_begin() and read_mems_allowed_retry(),
where it is important to note that the return value of the latter call
is inverted from its previous incarnation.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLUB already try to allocate high order page with clearing __GFP_NOFAIL.
But, when allocating shadow page for kmemcheck, it missed clearing
the flag. This trigger WARN_ON_ONCE() reported by Christian Casteyde.
https://bugzilla.kernel.org/show_bug.cgi?id=65991https://lkml.org/lkml/2013/12/3/764
This patch fix this situation by using same allocation flag as original
allocation.
Reported-by: Christian Casteyde <casteyde.christian@free.fr>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Vladimir reported the following issue:
Commit c65c1877bd ("slub: use lockdep_assert_held") requires
remove_partial() to be called with n->list_lock held, but free_partial()
called from kmem_cache_close() on cache destruction does not follow this
rule, leading to a warning:
WARNING: CPU: 0 PID: 2787 at mm/slub.c:1536 __kmem_cache_shutdown+0x1b2/0x1f0()
Modules linked in:
CPU: 0 PID: 2787 Comm: modprobe Tainted: G W 3.14.0-rc1-mm1+ #1
Hardware name:
0000000000000600 ffff88003ae1dde8 ffffffff816d9583 0000000000000600
0000000000000000 ffff88003ae1de28 ffffffff8107c107 0000000000000000
ffff880037ab2b00 ffff88007c240d30 ffffea0001ee5280 ffffea0001ee52a0
Call Trace:
__kmem_cache_shutdown+0x1b2/0x1f0
kmem_cache_destroy+0x43/0xf0
xfs_destroy_zones+0x103/0x110 [xfs]
exit_xfs_fs+0x38/0x4e4 [xfs]
SyS_delete_module+0x19a/0x1f0
system_call_fastpath+0x16/0x1b
His solution was to add a spinlock in order to quiet lockdep. Although
there would be no contention to adding the lock, that lock also requires
disabling of interrupts which will have a larger impact on the system.
Instead of adding a spinlock to a location where it is not needed for
lockdep, make a __remove_partial() function that does not test if the
list_lock is held, as no one should have it due to it being freed.
Also added a __add_partial() function that does not do the lock
validation either, as it is not needed for the creation of the cache.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Vladimir Davydov <vdavydov@parallels.com>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit c65c1877bd ("slub: use lockdep_assert_held") incorrectly
required that add_full() and remove_full() hold n->list_lock. The lock
is only taken when kmem_cache_debug(s), since that's the only time it
actually does anything.
Require that the lock only be taken under such a condition.
Reported-by: Larry Finger <Larry.Finger@lwfinger.net>
Tested-by: Larry Finger <Larry.Finger@lwfinger.net>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull SLAB changes from Pekka Enberg:
"Random bug fixes that have accumulated in my inbox over the past few
months"
* 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
mm: Fix warning on make htmldocs caused by slab.c
mm: slub: work around unneeded lockdep warning
mm: sl[uo]b: fix misleading comments
slub: Fix possible format string bug.
slub: use lockdep_assert_held
slub: Fix calculation of cpu slabs
slab.h: remove duplicate kmalloc declaration and fix kernel-doc warnings
The slub code does some setup during early boot in
early_kmem_cache_node_alloc() with some local data. There is no
possible way that another CPU can see this data, so the slub code
doesn't unnecessarily lock it. However, some new lockdep asserts
check to make sure that add_partial() _always_ has the list_lock
held.
Just add the locking, even though it is technically unnecessary.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@arm.linux.org.uk>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Commit abca7c4965 ("mm: fix slab->page _count corruption when using
slub") notes that we can not _set_ a page->counters directly, except
when using a real double-cmpxchg. Doing so can lose updates to
->_count.
That is an absolute rule:
You may not *set* page->counters except via a cmpxchg.
Commit abca7c4965 fixed this for the folks who have the slub
cmpxchg_double code turned off at compile time, but it left the bad case
alone. It can still be reached, and the same bug triggered in two
cases:
1. Turning on slub debugging at runtime, which is available on
the distro kernels that I looked at.
2. On 64-bit CPUs with no CMPXCHG16B (some early AMD x86-64
cpus, evidently)
There are at least 3 ways we could fix this:
1. Take all of the exising calls to cmpxchg_double_slab() and
__cmpxchg_double_slab() and convert them to take an old, new
and target 'struct page'.
2. Do (1), but with the newly-introduced 'slub_data'.
3. Do some magic inside the two cmpxchg...slab() functions to
pull the counters out of new_counters and only set those
fields in page->{inuse,frozen,objects}.
I've done (2) as well, but it's a bunch more code. This patch is an
attempt at (3). This was the most straightforward and foolproof way
that I could think to do this.
This would also technically allow us to get rid of the ugly
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
in 'struct page', but leaving it alone has the added benefit that
'counters' stays 'unsigned' instead of 'unsigned long', so all the
copies that the slub code does stay a bit smaller.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Pravin B Shelar <pshelar@nicira.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 309381feae ("mm: dump page when hitting a VM_BUG_ON using
VM_BUG_ON_PAGE") added a bunch of VM_BUG_ON_PAGE() calls.
But, most of the ones in the slub code are for _temporary_ 'struct
page's which are declared on the stack and likely have lots of gunk in
them. Dumping their contents out will just confuse folks looking at
bad_page() output. Plus, if we try to page_to_pfn() on them or
soemthing, we'll probably oops anyway.
Turn them back in to VM_BUG_ON()s.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the VM_BUG_ON assertions are performed on a page. Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.
I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.
This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.
[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "name" is determined at runtime and is parsed as format string.
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Instead of using comments in an attempt at getting the locking right,
use proper assertions that actively warn you if you got it wrong.
Also add extra braces in a few sites to comply with coding-style.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
/sys/kernel/slab/:t-0000048 # cat cpu_slabs
231 N0=16 N1=215
/sys/kernel/slab/:t-0000048 # cat slabs
145 N0=36 N1=109
See, the number of slabs is smaller than that of cpu slabs.
The bug was introduced by commit 49e2258586
("slub: per cpu cache for partial pages").
We should use page->pages instead of page->pobjects when calculating
the number of cpu partial slabs. This also fixes the mapping of slabs
and nodes.
As there's no variable storing the number of total/active objects in
cpu partial slabs, and we don't have user interfaces requiring those
statistics, I just add WARN_ON for those cases.
Cc: <stable@vger.kernel.org> # 3.2+
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Pull SLAB changes from Pekka Enberg:
"The patches from Joonsoo Kim switch mm/slab.c to use 'struct page' for
slab internals similar to mm/slub.c. This reduces memory usage and
improves performance:
https://lkml.org/lkml/2013/10/16/155
Rest of the changes are bug fixes from various people"
* 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: (21 commits)
mm, slub: fix the typo in mm/slub.c
mm, slub: fix the typo in include/linux/slub_def.h
slub: Handle NULL parameter in kmem_cache_flags
slab: replace non-existing 'struct freelist *' with 'void *'
slab: fix to calm down kmemleak warning
slub: proper kmemleak tracking if CONFIG_SLUB_DEBUG disabled
slab: rename slab_bufctl to slab_freelist
slab: remove useless statement for checking pfmemalloc
slab: use struct page for slab management
slab: replace free and inuse in struct slab with newly introduced active
slab: remove SLAB_LIMIT
slab: remove kmem_bufctl_t
slab: change the management method of free objects of the slab
slab: use __GFP_COMP flag for allocating slab pages
slab: use well-defined macro, virt_to_slab()
slab: overloading the RCU head over the LRU for RCU free
slab: remove cachep in struct slab_rcu
slab: remove nodeid in struct slab
slab: remove colouroff in struct slab
slab: change return type of kmem_getpages() to struct page
...
Pull trivial tree updates from Jiri Kosina:
"Usual earth-shaking, news-breaking, rocket science pile from
trivial.git"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (23 commits)
doc: usb: Fix typo in Documentation/usb/gadget_configs.txt
doc: add missing files to timers/00-INDEX
timekeeping: Fix some trivial typos in comments
mm: Fix some trivial typos in comments
irq: Fix some trivial typos in comments
NUMA: fix typos in Kconfig help text
mm: update 00-INDEX
doc: Documentation/DMA-attributes.txt fix typo
DRM: comment: `halve' -> `half'
Docs: Kconfig: `devlopers' -> `developers'
doc: typo on word accounting in kprobes.c in mutliple architectures
treewide: fix "usefull" typo
treewide: fix "distingush" typo
mm/Kconfig: Grammar s/an/a/
kexec: Typo s/the/then/
Documentation/kvm: Update cpuid documentation for steal time and pv eoi
treewide: Fix common typo in "identify"
__page_to_pfn: Fix typo in comment
Correct some typos for word frequency
clk: fixed-factor: Fix a trivial typo
...
We can't see the relationship with memcg from the parameters,
so the name with memcg_idx would be more reasonable.
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move all kmemleak calls into hook functions, and make it so
that all hooks (both inside and outside of #ifdef CONFIG_SLUB_DEBUG)
call the appropriate kmemleak routines. This allows for kmemleak
to be configured independently of slub debug features.
It also fixes a bug where kmemleak was only partially enabled in some
configurations.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Roman Bobniev <Roman.Bobniev@sonymobile.com>
Signed-off-by: Tim Bird <tim.bird@sonymobile.com>
Signed-off-by: Pekka Enberg <penberg@iki.fi>
Pull SLAB update from Pekka Enberg:
"Nothing terribly exciting here apart from Christoph's kmalloc
unification patches that brings sl[aou]b implementations closer to
each other"
* 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
slab: Use correct GFP_DMA constant
slub: remove verify_mem_not_deleted()
mm/sl[aou]b: Move kmallocXXX functions to common code
mm, slab_common: add 'unlikely' to size check of kmalloc_slab()
mm/slub.c: beautify code for removing redundancy 'break' statement.
slub: Remove unnecessary page NULL check
slub: don't use cpu partial pages on UP
mm/slub: beautify code for 80 column limitation and tab alignment
mm/slub: remove 'per_cpu' which is useless variable
The use of strict_strtoul() is not preferred, because strict_strtoul() is
obsolete. Thus, kstrtoul() should be used.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kmalloc* functions of all slab allcoators are similar now so
lets move them into slab.h. This requires some function naming changes
in slob.
As a results of this patch there is a common set of functions for
all allocators. Also means that kmalloc_large() is now available
in general to perform large order allocations that go directly
via the page allocator. kmalloc_large() can be substituted if
kmalloc() throws warnings because of too large allocations.
kmalloc_large() has exactly the same semantics as kmalloc but
can only used for allocations > PAGE_SIZE.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
In commit 4d7868e6(slub: Do not dereference NULL pointer in node_match)
had added check for page NULL in node_match. Thus, it is not needed
to check it before node_match, remove it.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Libin <huawei.libin@huawei.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This reverts commit 318df36e57.
This commit caused Steven Rostedt's hackbench runs to run out of memory
due to a leak. As noted by Joonsoo Kim, it is buggy in the following
scenario:
"I guess, you may set 0 to all kmem caches's cpu_partial via sysfs,
doesn't it?
In this case, memory leak is possible in following case. Code flow of
possible leak is follwing case.
* in __slab_free()
1. (!new.inuse || !prior) && !was_frozen
2. !kmem_cache_debug && !prior
3. new.frozen = 1
4. after cmpxchg_double_slab, run the (!n) case with new.frozen=1
5. with this patch, put_cpu_partial() doesn't do anything,
because this cache's cpu_partial is 0
6. return
In step 5, leak occur"
And Steven does indeed have cpu_partial set to 0 due to RT testing.
Joonsoo is cooking up a patch, but everybody agrees that reverting this
for now is the right thing to do.
Reported-and-bisected-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Be sure of 80 column limitation for both code and comments.
Correct tab alignment for 'if-else' statement.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Remove 'per_cpu', since it is useless now after the patch: "205ab99
slub: Update statistics handling for variable order slabs". And the
partial list is handled in the same way as the per cpu slab.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
This removes all the uses of the __cpuinit macros from C files in
the core kernel directories (kernel, init, lib, mm, and include)
that don't really have a specific maintainer.
[1] https://lkml.org/lkml/2013/5/20/589
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Pull slab update from Pekka Enberg:
"Highlights:
- Fix for boot-time problems on some architectures due to
init_lock_keys() not respecting kmalloc_caches boundaries
(Christoph Lameter)
- CONFIG_SLUB_CPU_PARTIAL requested by RT folks (Joonsoo Kim)
- Fix for excessive slab freelist draining (Wanpeng Li)
- SLUB and SLOB cleanups and fixes (various people)"
I ended up editing the branch, and this avoids two commits at the end
that were immediately reverted, and I instead just applied the oneliner
fix in between myself.
* 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux
slub: Check for page NULL before doing the node_match check
mm/slab: Give s_next and s_stop slab-specific names
slob: Check for NULL pointer before calling ctor()
slub: Make cpu partial slab support configurable
slab: add kmalloc() to kernel API documentation
slab: fix init_lock_keys
slob: use DIV_ROUND_UP where possible
slub: do not put a slab to cpu partial list when cpu_partial is 0
mm/slub: Use node_nr_slabs and node_nr_objs in get_slabinfo
mm/slub: Drop unnecessary nr_partials
mm/slab: Fix /proc/slabinfo unwriteable for slab
mm/slab: Sharing s_next and s_stop between slab and slub
mm/slab: Fix drain freelist excessively
slob: Rework #ifdeffery in slab.h
mm, slab: moved kmem_cache_alloc_node comment to correct place
In the -rt kernel (mrg), we hit the following dump:
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [<ffffffff811573f1>] kmem_cache_alloc_node+0x51/0x180
PGD a2d39067 PUD b1641067 PMD 0
Oops: 0000 [#1] PREEMPT SMP
Modules linked in: sunrpc cpufreq_ondemand ipv6 tg3 joydev sg serio_raw pcspkr k8temp amd64_edac_mod edac_core i2c_piix4 e100 mii shpchp ext4 mbcache jbd2 sd_mod crc_t10dif sr_mod cdrom sata_svw ata_generic pata_acpi pata_serverworks radeon ttm drm_kms_helper drm hwmon i2c_algo_bit i2c_core dm_mirror dm_region_hash dm_log dm_mod
CPU 3
Pid: 20878, comm: hackbench Not tainted 3.6.11-rt25.14.el6rt.x86_64 #1 empty empty/Tyan Transport GT24-B3992
RIP: 0010:[<ffffffff811573f1>] [<ffffffff811573f1>] kmem_cache_alloc_node+0x51/0x180
RSP: 0018:ffff8800a9b17d70 EFLAGS: 00010213
RAX: 0000000000000000 RBX: 0000000001200011 RCX: ffff8800a06d8000
RDX: 0000000004d92a03 RSI: 00000000000000d0 RDI: ffff88013b805500
RBP: ffff8800a9b17dc0 R08: ffff88023fd14d10 R09: ffffffff81041cbd
R10: 00007f4e3f06e9d0 R11: 0000000000000246 R12: ffff88013b805500
R13: ffff8801ff46af40 R14: 0000000000000001 R15: 0000000000000000
FS: 00007f4e3f06e700(0000) GS:ffff88023fd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 0000000000000000 CR3: 00000000a2d3a000 CR4: 00000000000007e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process hackbench (pid: 20878, threadinfo ffff8800a9b16000, task ffff8800a06d8000)
Stack:
ffff8800a9b17da0 ffffffff81202e08 ffff8800a9b17de0 000000d001200011
0000000001200011 0000000001200011 0000000000000000 0000000000000000
00007f4e3f06e9d0 0000000000000000 ffff8800a9b17e60 ffffffff81041cbd
Call Trace:
[<ffffffff81202e08>] ? current_has_perm+0x68/0x80
[<ffffffff81041cbd>] copy_process+0xdd/0x15b0
[<ffffffff810a2125>] ? rt_up_read+0x25/0x30
[<ffffffff8104369a>] do_fork+0x5a/0x360
[<ffffffff8107c66b>] ? migrate_enable+0xeb/0x220
[<ffffffff8100b068>] sys_clone+0x28/0x30
[<ffffffff81527423>] stub_clone+0x13/0x20
[<ffffffff81527152>] ? system_call_fastpath+0x16/0x1b
Code: 89 fc 89 75 cc 41 89 d6 4d 8b 04 24 65 4c 03 04 25 48 ae 00 00 49 8b 50 08 4d 8b 28 49 8b 40 10 4d 85 ed 74 12 41 83 fe ff 74 27 <48> 8b 00 48 c1 e8 3a 41 39 c6 74 1b 8b 75 cc 4c 89 c9 44 89 f2
RIP [<ffffffff811573f1>] kmem_cache_alloc_node+0x51/0x180
RSP <ffff8800a9b17d70>
CR2: 0000000000000000
---[ end trace 0000000000000002 ]---
Now, this uses SLUB pretty much unmodified, but as it is the -rt kernel
with CONFIG_PREEMPT_RT set, spinlocks are mutexes, although they do
disable migration. But the SLUB code is relatively lockless, and the
spin_locks there are raw_spin_locks (not converted to mutexes), thus I
believe this bug can happen in mainline without -rt features. The -rt
patch is just good at triggering mainline bugs ;-)
Anyway, looking at where this crashed, it seems that the page variable
can be NULL when passed to the node_match() function (which does not
check if it is NULL). When this happens we get the above panic.
As page is only used in slab_alloc() to check if the node matches, if
it's NULL I'm assuming that we can say it doesn't and call the
__slab_alloc() code. Is this a correct assumption?
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CPU partial support can introduce level of indeterminism that is not
wanted in certain context (like a realtime kernel). Make it
configurable.
This patch is based on Christoph Lameter's "slub: Make cpu partial slab
support configurable V2".
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
In free path, we don't check number of cpu_partial, so one slab can
be linked in cpu partial list even if cpu_partial is 0. To prevent this,
we should check number of cpu_partial in put_cpu_partial().
Acked-by: Christoph Lameeter <cl@linux.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Use existing interface node_nr_slabs and node_nr_objs to get
nr_slabs and nr_objs.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>