This unexports some symbols from head.S that are only used locally.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
maxcpu=n sets the number of CPUs activated at boot time to a max of n,
but allowing the remaining CPUs to be brought up later if the user
decides to do so. However, on arm64 due to various reasons, we disallowed
hotplugging CPUs beyond n, by marking them not present. Now that
we have checks in place to make sure the hotplugged CPUs have compatible
features with system and requires no new errata, relax the restriction.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
CPU Errata work arounds are detected and applied to the
kernel code at boot time and the data is then freed up.
If a new hotplugged CPU requires a work around which
was not applied at boot time, there is nothing we can
do but simply fail the booting.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that the capabilities are only available once all the CPUs
have booted, we're unable to check for a particular feature
in any subsystem that gets initialized before then.
In order to support this, introduce a local_cpu_has_cap() function
that tests for the presence of a given capability independently
of the whole framework.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
[ Added preemptible() check ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: remove duplicate initialisation of caps in this_cpu_has_cap]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add scope parameter to the arm64_cpu_capabilities::matches(), so that
this can be reused for checking the capability on a given CPU vs the
system wide. The system uses the default scope associated with the
capability for initialising the CPU_HWCAPs and ELF_HWCAPs.
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Improve the readability of dt_scan_depth1_nodes by removing the nested
conditionals.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Stefano Stabellini <sstabellini@kernel.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When it's a Xen domain0 booting with ACPI, it will supply a /chosen and
a /hypervisor node in DT. So check if it needs to enable ACPI.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Tested-by: Julien Grall <julien.grall@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Make sure we have AArch32 state available for running COMPAT
binaries and also for switching the personality to PER_LINUX32.
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
[ Added cap bit, checks for HWCAP, personality ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add cpu_hwcap bit for keeping track of the support for 32bit EL0.
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
On ARMv8 support for AArch32 state is optional. Hence it is
not safe to check the AArch32 ID registers for sanity, which
could lead to false warnings. This patch makes sure that the
AArch32 state is implemented before we keep track of the 32bit
ID registers.
As per ARM ARM (D.1.21.2 - Support for Exception Levels and
Execution States, DDI0487A.h), checking the support for AArch32
at EL0 is good enough to check the support for AArch32 (i.e,
AArch32 at EL1 => AArch32 at EL0, but not vice versa).
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In order to handle systems which do not support 32bit at EL0,
split the COMPAT HWCAP entries into a separate table which can
be processed, only if the support is available.
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We use hwcaps for referring to ELF hwcaps capability information.
However this can be confusing with 'cpu_hwcaps' which stands for the
CPU capability bit field. This patch cleans up the names to make it
a bit more readable.
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When CPUs are stopped during an abnormal operation like panic
for each CPU a line is printed and the stack trace is dumped.
This information is only interesting for the aborting CPU
and on systems with many CPUs it only makes it harder to
debug if after the aborting CPU the log is flooded with data
about all other CPUs too.
Therefore remove the stack dump and printk of other CPUs
and only print a single line that the other CPUs are going to be
stopped and, in case any CPUs remain online list them.
Signed-off-by: Jan Glauber <jglauber@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Attempt to get the memory and CPU NUMA node via of_numa. If that
fails, default the dummy NUMA node and map all memory and CPUs to node
0.
Tested-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Ganapatrao Kulkarni <gkulkarni@caviumnetworks.com>
Signed-off-by: David Daney <david.daney@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In order to extract NUMA information from the device tree, we need to
have the tree in its unflattened form.
Move the call to bootmem_init() in the tail of paging_init() into
setup_arch, and adjust header files so that its declaration is
visible.
Move the unflatten_device_tree() call between the calls to
paging_init() and bootmem_init(). Follow on patches add NUMA handling
to bootmem_init().
Signed-off-by: David Daney <david.daney@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
With a VHE capable CPU, kernel can run at EL2 and is a decided at early
boot. If some of the CPUs didn't start it EL2 or doesn't have VHE, we
could have CPUs running at different exception levels, all in the same
kernel! This patch adds an early check for the secondary CPUs to detect
such situations.
For each non-boot CPU add a sanity check to make sure we don't have
different run levels w.r.t the boot CPU. We save the information on
whether the boot CPU is running in hyp mode or not and ensure the
remaining CPUs match it.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: made boot_cpu_hyp_mode static]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since commit 1cf4f629d9 ("cpu/hotplug: Move online calls to
hotplugged cpu") it is ensured that callbacks of CPU_ONLINE and
CPU_DOWN_PREPARE are processed on the hotplugged CPU. Due to this SMP
function calls are no longer required.
Replace smp_call_function_single() with a direct call of
hw_breakpoint_reset(). To keep the calling convention, interrupts are
explicitly disabled around the call.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since commit 1cf4f629d9 ("cpu/hotplug: Move online calls to
hotplugged cpu") it is ensured that callbacks of CPU_ONLINE and
CPU_DOWN_PREPARE are processed on the hotplugged CPU. Due to this SMP
function calls are no longer required.
Replace smp_call_function_single() with a direct call to
clear_os_lock(). The function writes the OSLAR register to clear OS
locking. This does not require to be called with interrupts disabled,
therefore the smp_call_function_single() calling convention is not
preserved.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The mapping of the kernel consist of four segments, each of which is mapped
with different permission attributes and/or lifetimes. To optimize the TLB
and translation table footprint, we define various opaque constants in the
linker script that resolve to different aligment values depending on the
page size and whether CONFIG_DEBUG_ALIGN_RODATA is set.
Considering that
- a 4 KB granule kernel benefits from a 64 KB segment alignment (due to
the fact that it allows the use of the contiguous bit),
- the minimum alignment of the .data segment is THREAD_SIZE already, not
PAGE_SIZE (i.e., we already have padding between _data and the start of
the .data payload in many cases),
- 2 MB is a suitable alignment value on all granule sizes, either for
mapping directly (level 2 on 4 KB), or via the contiguous bit (level 3 on
16 KB and 64 KB),
- anything beyond 2 MB exceeds the minimum alignment mandated by the boot
protocol, and can only be mapped efficiently if the physical alignment
happens to be the same,
we can simplify this by standardizing on 64 KB (or 2 MB) explicitly, i.e.,
regardless of granule size, all segments are aligned either to 64 KB, or to
2 MB if CONFIG_DEBUG_ALIGN_RODATA=y. This also means we can drop the Kconfig
dependency of CONFIG_DEBUG_ALIGN_RODATA on CONFIG_ARM64_4K_PAGES.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Keeping .head.text out of the .text mapping buys us very little: its actual
payload is only 4 KB, most of which is padding, but the page alignment may
add up to 2 MB (in case of CONFIG_DEBUG_ALIGN_RODATA=y) of additional
padding to the uncompressed kernel Image.
Also, on 4 KB granule kernels, the 4 KB misalignment of .text forces us to
map the adjacent 56 KB of code without the PTE_CONT attribute, and since
this region contains things like the vector table and the GIC interrupt
handling entry point, this region is likely to benefit from the reduced TLB
pressure that results from PTE_CONT mappings.
So remove the alignment between the .head.text and .text sections, and use
the [_text, _etext) rather than the [_stext, _etext) interval for mapping
the .text segment.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Apart from the arm64/linux and EFI header data structures, there is nothing
in the .head.text section that must reside at the beginning of the Image.
So let's move it to the .init section where it belongs.
Note that this involves some minor tweaking of the EFI header, primarily
because the address of 'stext' no longer coincides with the start of the
.text section. It also requires a couple of relocated symbol references
to be slightly rewritten or their definition moved to the linker script.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Before restricting virt_to_page() to the linear mapping, ensure that
the text patching code does not use it to resolve references into the
core kernel text, which is mapped in the vmalloc area.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The translation performed by virt_to_page() is only valid for linear
addresses, and kernel symbols are no longer in the linear mapping.
So perform the __pa() translation explicitly, which does the right
thing in either case, and only then translate to a struct page offset.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This removes the relocate_initrd() implementation and invocation, which are
no longer needed now that the placement of the initrd is guaranteed to be
covered by the linear mapping.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently, we check two pointers: cpu_ops and cpu_suspend on every idle
state entry. These pointers check can be avoided:
If cpu_ops has not been registered, arm_cpuidle_init() will return
-EOPNOTSUPP, so arm_cpuidle_suspend() will never have chance to
run. In other word, the cpu_ops check can be avoid.
Similarly, the cpu_suspend check could be avoided in this hot path by
moving it into arm_cpuidle_init().
I measured the 4096 * time from arm_cpuidle_suspend entry point to the
cpu_psci_cpu_suspend entry point. HW platform is Marvell BG4CT STB
board.
1. only one shell, no other process, hot-unplug secondary cpus, execute
the following cmd
while true
do
sleep 0.2
done
before the patch: 1581220ns
after the patch: 1579630ns
reduced by 0.1%
2. only one shell, no other process, hot-unplug secondary cpus, execute
the following cmd
while true
do
md5sum /tmp/testfile
sleep 0.2
done
NOTE: the testfile size should be larger than L1+L2 cache size
before the patch: 1961960ns
after the patch: 1912500ns
reduced by 2.5%
So the more complex the system load, the bigger the improvement.
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
There are some new cpu features which can be identified by id_aa64mmfr2,
this patch appends all fields of it.
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
To use the ARMv8 PMU related register defines from the KVM code, we move
the relevant definitions to asm/perf_event.h header file and rename them
with prefix ARMV8_PMU_. This allows us to get rid of kvm_perf_event.h.
Signed-off-by: Anup Patel <anup.patel@linaro.org>
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
KASAN needs to know whether the allocation happens in an IRQ handler.
This lets us strip everything below the IRQ entry point to reduce the
number of unique stack traces needed to be stored.
Move the definition of __irq_entry to <linux/interrupt.h> so that the
users don't need to pull in <linux/ftrace.h>. Also introduce the
__softirq_entry macro which is similar to __irq_entry, but puts the
corresponding functions to the .softirqentry.text section.
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The KASLR code incorrectly expects the contents of x18 to be preserved
across a call into C code, and uses it to stash the contents of SCTLR_EL1
before enabling the MMU. If the MMU needs to be disabled again to create
the randomized kernel mapping, x18 is written back to SCTLR_EL1, which is
likely to crash the system if x18 has been clobbered by kasan_early_init()
or kaslr_early_init(). So use x22 instead, which is not in use so far in
head.S
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Initial support for ARMv8.1 CPU PMUs
- Support for the CPU PMU in Cavium ThunderX
- CPU PMU support for systems running 32-bit Linux in secure mode
- Support for the system PMU in ARM CCI-550 (Cache Coherent Interconnect)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJW794rAAoJELescNyEwWM0O5IH/0ejoUjip3n4dFZnSzAbQQZe
VxCy3DXW5gS8YaswwX2dFw9K772/BpHlazq8AIJIhaR+b+Zzl5t0iOc12HluDilV
pMvi0JTCxwJhsEiKZnP0cVAU9HM6MAgtMOEegkd/YNESKQey30NeDtIcz/pQfTUV
28AF71+w5VPj/1EpHEEhHQsASRIx7eDbKzThzdlb8PnDS0o23QJhL9HjVTNIAlB8
BGxrUBKtBu0eH2Hx33vNjc7UYx1WZQlCk5cAaXevA8mbFXzYaMQI2Cel2nbNMO9i
eu5zPkDUCG7dq16PxK6IgM4AsDCtmmDuckLdN6UEQWYxkLbb2qHNRKtj0bKB8Sk=
=E4PE
-----END PGP SIGNATURE-----
Merge tag 'arm64-perf' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm[64] perf updates from Will Deacon:
"I have another mixed bag of ARM-related perf patches here.
It's about 25% CPU and 75% interconnect, but with drivers/bus/
languishing without an obvious maintainer or tree, Olof and I agreed
to keep all of these PMU patches together. I suspect a whole load of
code from drivers/bus/arm-* can be moved under drivers/perf/, so
that's on the radar for the future.
Summary:
- Initial support for ARMv8.1 CPU PMUs
- Support for the CPU PMU in Cavium ThunderX
- CPU PMU support for systems running 32-bit Linux in secure mode
- Support for the system PMU in ARM CCI-550 (Cache Coherent Interconnect)"
* tag 'arm64-perf' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (26 commits)
drivers/perf: arm_pmu: avoid NULL dereference when not using devicetree
arm64: perf: Extend ARMV8_EVTYPE_MASK to include PMCR.LC
arm-cci: remove unused variable
arm-cci: don't return value from void function
arm-cci: make private functions static
arm-cci: CoreLink CCI-550 PMU driver
arm-cci500: Rearrange PMU driver for code sharing with CCI-550 PMU
arm-cci: CCI-500: Work around PMU counter writes
arm-cci: Provide hook for writing to PMU counters
arm-cci: Add helper to enable PMU without synchornising counters
arm-cci: Add routines to save/restore all counters
arm-cci: Get the status of a counter
arm-cci: write_counter: Remove redundant check
arm-cci: Delay PMU counter writes to pmu::pmu_enable
arm-cci: Refactor CCI PMU enable/disable methods
arm-cci: Group writes to counter
arm-cci: fix handling cpumask_any_but return value
arm-cci: simplify sysfs attr handling
drivers/perf: arm_pmu: implement CPU_PM notifier
arm64: dts: Add Cavium ThunderX specific PMU
...
Commit f80fb3a3d5 ("arm64: add support for kernel ASLR") missed a
DSB necessary to complete I-cache maintenance in the primary boot path,
and hence stale instructions may still be present in the I-cache and may
be executed until the I-cache maintenance naturally completes.
Since commit 8ec4198743 ("arm64: mm: ensure patched kernel text is
fetched from PoU"), all CPUs invalidate their I-caches after their MMU
is enabled. Prior a CPU's MMU having been enabled, arbitrary lines may
have been fetched from the PoC into I-caches. We never patch text
expected to be executed with the MMU off. Thus, it is unnecessary to
perform broadcast I-cache maintenance in the primary boot path.
This patch reduces the scope of the I-cache maintenance to the local
CPU, and adds the missing DSB with similar scope, matching prior
maintenance in the primary boot path.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Ard Biesehvuel <ard.biesheuvel@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The implementation of macro inv_entry refers to its 'el' argument without
the required leading backslash, which results in an undefined symbol
'el' to be passed into the kernel_entry macro rather than the index of
the exception level as intended.
This undefined symbol strangely enough does not result in build failures,
although it is visible in vmlinux:
$ nm -n vmlinux |head
U el
0000000000000000 A _kernel_flags_le_hi32
0000000000000000 A _kernel_offset_le_hi32
0000000000000000 A _kernel_size_le_hi32
000000000000000a A _kernel_flags_le_lo32
.....
However, it does result in incorrect code being generated for invalid
exceptions taken from EL0, since the argument check in kernel_entry
assumes EL1 if its argument does not equal '0'.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull EFI updates from Ingo Molnar:
"The main changes are:
- Use separate EFI page tables when executing EFI firmware code.
This isolates the EFI context from the rest of the kernel, which
has security and general robustness advantages. (Matt Fleming)
- Run regular UEFI firmware with interrupts enabled. This is already
the status quo under other OSs. (Ard Biesheuvel)
- Various x86 EFI enhancements, such as the use of non-executable
attributes for EFI memory mappings. (Sai Praneeth Prakhya)
- Various arm64 UEFI enhancements. (Ard Biesheuvel)
- ... various fixes and cleanups.
The separate EFI page tables feature got delayed twice already,
because it's an intrusive change and we didn't feel confident about
it - third time's the charm we hope!"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/mm/pat: Fix boot crash when 1GB pages are not supported by the CPU
x86/efi: Only map kernel text for EFI mixed mode
x86/efi: Map EFI_MEMORY_{XP,RO} memory region bits to EFI page tables
x86/mm/pat: Don't implicitly allow _PAGE_RW in kernel_map_pages_in_pgd()
efi/arm*: Perform hardware compatibility check
efi/arm64: Check for h/w support before booting a >4 KB granular kernel
efi/arm: Check for LPAE support before booting a LPAE kernel
efi/arm-init: Use read-only early mappings
efi/efistub: Prevent __init annotations from being used
arm64/vmlinux.lds.S: Handle .init.rodata.xxx and .init.bss sections
efi/arm64: Drop __init annotation from handle_kernel_image()
x86/mm/pat: Use _PAGE_GLOBAL bit for EFI page table mappings
efi/runtime-wrappers: Run UEFI Runtime Services with interrupts enabled
efi: Reformat GUID tables to follow the format in UEFI spec
efi: Add Persistent Memory type name
efi: Add NV memory attribute
x86/efi: Show actual ending addresses in efi_print_memmap
x86/efi/bgrt: Don't ignore the BGRT if the 'valid' bit is 0
efivars: Use to_efivar_entry
efi: Runtime-wrapper: Get rid of the rtc_lock spinlock
...
Pull ARM updates from Russell King:
"Another mixture of changes this time around:
- Split XIP linker file from main linker file to make it more
maintainable, and various XIP fixes, and clean up a resulting
macro.
- Decompressor cleanups from Masahiro Yamada
- Avoid printing an error for a missing L2 cache
- Remove some duplicated symbols in System.map, and move
vectors/stubs back into kernel VMA
- Various low priority fixes from Arnd
- Updates to allow bus match functions to return negative errno
values, touching some drivers and the driver core. Greg has acked
these changes.
- Virtualisation platform udpates form Jean-Philippe Brucker.
- Security enhancements from Kees Cook
- Rework some Kconfig dependencies and move PSCI idle management code
out of arch/arm into drivers/firmware/psci.c
- ARM DMA mapping updates, touching media, acked by Mauro.
- Fix places in ARM code which should be using virt_to_idmap() so
that Keystone2 can work.
- Fix Marvell Tauros2 to work again with non-DT boots.
- Provide a delay timer for ARM Orion platforms"
* 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm: (45 commits)
ARM: 8546/1: dma-mapping: refactor to fix coherent+cma+gfp=0
ARM: 8547/1: dma-mapping: store buffer information
ARM: 8543/1: decompressor: rename suffix_y to compress-y
ARM: 8542/1: decompressor: merge piggy.*.S and simplify Makefile
ARM: 8541/1: decompressor: drop redundant FORCE in Makefile
ARM: 8540/1: decompressor: use clean-files instead of extra-y to clean files
ARM: 8539/1: decompressor: drop more unneeded assignments to "targets"
ARM: 8538/1: decompressor: drop unneeded assignments to "targets"
ARM: 8532/1: uncompress: mark putc as inline
ARM: 8531/1: turn init_new_context into an inline function
ARM: 8530/1: remove VIRT_TO_BUS
ARM: 8537/1: drop unused DEBUG_RODATA from XIP_KERNEL
ARM: 8536/1: mm: hide __start_rodata_section_aligned for non-debug builds
ARM: 8535/1: mm: DEBUG_RODATA makes no sense with XIP_KERNEL
ARM: 8534/1: virt: fix hyp-stub build for pre-ARMv7 CPUs
ARM: make the physical-relative calculation more obvious
ARM: 8512/1: proc-v7.S: Adjust stack address when XIP_KERNEL
ARM: 8411/1: Add default SPARSEMEM settings
ARM: 8503/1: clk_register_clkdev: remove format string interface
ARM: 8529/1: remove 'i' and 'zi' targets
...
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture requires
break-before-make in such cases to avoid TLB conflicts but that's not
always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked to
the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of
the vmalloc space, allowing the kernel to be loaded (nearly) anywhere
in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is provided
by UEFI (efi_get_random_bytes() patches merged via the arm64 tree,
acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but
actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this allows
uaccess functions (get_user etc.) to be implemented using LDTR/STTR
instructions. Such instructions, when run by the kernel, perform
unprivileged accesses adding an extra level of protection. The
set_fs() macro is used to "upgrade" such instruction to privileged
accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the sigcontext
information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW6u95AAoJEGvWsS0AyF7xMyoP/3x2O6bgreSQ84BdO4JChN4+
RQ9OVdX8u2ItO9sgaCY2AA6KoiBuEjGmPl/XRuK0I7DpODTtRjEXQHuNNhz8AelC
hn4AEVqamY6Z5BzHFIjs8G9ydEbq+OXcKWEdwSsBhP/cMvI7ss3dps1f5iNPT5Vv
50E/kUz+aWYy7pKlB18VDV7TUOA3SuYuGknWV8+bOY5uPb8hNT3Y3fHOg/EuNNN3
DIuYH1V7XQkXtF+oNVIGxzzJCXULBE7egMcWAm1ydSOHK0JwkZAiL7OhI7ceVD0x
YlDxBnqmi4cgzfBzTxITAhn3OParwN6udQprdF1WGtFF6fuY2eRDSH/L/iZoE4DY
OulL951OsBtF8YC3+RKLk908/0bA2Uw8ftjCOFJTYbSnZBj1gWK41VkCYMEXiHQk
EaN8+2Iw206iYIoyvdjGCLw7Y0oakDoVD9vmv12SOaHeQljTkjoN8oIlfjjKTeP7
3AXj5v9BDMDVh40nkVayysRNvqe48Kwt9Wn0rhVTLxwdJEiFG/OIU6HLuTkretdN
dcCNFSQrRieSFHpBK9G0vKIpIss1ZwLm8gjocVXH7VK4Mo/TNQe4p2/wAF29mq4r
xu1UiXmtU3uWxiqZnt72LOYFCarQ0sFA5+pMEvF5W+NrVB0wGpXhcwm+pGsIi4IM
LepccTgykiUBqW5TRzPz
=/oS+
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Here are the main arm64 updates for 4.6. There are some relatively
intrusive changes to support KASLR, the reworking of the kernel
virtual memory layout and initial page table creation.
Summary:
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture
requires break-before-make in such cases to avoid TLB conflicts but
that's not always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked
to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom
of the vmalloc space, allowing the kernel to be loaded (nearly)
anywhere in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is
provided by UEFI (efi_get_random_bytes() patches merged via the
arm64 tree, acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c
but actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this
allows uaccess functions (get_user etc.) to be implemented using
LDTR/STTR instructions. Such instructions, when run by the kernel,
perform unprivileged accesses adding an extra level of protection.
The set_fs() macro is used to "upgrade" such instruction to
privileged accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the
sigcontext information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits)
arm64: kasan: Fix zero shadow mapping overriding kernel image shadow
arm64: kasan: Use actual memory node when populating the kernel image shadow
arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission
arm64: Fix misspellings in comments.
arm64: efi: add missing frame pointer assignment
arm64: make mrs_s prefixing implicit in read_cpuid
arm64: enable CONFIG_DEBUG_RODATA by default
arm64: Rework valid_user_regs
arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly
arm64: KVM: Move kvm_call_hyp back to its original localtion
arm64: mm: treat memstart_addr as a signed quantity
arm64: mm: list kernel sections in order
arm64: lse: deal with clobbered IP registers after branch via PLT
arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR
arm64: kconfig: add submenu for 8.2 architectural features
arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot
arm64: Add support for Half precision floating point
arm64: Remove fixmap include fragility
arm64: Add workaround for Cavium erratum 27456
arm64: mm: Mark .rodata as RO
...
but lots of architecture-specific changes.
* ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
* PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
* s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
* x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using vector
hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest memory---currently
its only use is to speedup the legacy shadow paging (pre-EPT) case, but
in the future it will be used for virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJW5r3BAAoJEL/70l94x66D2pMH/jTSWWwdTUJMctrDjPVzKzG0
yOzHW5vSLFoFlwEOY2VpslnXzn5TUVmCAfrdmFNmQcSw6hGb3K/xA/ZX/KLwWhyb
oZpr123ycahga+3q/ht/dFUBCCyWeIVMdsLSFwpobEBzPL0pMgc9joLgdUC6UpWX
tmN0LoCAeS7spC4TTiTTpw3gZ/L+aB0B6CXhOMjldb9q/2CsgaGyoVvKA199nk9o
Ngu7ImDt7l/x1VJX4/6E/17VHuwqAdUrrnbqerB/2oJ5ixsZsHMGzxQ3sHCmvyJx
WG5L00ubB1oAJAs9fBg58Y/MdiWX99XqFhdEfxq4foZEiQuCyxygVvq3JwZTxII=
=OUZZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"One of the largest releases for KVM... Hardly any generic
changes, but lots of architecture-specific updates.
ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using
vector hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest
memory - currently its only use is to speedup the legacy shadow
paging (pre-EPT) case, but in the future it will be used for
virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (217 commits)
KVM: x86: remove eager_fpu field of struct kvm_vcpu_arch
KVM: x86: disable MPX if host did not enable MPX XSAVE features
arm64: KVM: vgic-v3: Only wipe LRs on vcpu exit
arm64: KVM: vgic-v3: Reset LRs at boot time
arm64: KVM: vgic-v3: Do not save an LR known to be empty
arm64: KVM: vgic-v3: Save maintenance interrupt state only if required
arm64: KVM: vgic-v3: Avoid accessing ICH registers
KVM: arm/arm64: vgic-v2: Make GICD_SGIR quicker to hit
KVM: arm/arm64: vgic-v2: Only wipe LRs on vcpu exit
KVM: arm/arm64: vgic-v2: Reset LRs at boot time
KVM: arm/arm64: vgic-v2: Do not save an LR known to be empty
KVM: arm/arm64: vgic-v2: Move GICH_ELRSR saving to its own function
KVM: arm/arm64: vgic-v2: Save maintenance interrupt state only if required
KVM: arm/arm64: vgic-v2: Avoid accessing GICH registers
KVM: s390: allocate only one DMA page per VM
KVM: s390: enable STFLE interpretation only if enabled for the guest
KVM: s390: wake up when the VCPU cpu timer expires
KVM: s390: step the VCPU timer while in enabled wait
KVM: s390: protect VCPU cpu timer with a seqcount
KVM: s390: step VCPU cpu timer during kvm_run ioctl
...
Pull cpu hotplug updates from Thomas Gleixner:
"This is the first part of the ongoing cpu hotplug rework:
- Initial implementation of the state machine
- Runs all online and prepare down callbacks on the plugged cpu and
not on some random processor
- Replaces busy loop waiting with completions
- Adds tracepoints so the states can be followed"
More detailed commentary on this work from an earlier email:
"What's wrong with the current cpu hotplug infrastructure?
- Asymmetry
The hotplug notifier mechanism is asymmetric versus the bringup and
teardown. This is mostly caused by the notifier mechanism.
- Largely undocumented dependencies
While some notifiers use explicitely defined notifier priorities,
we have quite some notifiers which use numerical priorities to
express dependencies without any documentation why.
- Control processor driven
Most of the bringup/teardown of a cpu is driven by a control
processor. While it is understandable, that preperatory steps,
like idle thread creation, memory allocation for and initialization
of essential facilities needs to be done before a cpu can boot,
there is no reason why everything else must run on a control
processor. Before this patch series, bringup looks like this:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring the rest up
- All or nothing approach
There is no way to do partial bringups. That's something which is
really desired because we waste e.g. at boot substantial amount of
time just busy waiting that the cpu comes to life. That's stupid
as we could very well do preparatory steps and the initial IPI for
other cpus and then go back and do the necessary low level
synchronization with the freshly booted cpu.
- Minimal debuggability
Due to the notifier based design, it's impossible to switch between
two stages of the bringup/teardown back and forth in order to test
the correctness. So in many hotplug notifiers the cancel
mechanisms are either not existant or completely untested.
- Notifier [un]registering is tedious
To [un]register notifiers we need to protect against hotplug at
every callsite. There is no mechanism that bringup/teardown
callbacks are issued on the online cpus, so every caller needs to
do it itself. That also includes error rollback.
What's the new design?
The base of the new design is a symmetric state machine, where both
the control processor and the booting/dying cpu execute a well
defined set of states. Each state is symmetric in the end, except
for some well defined exceptions, and the bringup/teardown can be
stopped and reversed at almost all states.
So the bringup of a cpu will look like this in the future:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring itself up
The synchronization step does not require the control cpu to wait.
That mechanism can be done asynchronously via a worker or some
other mechanism.
The teardown can be made very similar, so that the dying cpu cleans
up and brings itself down. Cleanups which need to be done after
the cpu is gone, can be scheduled asynchronously as well.
There is a long way to this, as we need to refactor the notion when a
cpu is available. Today we set the cpu online right after it comes
out of the low level bringup, which is not really correct.
The proper mechanism is to set it to available, i.e. cpu local
threads, like softirqd, hotplug thread etc. can be scheduled on that
cpu, and once it finished all booting steps, it's set to online, so
general workloads can be scheduled on it. The reverse happens on
teardown. First thing to do is to forbid scheduling of general
workloads, then teardown all the per cpu resources and finally shut it
off completely.
This patch series implements the basic infrastructure for this at the
core level. This includes the following:
- Basic state machine implementation with well defined states, so
ordering and prioritization can be expressed.
- Interfaces to [un]register state callbacks
This invokes the bringup/teardown callback on all online cpus with
the proper protection in place and [un]installs the callbacks in
the state machine array.
For callbacks which have no particular ordering requirement we have
a dynamic state space, so that drivers don't have to register an
explicit hotplug state.
If a callback fails, the code automatically does a rollback to the
previous state.
- Sysfs interface to drive the state machine to a particular step.
This is only partially functional today. Full functionality and
therefor testability will be achieved once we converted all
existing hotplug notifiers over to the new scheme.
- Run all CPU_ONLINE/DOWN_PREPARE notifiers on the booting/dying
processor:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
wait for boot
bring itself up
Signal completion to control cpu
In a previous step of this work we've done a full tree mechanical
conversion of all hotplug notifiers to the new scheme. The balance
is a net removal of about 4000 lines of code.
This is not included in this series, as we decided to take a
different approach. Instead of mechanically converting everything
over, we will do a proper overhaul of the usage sites one by one so
they nicely fit into the symmetric callback scheme.
I decided to do that after I looked at the ugliness of some of the
converted sites and figured out that their hotplug mechanism is
completely buggered anyway. So there is no point to do a
mechanical conversion first as we need to go through the usage
sites one by one again in order to achieve a full symmetric and
testable behaviour"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
cpu/hotplug: Document states better
cpu/hotplug: Fix smpboot thread ordering
cpu/hotplug: Remove redundant state check
cpu/hotplug: Plug death reporting race
rcu: Make CPU_DYING_IDLE an explicit call
cpu/hotplug: Make wait for dead cpu completion based
cpu/hotplug: Let upcoming cpu bring itself fully up
arch/hotplug: Call into idle with a proper state
cpu/hotplug: Move online calls to hotplugged cpu
cpu/hotplug: Create hotplug threads
cpu/hotplug: Split out the state walk into functions
cpu/hotplug: Unpark smpboot threads from the state machine
cpu/hotplug: Move scheduler cpu_online notifier to hotplug core
cpu/hotplug: Implement setup/removal interface
cpu/hotplug: Make target state writeable
cpu/hotplug: Add sysfs state interface
cpu/hotplug: Hand in target state to _cpu_up/down
cpu/hotplug: Convert the hotplugged cpu work to a state machine
cpu/hotplug: Convert to a state machine for the control processor
cpu/hotplug: Add tracepoints
...
Pull ram resource handling changes from Ingo Molnar:
"Core kernel resource handling changes to support NVDIMM error
injection.
This tree introduces a new I/O resource type, IORESOURCE_SYSTEM_RAM,
for System RAM while keeping the current IORESOURCE_MEM type bit set
for all memory-mapped ranges (including System RAM) for backward
compatibility.
With this resource flag it no longer takes a strcmp() loop through the
resource tree to find "System RAM" resources.
The new resource type is then used to extend ACPI/APEI error injection
facility to also support NVDIMM"
* 'core-resources-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ACPI/EINJ: Allow memory error injection to NVDIMM
resource: Kill walk_iomem_res()
x86/kexec: Remove walk_iomem_res() call with GART type
x86, kexec, nvdimm: Use walk_iomem_res_desc() for iomem search
resource: Add walk_iomem_res_desc()
memremap: Change region_intersects() to take @flags and @desc
arm/samsung: Change s3c_pm_run_res() to use System RAM type
resource: Change walk_system_ram() to use System RAM type
drivers: Initialize resource entry to zero
xen, mm: Set IORESOURCE_SYSTEM_RAM to System RAM
kexec: Set IORESOURCE_SYSTEM_RAM for System RAM
arch: Set IORESOURCE_SYSTEM_RAM flag for System RAM
ia64: Set System RAM type and descriptor
x86/e820: Set System RAM type and descriptor
resource: Add I/O resource descriptor
resource: Handle resource flags properly
resource: Add System RAM resource type
Functions which the compiler has instrumented for KASAN place poison on
the stack shadow upon entry and remove this poison prior to returning.
In the case of cpuidle, CPUs exit the kernel a number of levels deep in
C code. Any instrumented functions on this critical path will leave
portions of the stack shadow poisoned.
If CPUs lose context and return to the kernel via a cold path, we
restore a prior context saved in __cpu_suspend_enter are forgotten, and
we never remove the poison they placed in the stack shadow area by
functions calls between this and the actual exit of the kernel.
Thus, (depending on stackframe layout) subsequent calls to instrumented
functions may hit this stale poison, resulting in (spurious) KASAN
splats to the console.
To avoid this, clear any stale poison from the idle thread for a CPU
prior to bringing a CPU online.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The prologue of the EFI entry point pushes x29 and x30 onto the stack but
fails to create the stack frame correctly by omitting the assignment of x29
to the new value of the stack pointer. So fix that.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 0f54b14e76 ("arm64: cpufeature: Change read_cpuid() to use
sysreg's mrs_s macro") changed read_cpuid to require a SYS_ prefix on
register names, to allow manual assembly of registers unknown by the
toolchain, using tables in sysreg.h.
This interacts poorly with commit 42b5573403 ("efi/arm64: Check
for h/w support before booting a >4 KB granular kernel"), which is
curretly queued via the tip tree, and uses read_cpuid without a SYS_
prefix. Due to this, a build of next-20160304 fails if EFI and 64K pages
are selected.
To avoid this issue when trees are merged, move the required SYS_
prefixing into read_cpuid, and revert all of the updated callsites to
pass plain register names. This effectively reverts the bulk of commit
0f54b14e76.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We validate pstate using PSR_MODE32_BIT, which is part of the
user-provided pstate (and cannot be trusted). Also, we conflate
validation of AArch32 and AArch64 pstate values, making the code
difficult to reason about.
Instead, validate the pstate value based on the associated task. The
task may or may not be current (e.g. when using ptrace), so this must be
passed explicitly by callers. To avoid circular header dependencies via
sched.h, is_compat_task is pulled out of asm/ptrace.h.
To make the code possible to reason about, the AArch64 and AArch32
validation is split into separate functions. Software must respect the
RES0 policy for SPSR bits, and thus the kernel mirrors the hardware
policy (RAZ/WI) for bits as-yet unallocated. When these acquire an
architected meaning writes may be permitted (potentially with additional
validation).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Let the non boot cpus call into idle with the corresponding hotplug state, so
the hotplug core can handle the further bringup. That's a first step to
convert the boot side of the hotplugged cpus to do all the synchronization
with the other side through the state machine. For now it'll only start the
hotplug thread and kick the full bringup of the cpu.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.614102639@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Commit 7175f0591e ("arm64: perf: Enable PMCR long cycle counter bit")
added initial support for a 64-bit cycle counter enabled using PMCR.LC.
Unfortunately, that patch doesn't extend ARMV8_EVTYPE_MASK, so any
attempts to set the enable bit are ignored by armv8pmu_pmcr_write.
This patch extends the mask to include the new bit.
Signed-off-by: Will Deacon <will.deacon@arm.com>
With ARMv8.1 VHE, the architecture is able to (almost) transparently
run the kernel at EL2, despite being written for EL1.
This patch takes care of the "almost" part, mostly preventing the kernel
from dropping from EL2 to EL1, and setting up the HYP configuration.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>