mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-04 01:56:40 +07:00
16f055efb4
35055 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Steven Rostedt (VMware)
|
16f055efb4 |
tracing / histogram: Give calculation hist_fields a size
commit 2c05caa7ba8803209769b9e4fe02c38d77ae88d0 upstream.
When working on my user space applications, I found a bug in the synthetic
event code where the automated synthetic event field was not matching the
event field calculation it was attached to. Looking deeper into it, it was
because the calculation hist_field was not given a size.
The synthetic event fields are matched to their hist_fields either by
having the field have an identical string type, or if that does not match,
then the size and signed values are used to match the fields.
The problem arose when I tried to match a calculation where the fields
were "unsigned int". My tool created a synthetic event of type "u32". But
it failed to match. The string was:
diff=field1-field2:onmatch(event).trace(synth,$diff)
Adding debugging into the kernel, I found that the size of "diff" was 0.
And since it was given "unsigned int" as a type, the histogram fallback
code used size and signed. The signed matched, but the size of u32 (4) did
not match zero, and the event failed to be created.
This can be worse if the field you want to match is not one of the
acceptable fields for a synthetic event. As event fields can have any type
that is supported in Linux, this can cause an issue. For example, if a
type is an enum. Then there's no way to use that with any calculations.
Have the calculation field simply take on the size of what it is
calculating.
Link: https://lkml.kernel.org/r/20210730171951.59c7743f@oasis.local.home
Cc: Tom Zanussi <zanussi@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes:
|
||
Daniel Borkmann
|
682f75d35f |
bpf: Fix pointer arithmetic mask tightening under state pruning
commit e042aa532c84d18ff13291d00620502ce7a38dda upstream. In 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") we narrowed the offset mask for unprivileged pointer arithmetic in order to mitigate a corner case where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of- bounds in order to leak kernel memory via side-channel to user space. The verifier's state pruning for scalars leaves one corner case open where in the first verification path R_x holds an unknown scalar with an aux->alu_limit of e.g. 7, and in a second verification path that same register R_x, here denoted as R_x', holds an unknown scalar which has tighter bounds and would thus satisfy range_within(R_x, R_x') as well as tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3: Given the second path fits the register constraints for pruning, the final generated mask from aux->alu_limit will remain at 7. While technically not wrong for the non-speculative domain, it would however be possible to craft similar cases where the mask would be too wide as in 7fedb63a8307. One way to fix it is to detect the presence of unknown scalar map pointer arithmetic and force a deeper search on unknown scalars to ensure that we do not run into a masking mismatch. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Lorenz Bauer
|
068191af8f |
bpf: verifier: Allocate idmap scratch in verifier env
commit c9e73e3d2b1eb1ea7ff068e05007eec3bd8ef1c9 upstream. func_states_equal makes a very short lived allocation for idmap, probably because it's too large to fit on the stack. However the function is called quite often, leading to a lot of alloc / free churn. Replace the temporary allocation with dedicated scratch space in struct bpf_verifier_env. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Edward Cree <ecree.xilinx@gmail.com> Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Daniel Borkmann
|
94b18c25d5 |
bpf: Remove superfluous aux sanitation on subprog rejection
commit 59089a189e3adde4cf85f2ce479738d1ae4c514d upstream. Follow-up to fe9a5ca7e370 ("bpf: Do not mark insn as seen under speculative path verification"). The sanitize_insn_aux_data() helper does not serve a particular purpose in today's code. The original intention for the helper was that if function-by-function verification fails, a given program would be cleared from temporary insn_aux_data[], and then its verification would be re-attempted in the context of the main program a second time. However, a failure in do_check_subprogs() will skip do_check_main() and propagate the error to the user instead, thus such situation can never occur. Given its interaction is not compatible to the Spectre v1 mitigation (due to comparing aux->seen with env->pass_cnt), just remove sanitize_insn_aux_data() to avoid future bugs in this area. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
AuxXxilium
|
5fa3ea047a |
init: add dsm gpl source
Signed-off-by: AuxXxilium <info@auxxxilium.tech> |
||
Paul E. McKenney
|
86cb49e731 |
rcu-tasks: Don't delete holdouts within trc_wait_for_one_reader()
[ Upstream commit a9ab9cce9367a2cc02a3c7eb57a004dc0b8f380d ] Invoking trc_del_holdout() from within trc_wait_for_one_reader() is only a performance optimization because the RCU Tasks Trace grace-period kthread will eventually do this within check_all_holdout_tasks_trace(). But it is not a particularly important performance optimization because it only applies to the grace-period kthread, of which there is but one. This commit therefore removes this invocation of trc_del_holdout() in favor of the one in check_all_holdout_tasks_trace() in the grace-period kthread. Reported-by: "Xu, Yanfei" <yanfei.xu@windriver.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Paul E. McKenney
|
55ddab2bfd |
rcu-tasks: Don't delete holdouts within trc_inspect_reader()
[ Upstream commit 1d10bf55d85d34eb73dd8263635f43fd72135d2d ] As Yanfei pointed out, although invoking trc_del_holdout() is safe from the viewpoint of the integrity of the holdout list itself, the put_task_struct() invoked by trc_del_holdout() can result in use-after-free errors due to later accesses to this task_struct structure by the RCU Tasks Trace grace-period kthread. This commit therefore removes this call to trc_del_holdout() from trc_inspect_reader() in favor of the grace-period thread's existing call to trc_del_holdout(), thus eliminating that particular class of use-after-free errors. Reported-by: "Xu, Yanfei" <yanfei.xu@windriver.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Paul Gortmaker
|
df34f88862 |
cgroup1: fix leaked context root causing sporadic NULL deref in LTP
commit 1e7107c5ef44431bc1ebbd4c353f1d7c22e5f2ec upstream. Richard reported sporadic (roughly one in 10 or so) null dereferences and other strange behaviour for a set of automated LTP tests. Things like: BUG: kernel NULL pointer dereference, address: 0000000000000008 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 1516 Comm: umount Not tainted 5.10.0-yocto-standard #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-48-gd9c812dda519-prebuilt.qemu.org 04/01/2014 RIP: 0010:kernfs_sop_show_path+0x1b/0x60 ...or these others: RIP: 0010:do_mkdirat+0x6a/0xf0 RIP: 0010:d_alloc_parallel+0x98/0x510 RIP: 0010:do_readlinkat+0x86/0x120 There were other less common instances of some kind of a general scribble but the common theme was mount and cgroup and a dubious dentry triggering the NULL dereference. I was only able to reproduce it under qemu by replicating Richard's setup as closely as possible - I never did get it to happen on bare metal, even while keeping everything else the same. In commit |
||
Yang Yingliang
|
dcd00801f3 |
workqueue: fix UAF in pwq_unbound_release_workfn()
commit b42b0bddcbc87b4c66f6497f66fc72d52b712aa7 upstream.
I got a UAF report when doing fuzz test:
[ 152.880091][ T8030] ==================================================================
[ 152.881240][ T8030] BUG: KASAN: use-after-free in pwq_unbound_release_workfn+0x50/0x190
[ 152.882442][ T8030] Read of size 4 at addr ffff88810d31bd00 by task kworker/3:2/8030
[ 152.883578][ T8030]
[ 152.883932][ T8030] CPU: 3 PID: 8030 Comm: kworker/3:2 Not tainted 5.13.0+ #249
[ 152.885014][ T8030] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
[ 152.886442][ T8030] Workqueue: events pwq_unbound_release_workfn
[ 152.887358][ T8030] Call Trace:
[ 152.887837][ T8030] dump_stack_lvl+0x75/0x9b
[ 152.888525][ T8030] ? pwq_unbound_release_workfn+0x50/0x190
[ 152.889371][ T8030] print_address_description.constprop.10+0x48/0x70
[ 152.890326][ T8030] ? pwq_unbound_release_workfn+0x50/0x190
[ 152.891163][ T8030] ? pwq_unbound_release_workfn+0x50/0x190
[ 152.891999][ T8030] kasan_report.cold.15+0x82/0xdb
[ 152.892740][ T8030] ? pwq_unbound_release_workfn+0x50/0x190
[ 152.893594][ T8030] __asan_load4+0x69/0x90
[ 152.894243][ T8030] pwq_unbound_release_workfn+0x50/0x190
[ 152.895057][ T8030] process_one_work+0x47b/0x890
[ 152.895778][ T8030] worker_thread+0x5c/0x790
[ 152.896439][ T8030] ? process_one_work+0x890/0x890
[ 152.897163][ T8030] kthread+0x223/0x250
[ 152.897747][ T8030] ? set_kthread_struct+0xb0/0xb0
[ 152.898471][ T8030] ret_from_fork+0x1f/0x30
[ 152.899114][ T8030]
[ 152.899446][ T8030] Allocated by task 8884:
[ 152.900084][ T8030] kasan_save_stack+0x21/0x50
[ 152.900769][ T8030] __kasan_kmalloc+0x88/0xb0
[ 152.901416][ T8030] __kmalloc+0x29c/0x460
[ 152.902014][ T8030] alloc_workqueue+0x111/0x8e0
[ 152.902690][ T8030] __btrfs_alloc_workqueue+0x11e/0x2a0
[ 152.903459][ T8030] btrfs_alloc_workqueue+0x6d/0x1d0
[ 152.904198][ T8030] scrub_workers_get+0x1e8/0x490
[ 152.904929][ T8030] btrfs_scrub_dev+0x1b9/0x9c0
[ 152.905599][ T8030] btrfs_ioctl+0x122c/0x4e50
[ 152.906247][ T8030] __x64_sys_ioctl+0x137/0x190
[ 152.906916][ T8030] do_syscall_64+0x34/0xb0
[ 152.907535][ T8030] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 152.908365][ T8030]
[ 152.908688][ T8030] Freed by task 8884:
[ 152.909243][ T8030] kasan_save_stack+0x21/0x50
[ 152.909893][ T8030] kasan_set_track+0x20/0x30
[ 152.910541][ T8030] kasan_set_free_info+0x24/0x40
[ 152.911265][ T8030] __kasan_slab_free+0xf7/0x140
[ 152.911964][ T8030] kfree+0x9e/0x3d0
[ 152.912501][ T8030] alloc_workqueue+0x7d7/0x8e0
[ 152.913182][ T8030] __btrfs_alloc_workqueue+0x11e/0x2a0
[ 152.913949][ T8030] btrfs_alloc_workqueue+0x6d/0x1d0
[ 152.914703][ T8030] scrub_workers_get+0x1e8/0x490
[ 152.915402][ T8030] btrfs_scrub_dev+0x1b9/0x9c0
[ 152.916077][ T8030] btrfs_ioctl+0x122c/0x4e50
[ 152.916729][ T8030] __x64_sys_ioctl+0x137/0x190
[ 152.917414][ T8030] do_syscall_64+0x34/0xb0
[ 152.918034][ T8030] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 152.918872][ T8030]
[ 152.919203][ T8030] The buggy address belongs to the object at ffff88810d31bc00
[ 152.919203][ T8030] which belongs to the cache kmalloc-512 of size 512
[ 152.921155][ T8030] The buggy address is located 256 bytes inside of
[ 152.921155][ T8030] 512-byte region [ffff88810d31bc00, ffff88810d31be00)
[ 152.922993][ T8030] The buggy address belongs to the page:
[ 152.923800][ T8030] page:ffffea000434c600 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x10d318
[ 152.925249][ T8030] head:ffffea000434c600 order:2 compound_mapcount:0 compound_pincount:0
[ 152.926399][ T8030] flags: 0x57ff00000010200(slab|head|node=1|zone=2|lastcpupid=0x7ff)
[ 152.927515][ T8030] raw: 057ff00000010200 dead000000000100 dead000000000122 ffff888009c42c80
[ 152.928716][ T8030] raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000
[ 152.929890][ T8030] page dumped because: kasan: bad access detected
[ 152.930759][ T8030]
[ 152.931076][ T8030] Memory state around the buggy address:
[ 152.931851][ T8030] ffff88810d31bc00: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[ 152.932967][ T8030] ffff88810d31bc80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[ 152.934068][ T8030] >ffff88810d31bd00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[ 152.935189][ T8030] ^
[ 152.935763][ T8030] ffff88810d31bd80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
[ 152.936847][ T8030] ffff88810d31be00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 152.937940][ T8030] ==================================================================
If apply_wqattrs_prepare() fails in alloc_workqueue(), it will call put_pwq()
which invoke a work queue to call pwq_unbound_release_workfn() and use the 'wq'.
The 'wq' allocated in alloc_workqueue() will be freed in error path when
apply_wqattrs_prepare() fails. So it will lead a UAF.
CPU0 CPU1
alloc_workqueue()
alloc_and_link_pwqs()
apply_wqattrs_prepare() fails
apply_wqattrs_cleanup()
schedule_work(&pwq->unbound_release_work)
kfree(wq)
worker_thread()
pwq_unbound_release_workfn() <- trigger uaf here
If apply_wqattrs_prepare() fails, the new pwq are not linked, it doesn't
hold any reference to the 'wq', 'wq' is invalid to access in the worker,
so add check pwq if linked to fix this.
Fixes:
|
||
Frederic Weisbecker
|
6e81e2c38a |
posix-cpu-timers: Fix rearm racing against process tick
commit 1a3402d93c73bf6bb4df6d7c2aac35abfc3c50e2 upstream.
Since the process wide cputime counter is started locklessly from
posix_cpu_timer_rearm(), it can be concurrently stopped by operations
on other timers from the same thread group, such as in the following
unlucky scenario:
CPU 0 CPU 1
----- -----
timer_settime(TIMER B)
posix_cpu_timer_rearm(TIMER A)
cpu_clock_sample_group()
(pct->timers_active already true)
handle_posix_cpu_timers()
check_process_timers()
stop_process_timers()
pct->timers_active = false
arm_timer(TIMER A)
tick -> run_posix_cpu_timers()
// sees !pct->timers_active, ignore
// our TIMER A
Fix this with simply locking process wide cputime counting start and
timer arm in the same block.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Fixes:
|
||
Steven Rostedt (VMware)
|
552b053f1a |
tracing: Synthetic event field_pos is an index not a boolean
commit 3b13911a2fd0dd0146c9777a254840c5466cf120 upstream.
Performing the following:
># echo 'wakeup_lat s32 pid; u64 delta; char wake_comm[]' > synthetic_events
># echo 'hist:keys=pid:__arg__1=common_timestamp.usecs' > events/sched/sched_waking/trigger
># echo 'hist:keys=next_pid:pid=next_pid,delta=common_timestamp.usecs-$__arg__1:onmatch(sched.sched_waking).trace(wakeup_lat,$pid,$delta,prev_comm)'\
> events/sched/sched_switch/trigger
># echo 1 > events/synthetic/enable
Crashed the kernel:
BUG: kernel NULL pointer dereference, address: 000000000000001b
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP
CPU: 7 PID: 0 Comm: swapper/7 Not tainted 5.13.0-rc5-test+ #104
Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v03.03 07/14/2016
RIP: 0010:strlen+0x0/0x20
Code: f6 82 80 2b 0b bc 20 74 11 0f b6 50 01 48 83 c0 01 f6 82 80 2b 0b bc
20 75 ef c3 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 <80> 3f 00 74 10
48 89 f8 48 83 c0 01 80 38 9 f8 c3 31
RSP: 0018:ffffaa75000d79d0 EFLAGS: 00010046
RAX: 0000000000000002 RBX: ffff9cdb55575270 RCX: 0000000000000000
RDX: ffff9cdb58c7a320 RSI: ffffaa75000d7b40 RDI: 000000000000001b
RBP: ffffaa75000d7b40 R08: ffff9cdb40a4f010 R09: ffffaa75000d7ab8
R10: ffff9cdb4398c700 R11: 0000000000000008 R12: ffff9cdb58c7a320
R13: ffff9cdb55575270 R14: ffff9cdb58c7a000 R15: 0000000000000018
FS: 0000000000000000(0000) GS:ffff9cdb5aa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000000001b CR3: 00000000c0612006 CR4: 00000000001706e0
Call Trace:
trace_event_raw_event_synth+0x90/0x1d0
action_trace+0x5b/0x70
event_hist_trigger+0x4bd/0x4e0
? cpumask_next_and+0x20/0x30
? update_sd_lb_stats.constprop.0+0xf6/0x840
? __lock_acquire.constprop.0+0x125/0x550
? find_held_lock+0x32/0x90
? sched_clock_cpu+0xe/0xd0
? lock_release+0x155/0x440
? update_load_avg+0x8c/0x6f0
? enqueue_entity+0x18a/0x920
? __rb_reserve_next+0xe5/0x460
? ring_buffer_lock_reserve+0x12a/0x3f0
event_triggers_call+0x52/0xe0
trace_event_buffer_commit+0x1ae/0x240
trace_event_raw_event_sched_switch+0x114/0x170
__traceiter_sched_switch+0x39/0x50
__schedule+0x431/0xb00
schedule_idle+0x28/0x40
do_idle+0x198/0x2e0
cpu_startup_entry+0x19/0x20
secondary_startup_64_no_verify+0xc2/0xcb
The reason is that the dynamic events array keeps track of the field
position of the fields array, via the field_pos variable in the
synth_field structure. Unfortunately, that field is a boolean for some
reason, which means any field_pos greater than 1 will be a bug (in this
case it was 2).
Link: https://lkml.kernel.org/r/20210721191008.638bce34@oasis.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes:
|
||
Haoran Luo
|
757bdba802 |
tracing: Fix bug in rb_per_cpu_empty() that might cause deadloop.
commit 67f0d6d9883c13174669f88adac4f0ee656cc16a upstream.
The "rb_per_cpu_empty()" misinterpret the condition (as not-empty) when
"head_page" and "commit_page" of "struct ring_buffer_per_cpu" points to
the same buffer page, whose "buffer_data_page" is empty and "read" field
is non-zero.
An error scenario could be constructed as followed (kernel perspective):
1. All pages in the buffer has been accessed by reader(s) so that all of
them will have non-zero "read" field.
2. Read and clear all buffer pages so that "rb_num_of_entries()" will
return 0 rendering there's no more data to read. It is also required
that the "read_page", "commit_page" and "tail_page" points to the same
page, while "head_page" is the next page of them.
3. Invoke "ring_buffer_lock_reserve()" with large enough "length"
so that it shot pass the end of current tail buffer page. Now the
"head_page", "commit_page" and "tail_page" points to the same page.
4. Discard current event with "ring_buffer_discard_commit()", so that
"head_page", "commit_page" and "tail_page" points to a page whose buffer
data page is now empty.
When the error scenario has been constructed, "tracing_read_pipe" will
be trapped inside a deadloop: "trace_empty()" returns 0 since
"rb_per_cpu_empty()" returns 0 when it hits the CPU containing such
constructed ring buffer. Then "trace_find_next_entry_inc()" always
return NULL since "rb_num_of_entries()" reports there's no more entry
to read. Finally "trace_seq_to_user()" returns "-EBUSY" spanking
"tracing_read_pipe" back to the start of the "waitagain" loop.
I've also written a proof-of-concept script to construct the scenario
and trigger the bug automatically, you can use it to trace and validate
my reasoning above:
https://github.com/aegistudio/RingBufferDetonator.git
Tests has been carried out on linux kernel 5.14-rc2
(2734d6c1b1a089fb593ef6a23d4b70903526fe0c), my fixed version
of kernel (for testing whether my update fixes the bug) and
some older kernels (for range of affected kernels). Test result is
also attached to the proof-of-concept repository.
Link: https://lore.kernel.org/linux-trace-devel/YPaNxsIlb2yjSi5Y@aegistudio/
Link: https://lore.kernel.org/linux-trace-devel/YPgrN85WL9VyrZ55@aegistudio
Cc: stable@vger.kernel.org
Fixes:
|
||
Steven Rostedt (VMware)
|
a5e1aff589 |
tracing/histogram: Rename "cpu" to "common_cpu"
commit 1e3bac71c5053c99d438771fc9fa5082ae5d90aa upstream.
Currently the histogram logic allows the user to write "cpu" in as an
event field, and it will record the CPU that the event happened on.
The problem with this is that there's a lot of events that have "cpu"
as a real field, and using "cpu" as the CPU it ran on, makes it
impossible to run histograms on the "cpu" field of events.
For example, if I want to have a histogram on the count of the
workqueue_queue_work event on its cpu field, running:
># echo 'hist:keys=cpu' > events/workqueue/workqueue_queue_work/trigger
Gives a misleading and wrong result.
Change the command to "common_cpu" as no event should have "common_*"
fields as that's a reserved name for fields used by all events. And
this makes sense here as common_cpu would be a field used by all events.
Now we can even do:
># echo 'hist:keys=common_cpu,cpu if cpu < 100' > events/workqueue/workqueue_queue_work/trigger
># cat events/workqueue/workqueue_queue_work/hist
# event histogram
#
# trigger info: hist:keys=common_cpu,cpu:vals=hitcount:sort=hitcount:size=2048 if cpu < 100 [active]
#
{ common_cpu: 0, cpu: 2 } hitcount: 1
{ common_cpu: 0, cpu: 4 } hitcount: 1
{ common_cpu: 7, cpu: 7 } hitcount: 1
{ common_cpu: 0, cpu: 7 } hitcount: 1
{ common_cpu: 0, cpu: 1 } hitcount: 1
{ common_cpu: 0, cpu: 6 } hitcount: 2
{ common_cpu: 0, cpu: 5 } hitcount: 2
{ common_cpu: 1, cpu: 1 } hitcount: 4
{ common_cpu: 6, cpu: 6 } hitcount: 4
{ common_cpu: 5, cpu: 5 } hitcount: 14
{ common_cpu: 4, cpu: 4 } hitcount: 26
{ common_cpu: 0, cpu: 0 } hitcount: 39
{ common_cpu: 2, cpu: 2 } hitcount: 184
Now for backward compatibility, I added a trick. If "cpu" is used, and
the field is not found, it will fall back to "common_cpu" and work as
it did before. This way, it will still work for old programs that use
"cpu" to get the actual CPU, but if the event has a "cpu" as a field, it
will get that event's "cpu" field, which is probably what it wants
anyway.
I updated the tracefs/README to include documentation about both the
common_timestamp and the common_cpu. This way, if that text is present in
the README, then an application can know that common_cpu is supported over
just plain "cpu".
Link: https://lkml.kernel.org/r/20210721110053.26b4f641@oasis.local.home
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes:
|
||
Steven Rostedt (VMware)
|
0edad8b9f6 |
tracepoints: Update static_call before tp_funcs when adding a tracepoint
commit 352384d5c84ebe40fa77098cc234fe173247d8ef upstream.
Because of the significant overhead that retpolines pose on indirect
calls, the tracepoint code was updated to use the new "static_calls" that
can modify the running code to directly call a function instead of using
an indirect caller, and this function can be changed at runtime.
In the tracepoint code that calls all the registered callbacks that are
attached to a tracepoint, the following is done:
it_func_ptr = rcu_dereference_raw((&__tracepoint_##name)->funcs);
if (it_func_ptr) {
__data = (it_func_ptr)->data;
static_call(tp_func_##name)(__data, args);
}
If there's just a single callback, the static_call is updated to just call
that callback directly. Once another handler is added, then the static
caller is updated to call the iterator, that simply loops over all the
funcs in the array and calls each of the callbacks like the old method
using indirect calling.
The issue was discovered with a race between updating the funcs array and
updating the static_call. The funcs array was updated first and then the
static_call was updated. This is not an issue as long as the first element
in the old array is the same as the first element in the new array. But
that assumption is incorrect, because callbacks also have a priority
field, and if there's a callback added that has a higher priority than the
callback on the old array, then it will become the first callback in the
new array. This means that it is possible to call the old callback with
the new callback data element, which can cause a kernel panic.
static_call = callback1()
funcs[] = {callback1,data1};
callback2 has higher priority than callback1
CPU 1 CPU 2
----- -----
new_funcs = {callback2,data2},
{callback1,data1}
rcu_assign_pointer(tp->funcs, new_funcs);
/*
* Now tp->funcs has the new array
* but the static_call still calls callback1
*/
it_func_ptr = tp->funcs [ new_funcs ]
data = it_func_ptr->data [ data2 ]
static_call(callback1, data);
/* Now callback1 is called with
* callback2's data */
[ KERNEL PANIC ]
update_static_call(iterator);
To prevent this from happening, always switch the static_call to the
iterator before assigning the tp->funcs to the new array. The iterator will
always properly match the callback with its data.
To trigger this bug:
In one terminal:
while :; do hackbench 50; done
In another terminal
echo 1 > /sys/kernel/tracing/events/sched/sched_waking/enable
while :; do
echo 1 > /sys/kernel/tracing/set_event_pid;
sleep 0.5
echo 0 > /sys/kernel/tracing/set_event_pid;
sleep 0.5
done
And it doesn't take long to crash. This is because the set_event_pid adds
a callback to the sched_waking tracepoint with a high priority, which will
be called before the sched_waking trace event callback is called.
Note, the removal to a single callback updates the array first, before
changing the static_call to single callback, which is the proper order as
the first element in the array is the same as what the static_call is
being changed to.
Link: https://lore.kernel.org/io-uring/4ebea8f0-58c9-e571-fd30-0ce4f6f09c70@samba.org/
Cc: stable@vger.kernel.org
Fixes:
|
||
Roman Skakun
|
8983766903 |
dma-mapping: handle vmalloc addresses in dma_common_{mmap,get_sgtable}
[ Upstream commit 40ac971eab89330d6153e7721e88acd2d98833f9 ]
xen-swiotlb can use vmalloc backed addresses for dma coherent allocations
and uses the common helpers. Properly handle them to unbreak Xen on
ARM platforms.
Fixes:
|
||
Nicolas Saenz Julienne
|
0ff2ea9d8f |
timers: Fix get_next_timer_interrupt() with no timers pending
[ Upstream commit aebacb7f6ca1926918734faae14d1f0b6fae5cb7 ] |
||
Daniel Borkmann
|
39f1735c81 |
bpf: Fix tail_call_reachable rejection for interpreter when jit failed
[ Upstream commit 5dd0a6b8582ffbfa88351949d50eccd5b6694ade ] During testing of f263a81451c1 ("bpf: Track subprog poke descriptors correctly and fix use-after-free") under various failure conditions, for example, when jit_subprogs() fails and tries to clean up the program to be run under the interpreter, we ran into the following freeze: [...] #127/8 tailcall_bpf2bpf_3:FAIL [...] [ 92.041251] BUG: KASAN: slab-out-of-bounds in ___bpf_prog_run+0x1b9d/0x2e20 [ 92.042408] Read of size 8 at addr ffff88800da67f68 by task test_progs/682 [ 92.043707] [ 92.044030] CPU: 1 PID: 682 Comm: test_progs Tainted: G O 5.13.0-53301-ge6c08cb33a30-dirty #87 [ 92.045542] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014 [ 92.046785] Call Trace: [ 92.047171] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.047773] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.048389] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.049019] ? ktime_get+0x117/0x130 [...] // few hundred [similar] lines more [ 92.659025] ? ktime_get+0x117/0x130 [ 92.659845] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.660738] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.661528] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.662378] ? print_usage_bug+0x50/0x50 [ 92.663221] ? print_usage_bug+0x50/0x50 [ 92.664077] ? bpf_ksym_find+0x9c/0xe0 [ 92.664887] ? ktime_get+0x117/0x130 [ 92.665624] ? kernel_text_address+0xf5/0x100 [ 92.666529] ? __kernel_text_address+0xe/0x30 [ 92.667725] ? unwind_get_return_address+0x2f/0x50 [ 92.668854] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.670185] ? ktime_get+0x117/0x130 [ 92.671130] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.672020] ? __bpf_prog_run_args32+0x8b/0xb0 [ 92.672860] ? __bpf_prog_run_args64+0xc0/0xc0 [ 92.675159] ? ktime_get+0x117/0x130 [ 92.677074] ? lock_is_held_type+0xd5/0x130 [ 92.678662] ? ___bpf_prog_run+0x15d4/0x2e20 [ 92.680046] ? ktime_get+0x117/0x130 [ 92.681285] ? __bpf_prog_run32+0x6b/0x90 [ 92.682601] ? __bpf_prog_run64+0x90/0x90 [ 92.683636] ? lock_downgrade+0x370/0x370 [ 92.684647] ? mark_held_locks+0x44/0x90 [ 92.685652] ? ktime_get+0x117/0x130 [ 92.686752] ? lockdep_hardirqs_on+0x79/0x100 [ 92.688004] ? ktime_get+0x117/0x130 [ 92.688573] ? __cant_migrate+0x2b/0x80 [ 92.689192] ? bpf_test_run+0x2f4/0x510 [ 92.689869] ? bpf_test_timer_continue+0x1c0/0x1c0 [ 92.690856] ? rcu_read_lock_bh_held+0x90/0x90 [ 92.691506] ? __kasan_slab_alloc+0x61/0x80 [ 92.692128] ? eth_type_trans+0x128/0x240 [ 92.692737] ? __build_skb+0x46/0x50 [ 92.693252] ? bpf_prog_test_run_skb+0x65e/0xc50 [ 92.693954] ? bpf_prog_test_run_raw_tp+0x2d0/0x2d0 [ 92.694639] ? __fget_light+0xa1/0x100 [ 92.695162] ? bpf_prog_inc+0x23/0x30 [ 92.695685] ? __sys_bpf+0xb40/0x2c80 [ 92.696324] ? bpf_link_get_from_fd+0x90/0x90 [ 92.697150] ? mark_held_locks+0x24/0x90 [ 92.698007] ? lockdep_hardirqs_on_prepare+0x124/0x220 [ 92.699045] ? finish_task_switch+0xe6/0x370 [ 92.700072] ? lockdep_hardirqs_on+0x79/0x100 [ 92.701233] ? finish_task_switch+0x11d/0x370 [ 92.702264] ? __switch_to+0x2c0/0x740 [ 92.703148] ? mark_held_locks+0x24/0x90 [ 92.704155] ? __x64_sys_bpf+0x45/0x50 [ 92.705146] ? do_syscall_64+0x35/0x80 [ 92.706953] ? entry_SYSCALL_64_after_hwframe+0x44/0xae [...] Turns out that the program rejection from |
||
John Fastabend
|
a9f36bf361 |
bpf: Track subprog poke descriptors correctly and fix use-after-free
commit f263a81451c12da5a342d90572e317e611846f2c upstream. Subprograms are calling map_poke_track(), but on program release there is no hook to call map_poke_untrack(). However, on program release, the aux memory (and poke descriptor table) is freed even though we still have a reference to it in the element list of the map aux data. When we run map_poke_run(), we then end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run(): [...] [ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e [ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337 [ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ #399 [ 402.824715] Call Trace: [ 402.824719] dump_stack+0x93/0xc2 [ 402.824727] print_address_description.constprop.0+0x1a/0x140 [ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824744] kasan_report.cold+0x7c/0xd8 [ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824757] prog_array_map_poke_run+0xc2/0x34e [ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0 [...] The elements concerned are walked as follows: for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; [...] The access to size_poke_tab is a 4 byte read, verified by checking offsets in the KASAN dump: [ 402.825004] The buggy address belongs to the object at ffff8881905a7800 which belongs to the cache kmalloc-1k of size 1024 [ 402.825008] The buggy address is located 320 bytes inside of 1024-byte region [ffff8881905a7800, ffff8881905a7c00) The pahole output of bpf_prog_aux: struct bpf_prog_aux { [...] /* --- cacheline 5 boundary (320 bytes) --- */ u32 size_poke_tab; /* 320 4 */ [...] In general, subprograms do not necessarily manage their own data structures. For example, BTF func_info and linfo are just pointers to the main program structure. This allows reference counting and cleanup to be done on the latter which simplifies their management a bit. The aux->poke_tab struct, however, did not follow this logic. The initial proposed fix for this use-after-free bug further embedded poke data tracking into the subprogram with proper reference counting. However, Daniel and Alexei questioned why we were treating these objects special; I agree, its unnecessary. The fix here removes the per subprogram poke table allocation and map tracking and instead simply points the aux->poke_tab pointer at the main programs poke table. This way, map tracking is simplified to the main program and we do not need to manage them per subprogram. This also means, bpf_prog_free_deferred(), which unwinds the program reference counting and kfrees objects, needs to ensure that we don't try to double free the poke_tab when free'ing the subprog structures. This is easily solved by NULL'ing the poke_tab pointer. The second detail is to ensure that per subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do this, we add a pointer in the poke structure to point at the subprogram value so JITs can easily check while walking the poke_tab structure if the current entry belongs to the current program. The aux pointer is stable and therefore suitable for such comparison. On the jit_subprogs() error path, we omit cleaning up the poke->aux field because these are only ever referenced from the JIT side, but on error we will never make it to the JIT, so its fine to leave them dangling. Removing these pointers would complicate the error path for no reason. However, we do need to untrack all poke descriptors from the main program as otherwise they could race with the freeing of JIT memory from the subprograms. Lastly, |
||
Odin Ugedal
|
892387e761 |
sched/fair: Fix CFS bandwidth hrtimer expiry type
[ Upstream commit 72d0ad7cb5bad265adb2014dbe46c4ccb11afaba ] The time remaining until expiry of the refresh_timer can be negative. Casting the type to an unsigned 64-bit value will cause integer underflow, making the runtime_refresh_within return false instead of true. These situations are rare, but they do happen. This does not cause user-facing issues or errors; other than possibly unthrottling cfs_rq's using runtime from the previous period(s), making the CFS bandwidth enforcement less strict in those (special) situations. Signed-off-by: Odin Ugedal <odin@uged.al> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ben Segall <bsegall@google.com> Link: https://lore.kernel.org/r/20210629121452.18429-1-odin@uged.al Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Peter Zijlstra
|
53c5c2496f |
static_call: Fix static_call_text_reserved() vs __init
[ Upstream commit 2bee6d16e4379326b1eea454e68c98b17456769e ]
It turns out that static_call_text_reserved() was reporting __init
text as being reserved past the time when the __init text was freed
and re-used.
This is mostly harmless and will at worst result in refusing a kprobe.
Fixes:
|
||
Peter Zijlstra
|
59ae35884c |
jump_label: Fix jump_label_text_reserved() vs __init
[ Upstream commit 9e667624c291753b8a5128f620f493d0b5226063 ]
It turns out that jump_label_text_reserved() was reporting __init text
as being reserved past the time when the __init text was freed and
re-used.
For a long time, this resulted in, at worst, not being able to kprobe
text that happened to land at the re-used address. However a recent
commit e7bf1ba97afd ("jump_label, x86: Emit short JMP") made it a
fatal mistake because it now needs to read the instruction in order to
determine the conflict -- an instruction that's no longer there.
Fixes:
|
||
Xuewen Yan
|
143a6b8ec5 |
sched/uclamp: Ignore max aggregation if rq is idle
[ Upstream commit 3e1493f46390618ea78607cb30c58fc19e2a5035 ]
When a task wakes up on an idle rq, uclamp_rq_util_with() would max
aggregate with rq value. But since there is no task enqueued yet, the
values are stale based on the last task that was running. When the new
task actually wakes up and enqueued, then the rq uclamp values should
reflect that of the newly woken up task effective uclamp values.
This is a problem particularly for uclamp_max because it default to
1024. If a task p with uclamp_max = 512 wakes up, then max aggregation
would ignore the capping that should apply when this task is enqueued,
which is wrong.
Fix that by ignoring max aggregation if the rq is idle since in that
case the effective uclamp value of the rq will be the ones of the task
that will wake up.
Fixes:
|
||
Paul E. McKenney
|
35a35909ec |
rcu: Reject RCU_LOCKDEP_WARN() false positives
[ Upstream commit 3066820034b5dd4e89bd74a7739c51c2d6f5e554 ] If another lockdep report runs concurrently with an RCU lockdep report from RCU_LOCKDEP_WARN(), the following sequence of events can occur: 1. debug_lockdep_rcu_enabled() sees that lockdep is enabled when called from (say) synchronize_rcu(). 2. Lockdep is disabled by a concurrent lockdep report. 3. debug_lockdep_rcu_enabled() evaluates its lockdep-expression argument, for example, lock_is_held(&rcu_bh_lock_map). 4. Because lockdep is now disabled, lock_is_held() plays it safe and returns the constant 1. 5. But in this case, the constant 1 is not safe, because invoking synchronize_rcu() under rcu_read_lock_bh() is disallowed. 6. debug_lockdep_rcu_enabled() wrongly invokes lockdep_rcu_suspicious(), resulting in a false-positive splat. This commit therefore changes RCU_LOCKDEP_WARN() to check debug_lockdep_rcu_enabled() after checking the lockdep expression, so that any "safe" returns from lock_is_held() are rejected by debug_lockdep_rcu_enabled(). This requires memory ordering, which is supplied by READ_ONCE(debug_locks). The resulting volatile accesses prevent the compiler from reordering and the fact that only one variable is being accessed prevents the underlying hardware from reordering. The combination works for IA64, which can reorder reads to the same location, but this is defeated by the volatile accesses, which compile to load instructions that provide ordering. Reported-by: syzbot+dde0cc33951735441301@syzkaller.appspotmail.com Reported-by: Matthew Wilcox <willy@infradead.org> Reported-by: syzbot+88e4f02896967fe1ab0d@syzkaller.appspotmail.com Reported-by: Thomas Gleixner <tglx@linutronix.de> Suggested-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Frederic Weisbecker
|
23597afbe0 |
srcu: Fix broken node geometry after early ssp init
[ Upstream commit b5befe842e6612cf894cf4a199924ee872d8b7d8 ] An srcu_struct structure that is initialized before rcu_init_geometry() will have its srcu_node hierarchy based on CONFIG_NR_CPUS. Once rcu_init_geometry() is called, this hierarchy is compressed as needed for the actual maximum number of CPUs for this system. Later on, that srcu_struct structure is confused, sometimes referring to its initial CONFIG_NR_CPUS-based hierarchy, and sometimes instead to the new num_possible_cpus() hierarchy. For example, each of its ->mynode fields continues to reference the original leaf rcu_node structures, some of which might no longer exist. On the other hand, srcu_for_each_node_breadth_first() traverses to the new node hierarchy. There are at least two bad possible outcomes to this: 1) a) A callback enqueued early on an srcu_data structure (call it *sdp) is recorded pending on sdp->mynode->srcu_data_have_cbs in srcu_funnel_gp_start() with sdp->mynode pointing to a deep leaf (say 3 levels). b) The grace period ends after rcu_init_geometry() shrinks the nodes level to a single one. srcu_gp_end() walks through the new srcu_node hierarchy without ever reaching the old leaves so the callback is never executed. This is easily reproduced on an 8 CPUs machine with CONFIG_NR_CPUS >= 32 and "rcupdate.rcu_self_test=1". The srcu_barrier() after early tests verification never completes and the boot hangs: [ 5413.141029] INFO: task swapper/0:1 blocked for more than 4915 seconds. [ 5413.147564] Not tainted 5.12.0-rc4+ #28 [ 5413.151927] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 5413.159753] task:swapper/0 state:D stack: 0 pid: 1 ppid: 0 flags:0x00004000 [ 5413.168099] Call Trace: [ 5413.170555] __schedule+0x36c/0x930 [ 5413.174057] ? wait_for_completion+0x88/0x110 [ 5413.178423] schedule+0x46/0xf0 [ 5413.181575] schedule_timeout+0x284/0x380 [ 5413.185591] ? wait_for_completion+0x88/0x110 [ 5413.189957] ? mark_held_locks+0x61/0x80 [ 5413.193882] ? mark_held_locks+0x61/0x80 [ 5413.197809] ? _raw_spin_unlock_irq+0x24/0x50 [ 5413.202173] ? wait_for_completion+0x88/0x110 [ 5413.206535] wait_for_completion+0xb4/0x110 [ 5413.210724] ? srcu_torture_stats_print+0x110/0x110 [ 5413.215610] srcu_barrier+0x187/0x200 [ 5413.219277] ? rcu_tasks_verify_self_tests+0x50/0x50 [ 5413.224244] ? rdinit_setup+0x2b/0x2b [ 5413.227907] rcu_verify_early_boot_tests+0x2d/0x40 [ 5413.232700] do_one_initcall+0x63/0x310 [ 5413.236541] ? rdinit_setup+0x2b/0x2b [ 5413.240207] ? rcu_read_lock_sched_held+0x52/0x80 [ 5413.244912] kernel_init_freeable+0x253/0x28f [ 5413.249273] ? rest_init+0x250/0x250 [ 5413.252846] kernel_init+0xa/0x110 [ 5413.256257] ret_from_fork+0x22/0x30 2) An srcu_struct structure that is initialized before rcu_init_geometry() and used afterward will always have stale rdp->mynode references, resulting in callbacks to be missed in srcu_gp_end(), just like in the previous scenario. This commit therefore causes init_srcu_struct_nodes to initialize the geometry, if needed. This ensures that the srcu_node hierarchy is properly built and distributed from the get-go. Suggested-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Uladzislau Rezki <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Christian Brauner
|
811763e3be |
cgroup: verify that source is a string
commit 3b0462726e7ef281c35a7a4ae33e93ee2bc9975b upstream.
The following sequence can be used to trigger a UAF:
int fscontext_fd = fsopen("cgroup");
int fd_null = open("/dev/null, O_RDONLY);
int fsconfig(fscontext_fd, FSCONFIG_SET_FD, "source", fd_null);
close_range(3, ~0U, 0);
The cgroup v1 specific fs parser expects a string for the "source"
parameter. However, it is perfectly legitimate to e.g. specify a file
descriptor for the "source" parameter. The fs parser doesn't know what
a filesystem allows there. So it's a bug to assume that "source" is
always of type fs_value_is_string when it can reasonably also be
fs_value_is_file.
This assumption in the cgroup code causes a UAF because struct
fs_parameter uses a union for the actual value. Access to that union is
guarded by the param->type member. Since the cgroup paramter parser
didn't check param->type but unconditionally moved param->string into
fc->source a close on the fscontext_fd would trigger a UAF during
put_fs_context() which frees fc->source thereby freeing the file stashed
in param->file causing a UAF during a close of the fd_null.
Fix this by verifying that param->type is actually a string and report
an error if not.
In follow up patches I'll add a new generic helper that can be used here
and by other filesystems instead of this error-prone copy-pasta fix.
But fixing it in here first makes backporting a it to stable a lot
easier.
Fixes:
|
||
Steven Rostedt (VMware)
|
905169794d |
tracing: Do not reference char * as a string in histograms
commit 704adfb5a9978462cd861f170201ae2b5e3d3a80 upstream. The histogram logic was allowing events with char * pointers to be used as normal strings. But it was easy to crash the kernel with: # echo 'hist:keys=filename' > events/syscalls/sys_enter_openat/trigger And open some files, and boom! BUG: unable to handle page fault for address: 00007f2ced0c3280 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 1173fa067 P4D 1173fa067 PUD 1171b6067 PMD 1171dd067 PTE 0 Oops: 0000 [#1] PREEMPT SMP CPU: 6 PID: 1810 Comm: cat Not tainted 5.13.0-rc5-test+ #61 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v03.03 07/14/2016 RIP: 0010:strlen+0x0/0x20 Code: f6 82 80 2a 0b a9 20 74 11 0f b6 50 01 48 83 c0 01 f6 82 80 2a 0b a9 20 75 ef c3 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 <80> 3f 00 74 10 48 89 f8 48 83 c0 01 80 38 00 75 f7 48 29 f8 c3 RSP: 0018:ffffbdbf81567b50 EFLAGS: 00010246 RAX: 0000000000000003 RBX: ffff93815cdb3800 RCX: ffff9382401a22d0 RDX: 0000000000000100 RSI: 0000000000000000 RDI: 00007f2ced0c3280 RBP: 0000000000000100 R08: ffff9382409ff074 R09: ffffbdbf81567c98 R10: ffff9382409ff074 R11: 0000000000000000 R12: ffff9382409ff074 R13: 0000000000000001 R14: ffff93815a744f00 R15: 00007f2ced0c3280 FS: 00007f2ced0f8580(0000) GS:ffff93825a800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2ced0c3280 CR3: 0000000107069005 CR4: 00000000001706e0 Call Trace: event_hist_trigger+0x463/0x5f0 ? find_held_lock+0x32/0x90 ? sched_clock_cpu+0xe/0xd0 ? lock_release+0x155/0x440 ? kernel_init_free_pages+0x6d/0x90 ? preempt_count_sub+0x9b/0xd0 ? kernel_init_free_pages+0x6d/0x90 ? get_page_from_freelist+0x12c4/0x1680 ? __rb_reserve_next+0xe5/0x460 ? ring_buffer_lock_reserve+0x12a/0x3f0 event_triggers_call+0x52/0xe0 ftrace_syscall_enter+0x264/0x2c0 syscall_trace_enter.constprop.0+0x1ee/0x210 do_syscall_64+0x1c/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae Where it triggered a fault on strlen(key) where key was the filename. The reason is that filename is a char * to user space, and the histogram code just blindly dereferenced it, with obvious bad results. I originally tried to use strncpy_from_user/kernel_nofault() but found that there's other places that its dereferenced and not worth the effort. Just do not allow "char *" to act like strings. Link: https://lkml.kernel.org/r/20210715000206.025df9d2@rorschach.local.home Cc: Ingo Molnar <mingo@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Tzvetomir Stoyanov <tz.stoyanov@gmail.com> Cc: stable@vger.kernel.org Acked-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Tom Zanussi <zanussi@kernel.org> Fixes: |
||
Paul Burton
|
eb81b5a37d |
tracing: Resize tgid_map to pid_max, not PID_MAX_DEFAULT
commit 4030a6e6a6a4a42ff8c18414c9e0c93e24cc70b8 upstream.
Currently tgid_map is sized at PID_MAX_DEFAULT entries, which means that
on systems where pid_max is configured higher than PID_MAX_DEFAULT the
ftrace record-tgid option doesn't work so well. Any tasks with PIDs
higher than PID_MAX_DEFAULT are simply not recorded in tgid_map, and
don't show up in the saved_tgids file.
In particular since systemd v243 & above configure pid_max to its
highest possible 1<<22 value by default on 64 bit systems this renders
the record-tgids option of little use.
Increase the size of tgid_map to the configured pid_max instead,
allowing it to cover the full range of PIDs up to the maximum value of
PID_MAX_LIMIT if the system is configured that way.
On 64 bit systems with pid_max == PID_MAX_LIMIT this will increase the
size of tgid_map from 256KiB to 16MiB. Whilst this 64x increase in
memory overhead sounds significant 64 bit systems are presumably best
placed to accommodate it, and since tgid_map is only allocated when the
record-tgid option is actually used presumably the user would rather it
spends sufficient memory to actually record the tgids they expect.
The size of tgid_map could also increase for CONFIG_BASE_SMALL=y
configurations, but these seem unlikely to be systems upon which people
are both configuring a large pid_max and running ftrace with record-tgid
anyway.
Of note is that we only allocate tgid_map once, the first time that the
record-tgid option is enabled. Therefore its size is only set once, to
the value of pid_max at the time the record-tgid option is first
enabled. If a user increases pid_max after that point, the saved_tgids
file will not contain entries for any tasks with pids beyond the earlier
value of pid_max.
Link: https://lkml.kernel.org/r/20210701172407.889626-2-paulburton@google.com
Fixes:
|
||
Paul Burton
|
3cda5b7f4e |
tracing: Simplify & fix saved_tgids logic
commit b81b3e959adb107cd5b36c7dc5ba1364bbd31eb2 upstream.
The tgid_map array records a mapping from pid to tgid, where the index
of an entry within the array is the pid & the value stored at that index
is the tgid.
The saved_tgids_next() function iterates over pointers into the tgid_map
array & dereferences the pointers which results in the tgid, but then it
passes that dereferenced value to trace_find_tgid() which treats it as a
pid & does a further lookup within the tgid_map array. It seems likely
that the intent here was to skip over entries in tgid_map for which the
recorded tgid is zero, but instead we end up skipping over entries for
which the thread group leader hasn't yet had its own tgid recorded in
tgid_map.
A minimal fix would be to remove the call to trace_find_tgid, turning:
if (trace_find_tgid(*ptr))
into:
if (*ptr)
..but it seems like this logic can be much simpler if we simply let
seq_read() iterate over the whole tgid_map array & filter out empty
entries by returning SEQ_SKIP from saved_tgids_show(). Here we take that
approach, removing the incorrect logic here entirely.
Link: https://lkml.kernel.org/r/20210630003406.4013668-1-paulburton@google.com
Fixes:
|
||
Jan Kara
|
8cc58a6e2c |
rq-qos: fix missed wake-ups in rq_qos_throttle try two
commit 11c7aa0ddea8611007768d3e6b58d45dc60a19e1 upstream. Commit |
||
Thomas Gleixner
|
b5e26be407 |
cpu/hotplug: Cure the cpusets trainwreck
commit b22afcdf04c96ca58327784e280e10288cfd3303 upstream. Alexey and Joshua tried to solve a cpusets related hotplug problem which is user space visible and results in unexpected behaviour for some time after a CPU has been plugged in and the corresponding uevent was delivered. cpusets delegate the hotplug work (rebuilding cpumasks etc.) to a workqueue. This is done because the cpusets code has already a lock nesting of cgroups_mutex -> cpu_hotplug_lock. A synchronous callback or waiting for the work to finish with cpu_hotplug_lock held can and will deadlock because that results in the reverse lock order. As a consequence the uevent can be delivered before cpusets have consistent state which means that a user space invocation of sched_setaffinity() to move a task to the plugged CPU fails up to the point where the scheduled work has been processed. The same is true for CPU unplug, but that does not create user observable failure (yet). It's still inconsistent to claim that an operation is finished before it actually is and that's the real issue at hand. uevents just make it reliably observable. Obviously the problem should be fixed in cpusets/cgroups, but untangling that is pretty much impossible because according to the changelog of the commit which introduced this 8 years ago: 3a5a6d0c2b03("cpuset: don't nest cgroup_mutex inside get_online_cpus()") the lock order cgroups_mutex -> cpu_hotplug_lock is a design decision and the whole code is built around that. So bite the bullet and invoke the relevant cpuset function, which waits for the work to finish, in _cpu_up/down() after dropping cpu_hotplug_lock and only when tasks are not frozen by suspend/hibernate because that would obviously wait forever. Waiting there with cpu_add_remove_lock, which is protecting the present and possible CPU maps, held is not a problem at all because neither work queues nor cpusets/cgroups have any lockchains related to that lock. Waiting in the hotplug machinery is not problematic either because there are already state callbacks which wait for hardware queues to drain. It makes the operations slightly slower, but hotplug is slow anyway. This ensures that state is consistent before returning from a hotplug up/down operation. It's still inconsistent during the operation, but that's a different story. Add a large comment which explains why this is done and why this is not a dump ground for the hack of the day to work around half thought out locking schemes. Document also the implications vs. hotplug operations and serialization or the lack of it. Thanks to Alexy and Joshua for analyzing why this temporary sched_setaffinity() failure happened. Fixes: 3a5a6d0c2b03("cpuset: don't nest cgroup_mutex inside get_online_cpus()") Reported-by: Alexey Klimov <aklimov@redhat.com> Reported-by: Joshua Baker <jobaker@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Alexey Klimov <aklimov@redhat.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/87tuowcnv3.ffs@nanos.tec.linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Rustam Kovhaev
|
a61af01141 |
bpf: Fix false positive kmemleak report in bpf_ringbuf_area_alloc()
[ Upstream commit ccff81e1d028bbbf8573d3364a87542386c707bf ] kmemleak scans struct page, but it does not scan the page content. If we allocate some memory with kmalloc(), then allocate page with alloc_page(), and if we put kmalloc pointer somewhere inside that page, kmemleak will report kmalloc pointer as a false positive. We can instruct kmemleak to scan the memory area by calling kmemleak_alloc() and kmemleak_free(), but part of struct bpf_ringbuf is mmaped to user space, and if struct bpf_ringbuf changes we would have to revisit and review size argument in kmemleak_alloc(), because we do not want kmemleak to scan the user space memory. Let's simplify things and use kmemleak_not_leak() here. For posterity, also adding additional prior analysis from Andrii: I think either kmemleak or syzbot are misreporting this. I've added a bunch of printks around all allocations performed by BPF ringbuf. [...] On repro side I get these two warnings: [vmuser@archvm bpf]$ sudo ./repro BUG: memory leak unreferenced object 0xffff88810d538c00 (size 64): comm "repro", pid 2140, jiffies 4294692933 (age 14.540s) hex dump (first 32 bytes): 00 af 19 04 00 ea ff ff c0 ae 19 04 00 ea ff ff ................ 80 ae 19 04 00 ea ff ff c0 29 2e 04 00 ea ff ff .........)...... backtrace: [<0000000077bfbfbd>] __bpf_map_area_alloc+0x31/0xc0 [<00000000587fa522>] ringbuf_map_alloc.cold.4+0x48/0x218 [<0000000044d49e96>] __do_sys_bpf+0x359/0x1d90 [<00000000f601d565>] do_syscall_64+0x2d/0x40 [<0000000043d3112a>] entry_SYSCALL_64_after_hwframe+0x44/0xae BUG: memory leak unreferenced object 0xffff88810d538c80 (size 64): comm "repro", pid 2143, jiffies 4294699025 (age 8.448s) hex dump (first 32 bytes): 80 aa 19 04 00 ea ff ff 00 ab 19 04 00 ea ff ff ................ c0 ab 19 04 00 ea ff ff 80 44 28 04 00 ea ff ff .........D(..... backtrace: [<0000000077bfbfbd>] __bpf_map_area_alloc+0x31/0xc0 [<00000000587fa522>] ringbuf_map_alloc.cold.4+0x48/0x218 [<0000000044d49e96>] __do_sys_bpf+0x359/0x1d90 [<00000000f601d565>] do_syscall_64+0x2d/0x40 [<0000000043d3112a>] entry_SYSCALL_64_after_hwframe+0x44/0xae Note that both reported leaks (ffff88810d538c80 and ffff88810d538c00) correspond to pages array bpf_ringbuf is allocating and tracking properly internally. Note also that syzbot repro doesn't close FD of created BPF ringbufs, and even when ./repro itself exits with error, there are still two forked processes hanging around in my system. So clearly ringbuf maps are alive at that point. So reporting any memory leak looks weird at that point, because that memory is being used by active referenced BPF ringbuf. It's also a question why repro doesn't clean up its forks. But if I do a `pkill repro`, I do see that all the allocated memory is /properly/ cleaned up [and the] "leaks" are deallocated properly. BTW, if I add close() right after bpf() syscall in syzbot repro, I see that everything is immediately deallocated, like designed. And no memory leak is reported. So I don't think the problem is anywhere in bpf_ringbuf code, rather in the leak detection and/or repro itself. Reported-by: syzbot+5d895828587f49e7fe9b@syzkaller.appspotmail.com Signed-off-by: Rustam Kovhaev <rkovhaev@gmail.com> [ Daniel: also included analysis from Andrii to the commit log ] Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: syzbot+5d895828587f49e7fe9b@syzkaller.appspotmail.com Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/CAEf4BzYk+dqs+jwu6VKXP-RttcTEGFe+ySTGWT9CRNkagDiJVA@mail.gmail.com Link: https://lore.kernel.org/lkml/YNTAqiE7CWJhOK2M@nuc10 Link: https://lore.kernel.org/lkml/20210615101515.GC26027@arm.com Link: https://syzkaller.appspot.com/bug?extid=5d895828587f49e7fe9b Link: https://lore.kernel.org/bpf/20210626181156.1873604-1-rkovhaev@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Odin Ugedal
|
20285dc271 |
sched/fair: Ensure _sum and _avg values stay consistent
[ Upstream commit 1c35b07e6d3986474e5635be566e7bc79d97c64d ] The _sum and _avg values are in general sync together with the PELT divider. They are however not always completely in perfect sync, resulting in situations where _sum gets to zero while _avg stays positive. Such situations are undesirable. This comes from the fact that PELT will increase period_contrib, also increasing the PELT divider, without updating _sum and _avg values to stay in perfect sync where (_sum == _avg * divider). However, such PELT change will never lower _sum, making it impossible to end up in a situation where _sum is zero and _avg is not. Therefore, we need to ensure that when subtracting load outside PELT, that when _sum is zero, _avg is also set to zero. This occurs when (_sum < _avg * divider), and the subtracted (_avg * divider) is bigger or equal to the current _sum, while the subtracted _avg is smaller than the current _avg. Reported-by: Sachin Sant <sachinp@linux.vnet.ibm.com> Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Odin Ugedal <odin@uged.al> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com> Link: https://lore.kernel.org/r/20210624111815.57937-1-odin@uged.al Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Daniel Borkmann
|
2e66c36f13 |
bpf: Fix up register-based shifts in interpreter to silence KUBSAN
[ Upstream commit 28131e9d933339a92f78e7ab6429f4aaaa07061c ] syzbot reported a shift-out-of-bounds that KUBSAN observed in the interpreter: [...] UBSAN: shift-out-of-bounds in kernel/bpf/core.c:1420:2 shift exponent 255 is too large for 64-bit type 'long long unsigned int' CPU: 1 PID: 11097 Comm: syz-executor.4 Not tainted 5.12.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x141/0x1d7 lib/dump_stack.c:120 ubsan_epilogue+0xb/0x5a lib/ubsan.c:148 __ubsan_handle_shift_out_of_bounds.cold+0xb1/0x181 lib/ubsan.c:327 ___bpf_prog_run.cold+0x19/0x56c kernel/bpf/core.c:1420 __bpf_prog_run32+0x8f/0xd0 kernel/bpf/core.c:1735 bpf_dispatcher_nop_func include/linux/bpf.h:644 [inline] bpf_prog_run_pin_on_cpu include/linux/filter.h:624 [inline] bpf_prog_run_clear_cb include/linux/filter.h:755 [inline] run_filter+0x1a1/0x470 net/packet/af_packet.c:2031 packet_rcv+0x313/0x13e0 net/packet/af_packet.c:2104 dev_queue_xmit_nit+0x7c2/0xa90 net/core/dev.c:2387 xmit_one net/core/dev.c:3588 [inline] dev_hard_start_xmit+0xad/0x920 net/core/dev.c:3609 __dev_queue_xmit+0x2121/0x2e00 net/core/dev.c:4182 __bpf_tx_skb net/core/filter.c:2116 [inline] __bpf_redirect_no_mac net/core/filter.c:2141 [inline] __bpf_redirect+0x548/0xc80 net/core/filter.c:2164 ____bpf_clone_redirect net/core/filter.c:2448 [inline] bpf_clone_redirect+0x2ae/0x420 net/core/filter.c:2420 ___bpf_prog_run+0x34e1/0x77d0 kernel/bpf/core.c:1523 __bpf_prog_run512+0x99/0xe0 kernel/bpf/core.c:1737 bpf_dispatcher_nop_func include/linux/bpf.h:644 [inline] bpf_test_run+0x3ed/0xc50 net/bpf/test_run.c:50 bpf_prog_test_run_skb+0xabc/0x1c50 net/bpf/test_run.c:582 bpf_prog_test_run kernel/bpf/syscall.c:3127 [inline] __do_sys_bpf+0x1ea9/0x4f00 kernel/bpf/syscall.c:4406 do_syscall_64+0x2d/0x70 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x44/0xae [...] Generally speaking, KUBSAN reports from the kernel should be fixed. However, in case of BPF, this particular report caused concerns since the large shift is not wrong from BPF point of view, just undefined. In the verifier, K-based shifts that are >= {64,32} (depending on the bitwidth of the instruction) are already rejected. The register-based cases were not given their content might not be known at verification time. Ideas such as verifier instruction rewrite with an additional AND instruction for the source register were brought up, but regularly rejected due to the additional runtime overhead they incur. As Edward Cree rightly put it: Shifts by more than insn bitness are legal in the BPF ISA; they are implementation-defined behaviour [of the underlying architecture], rather than UB, and have been made legal for performance reasons. Each of the JIT backends compiles the BPF shift operations to machine instructions which produce implementation-defined results in such a case; the resulting contents of the register may be arbitrary but program behaviour as a whole remains defined. Guard checks in the fast path (i.e. affecting JITted code) will thus not be accepted. The case of division by zero is not truly analogous here, as division instructions on many of the JIT-targeted architectures will raise a machine exception / fault on division by zero, whereas (to the best of my knowledge) none will do so on an out-of-bounds shift. Given the KUBSAN report only affects the BPF interpreter, but not JITs, one solution is to add the ANDs with 63 or 31 into ___bpf_prog_run(). That would make the shifts defined, and thus shuts up KUBSAN, and the compiler would optimize out the AND on any CPU that interprets the shift amounts modulo the width anyway (e.g., confirmed from disassembly that on x86-64 and arm64 the generated interpreter code is the same before and after this fix). The BPF interpreter is slow path, and most likely compiled out anyway as distros select BPF_JIT_ALWAYS_ON to avoid speculative execution of BPF instructions by the interpreter. Given the main argument was to avoid sacrificing performance, the fact that the AND is optimized away from compiler for mainstream archs helps as well as a solution moving forward. Also add a comment on LSH/RSH/ARSH translation for JIT authors to provide guidance when they see the ___bpf_prog_run() interpreter code and use it as a model for a new JIT backend. Reported-by: syzbot+bed360704c521841c85d@syzkaller.appspotmail.com Reported-by: Kurt Manucredo <fuzzybritches0@gmail.com> Signed-off-by: Eric Biggers <ebiggers@kernel.org> Co-developed-by: Eric Biggers <ebiggers@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Tested-by: syzbot+bed360704c521841c85d@syzkaller.appspotmail.com Cc: Edward Cree <ecree.xilinx@gmail.com> Link: https://lore.kernel.org/bpf/0000000000008f912605bd30d5d7@google.com Link: https://lore.kernel.org/bpf/bac16d8d-c174-bdc4-91bd-bfa62b410190@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Yang Yingliang
|
0855952ed4 |
cred: add missing return error code when set_cred_ucounts() failed
commit 5e6b8a50a7cec5686ee2c4bda1d49899c79a7eae upstream. If set_cred_ucounts() failed, we need return the error code. Fixes: 905ae01c4ae2 ("Add a reference to ucounts for each cred") Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Link: https://lkml.kernel.org/r/20210526143805.2549649-1-yangyingliang@huawei.com Reviewed-by: Alexey Gladkov <legion@kernel.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Paul E. McKenney
|
728f23e53c |
rcu: Invoke rcu_spawn_core_kthreads() from rcu_spawn_gp_kthread()
[ Upstream commit 8e4b1d2bc198e34b48fc7cc3a3c5a2fcb269e271 ]
Currently, rcu_spawn_core_kthreads() is invoked via an early_initcall(),
which works, except that rcu_spawn_gp_kthread() is also invoked via an
early_initcall() and rcu_spawn_core_kthreads() relies on adjustments to
kthread_prio that are carried out by rcu_spawn_gp_kthread(). There is
no guaranttee of ordering among early_initcall() handlers, and thus no
guarantee that kthread_prio will be properly checked and range-limited
at the time that rcu_spawn_core_kthreads() needs it.
In most cases, this bug is harmless. After all, the only reason that
rcu_spawn_gp_kthread() adjusts the value of kthread_prio is if the user
specified a nonsensical value for this boot parameter, which experience
indicates is rare.
Nevertheless, a bug is a bug. This commit therefore causes the
rcu_spawn_core_kthreads() function to be invoked directly from
rcu_spawn_gp_kthread() after any needed adjustments to kthread_prio have
been carried out.
Fixes:
|
||
John Fastabend
|
f97b9c4c07 |
bpf: Fix null ptr deref with mixed tail calls and subprogs
[ Upstream commit 7506d211b932870155bcb39e3dd9e39fab45a7c7 ]
The sub-programs prog->aux->poke_tab[] is populated in jit_subprogs() and
then used when emitting 'BPF_JMP|BPF_TAIL_CALL' insn->code from the
individual JITs. The poke_tab[] to use is stored in the insn->imm by
the code adding it to that array slot. The JIT then uses imm to find the
right entry for an individual instruction. In the x86 bpf_jit_comp.c
this is done by calling emit_bpf_tail_call_direct with the poke_tab[]
of the imm value.
However, we observed the below null-ptr-deref when mixing tail call
programs with subprog programs. For this to happen we just need to
mix bpf-2-bpf calls and tailcalls with some extra calls or instructions
that would be patched later by one of the fixup routines. So whats
happening?
Before the fixup_call_args() -- where the jit op is done -- various
code patching is done by do_misc_fixups(). This may increase the
insn count, for example when we patch map_lookup_up using map_gen_lookup
hook. This does two things. First, it means the instruction index,
insn_idx field, of a tail call instruction will move by a 'delta'.
In verifier code,
struct bpf_jit_poke_descriptor desc = {
.reason = BPF_POKE_REASON_TAIL_CALL,
.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
.tail_call.key = bpf_map_key_immediate(aux),
.insn_idx = i + delta,
};
Then subprog start values subprog_info[i].start will be updated
with the delta and any poke descriptor index will also be updated
with the delta in adjust_poke_desc(). If we look at the adjust
subprog starts though we see its only adjusted when the delta
occurs before the new instructions,
/* NOTE: fake 'exit' subprog should be updated as well. */
for (i = 0; i <= env->subprog_cnt; i++) {
if (env->subprog_info[i].start <= off)
continue;
Earlier subprograms are not changed because their start values
are not moved. But, adjust_poke_desc() does the offset + delta
indiscriminately. The result is poke descriptors are potentially
corrupted.
Then in jit_subprogs() we only populate the poke_tab[]
when the above insn_idx is less than the next subprogram start. From
above we corrupted our insn_idx so we might incorrectly assume a
poke descriptor is not used in a subprogram omitting it from the
subprogram. And finally when the jit runs it does the deref of poke_tab
when emitting the instruction and crashes with below. Because earlier
step omitted the poke descriptor.
The fix is straight forward with above context. Simply move same logic
from adjust_subprog_starts() into adjust_poke_descs() and only adjust
insn_idx when needed.
[ 82.396354] bpf_testmod: version magic '5.12.0-rc2alu+ SMP preempt mod_unload ' should be '5.12.0+ SMP preempt mod_unload '
[ 82.623001] loop10: detected capacity change from 0 to 8
[ 88.487424] ==================================================================
[ 88.487438] BUG: KASAN: null-ptr-deref in do_jit+0x184a/0x3290
[ 88.487455] Write of size 8 at addr 0000000000000008 by task test_progs/5295
[ 88.487471] CPU: 7 PID: 5295 Comm: test_progs Tainted: G I 5.12.0+ #386
[ 88.487483] Hardware name: Dell Inc. Precision 5820 Tower/002KVM, BIOS 1.9.2 01/24/2019
[ 88.487490] Call Trace:
[ 88.487498] dump_stack+0x93/0xc2
[ 88.487515] kasan_report.cold+0x5f/0xd8
[ 88.487530] ? do_jit+0x184a/0x3290
[ 88.487542] do_jit+0x184a/0x3290
...
[ 88.487709] bpf_int_jit_compile+0x248/0x810
...
[ 88.487765] bpf_check+0x3718/0x5140
...
[ 88.487920] bpf_prog_load+0xa22/0xf10
Fixes:
|
||
Zhaoyang Huang
|
6bfcb61789 |
psi: Fix race between psi_trigger_create/destroy
[ Upstream commit 8f91efd870ea5d8bc10b0fcc9740db51cd4c0c83 ]
Race detected between psi_trigger_destroy/create as shown below, which
cause panic by accessing invalid psi_system->poll_wait->wait_queue_entry
and psi_system->poll_timer->entry->next. Under this modification, the
race window is removed by initialising poll_wait and poll_timer in
group_init which are executed only once at beginning.
psi_trigger_destroy() psi_trigger_create()
mutex_lock(trigger_lock);
rcu_assign_pointer(poll_task, NULL);
mutex_unlock(trigger_lock);
mutex_lock(trigger_lock);
if (!rcu_access_pointer(group->poll_task)) {
timer_setup(poll_timer, poll_timer_fn, 0);
rcu_assign_pointer(poll_task, task);
}
mutex_unlock(trigger_lock);
synchronize_rcu();
del_timer_sync(poll_timer); <-- poll_timer has been reinitialized by
psi_trigger_create()
So, trigger_lock/RCU correctly protects destruction of
group->poll_task but misses this race affecting poll_timer and
poll_wait.
Fixes:
|
||
Peter Zijlstra
|
fca9e784a3 |
lockdep: Fix wait-type for empty stack
[ Upstream commit f8b298cc39f0619544c607eaef09fd0b2afd10f3 ]
Even the very first lock can violate the wait-context check, consider
the various IRQ contexts.
Fixes:
|
||
Qais Yousef
|
ca47a4fa89 |
sched/uclamp: Fix uclamp_tg_restrict()
[ Upstream commit 0213b7083e81f4acd69db32cb72eb4e5f220329a ] Now cpu.uclamp.min acts as a protection, we need to make sure that the uclamp request of the task is within the allowed range of the cgroup, that is it is clamp()'ed correctly by tg->uclamp[UCLAMP_MIN] and tg->uclamp[UCLAMP_MAX]. As reported by Xuewen [1] we can have some corner cases where there's inversion between uclamp requested by task (p) and the uclamp values of the taskgroup it's attached to (tg). Following table demonstrates 2 corner cases: | p | tg | effective -----------+-----+------+----------- CASE 1 -----------+-----+------+----------- uclamp_min | 60% | 0% | 60% -----------+-----+------+----------- uclamp_max | 80% | 50% | 50% -----------+-----+------+----------- CASE 2 -----------+-----+------+----------- uclamp_min | 0% | 30% | 30% -----------+-----+------+----------- uclamp_max | 20% | 50% | 20% -----------+-----+------+----------- With this fix we get: | p | tg | effective -----------+-----+------+----------- CASE 1 -----------+-----+------+----------- uclamp_min | 60% | 0% | 50% -----------+-----+------+----------- uclamp_max | 80% | 50% | 50% -----------+-----+------+----------- CASE 2 -----------+-----+------+----------- uclamp_min | 0% | 30% | 30% -----------+-----+------+----------- uclamp_max | 20% | 50% | 30% -----------+-----+------+----------- Additionally uclamp_update_active_tasks() must now unconditionally update both UCLAMP_MIN/MAX because changing the tg's UCLAMP_MAX for instance could have an impact on the effective UCLAMP_MIN of the tasks. | p | tg | effective -----------+-----+------+----------- old -----------+-----+------+----------- uclamp_min | 60% | 0% | 50% -----------+-----+------+----------- uclamp_max | 80% | 50% | 50% -----------+-----+------+----------- *new* -----------+-----+------+----------- uclamp_min | 60% | 0% | *60%* -----------+-----+------+----------- uclamp_max | 80% |*70%* | *70%* -----------+-----+------+----------- [1] https://lore.kernel.org/lkml/CAB8ipk_a6VFNjiEnHRHkUMBKbA+qzPQvhtNjJ_YNzQhqV_o8Zw@mail.gmail.com/ Fixes: 0c18f2ecfcc2 ("sched/uclamp: Fix wrong implementation of cpu.uclamp.min") Reported-by: Xuewen Yan <xuewen.yan94@gmail.com> Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210617165155.3774110-1-qais.yousef@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Vincent Donnefort
|
aea030cefc |
sched/rt: Fix Deadline utilization tracking during policy change
[ Upstream commit d7d607096ae6d378b4e92d49946d22739c047d4c ]
DL keeps track of the utilization on a per-rq basis with the structure
avg_dl. This utilization is updated during task_tick_dl(),
put_prev_task_dl() and set_next_task_dl(). However, when the current
running task changes its policy, set_next_task_dl() which would usually
take care of updating the utilization when the rq starts running DL
tasks, will not see a such change, leaving the avg_dl structure outdated.
When that very same task will be dequeued later, put_prev_task_dl() will
then update the utilization, based on a wrong last_update_time, leading to
a huge spike in the DL utilization signal.
The signal would eventually recover from this issue after few ms. Even
if no DL tasks are run, avg_dl is also updated in
__update_blocked_others(). But as the CPU capacity depends partly on the
avg_dl, this issue has nonetheless a significant impact on the scheduler.
Fix this issue by ensuring a load update when a running task changes
its policy to DL.
Fixes:
|
||
Vincent Donnefort
|
c576472a05 |
sched/rt: Fix RT utilization tracking during policy change
[ Upstream commit fecfcbc288e9f4923f40fd23ca78a6acdc7fdf6c ]
RT keeps track of the utilization on a per-rq basis with the structure
avg_rt. This utilization is updated during task_tick_rt(),
put_prev_task_rt() and set_next_task_rt(). However, when the current
running task changes its policy, set_next_task_rt() which would usually
take care of updating the utilization when the rq starts running RT tasks,
will not see a such change, leaving the avg_rt structure outdated. When
that very same task will be dequeued later, put_prev_task_rt() will then
update the utilization, based on a wrong last_update_time, leading to a
huge spike in the RT utilization signal.
The signal would eventually recover from this issue after few ms. Even if
no RT tasks are run, avg_rt is also updated in __update_blocked_others().
But as the CPU capacity depends partly on the avg_rt, this issue has
nonetheless a significant impact on the scheduler.
Fix this issue by ensuring a load update when a running task changes
its policy to RT.
Fixes:
|
||
Qais Yousef
|
37481ad72d |
sched/uclamp: Fix locking around cpu_util_update_eff()
[ Upstream commit 93b73858701fd01de26a4a874eb95f9b7156fd4b ]
cpu_cgroup_css_online() calls cpu_util_update_eff() without holding the
uclamp_mutex or rcu_read_lock() like other call sites, which is
a mistake.
The uclamp_mutex is required to protect against concurrent reads and
writes that could update the cgroup hierarchy.
The rcu_read_lock() is required to traverse the cgroup data structures
in cpu_util_update_eff().
Surround the caller with the required locks and add some asserts to
better document the dependency in cpu_util_update_eff().
Fixes:
|
||
Qais Yousef
|
6c2b3d565f |
sched/uclamp: Fix wrong implementation of cpu.uclamp.min
[ Upstream commit 0c18f2ecfcc274a4bcc1d122f79ebd4001c3b445 ]
cpu.uclamp.min is a protection as described in cgroup-v2 Resource
Distribution Model
Documentation/admin-guide/cgroup-v2.rst
which means we try our best to preserve the minimum performance point of
tasks in this group. See full description of cpu.uclamp.min in the
cgroup-v2.rst.
But the current implementation makes it a limit, which is not what was
intended.
For example:
tg->cpu.uclamp.min = 20%
p0->uclamp[UCLAMP_MIN] = 0
p1->uclamp[UCLAMP_MIN] = 50%
Previous Behavior (limit):
p0->effective_uclamp = 0
p1->effective_uclamp = 20%
New Behavior (Protection):
p0->effective_uclamp = 20%
p1->effective_uclamp = 50%
Which is inline with how protections should work.
With this change the cgroup and per-task behaviors are the same, as
expected.
Additionally, we remove the confusing relationship between cgroup and
!user_defined flag.
We don't want for example RT tasks that are boosted by default to max to
change their boost value when they attach to a cgroup. If a cgroup wants
to limit the max performance point of tasks attached to it, then
cpu.uclamp.max must be set accordingly.
Or if they want to set different boost value based on cgroup, then
sysctl_sched_util_clamp_min_rt_default must be used to NOT boost to max
and set the right cpu.uclamp.min for each group to let the RT tasks
obtain the desired boost value when attached to that group.
As it stands the dependency on !user_defined flag adds an extra layer of
complexity that is not required now cpu.uclamp.min behaves properly as
a protection.
The propagation model of effective cpu.uclamp.min in child cgroups as
implemented by cpu_util_update_eff() is still correct. The parent
protection sets an upper limit of what the child cgroups will
effectively get.
Fixes:
|
||
Petr Mladek
|
fc12d8fbcf |
kthread_worker: fix return value when kthread_mod_delayed_work() races with kthread_cancel_delayed_work_sync()
[ Upstream commit d71ba1649fa3c464c51ec7163e4b817345bff2c7 ] kthread_mod_delayed_work() might race with kthread_cancel_delayed_work_sync() or another kthread_mod_delayed_work() call. The function lets the other operation win when it sees work->canceling counter set. And it returns @false. But it should return @true as it is done by the related workqueue API, see mod_delayed_work_on(). The reason is that the return value might be used for reference counting. It has to distinguish the case when the number of queued works has changed or stayed the same. The change is safe. kthread_mod_delayed_work() return value is not checked anywhere at the moment. Link: https://lore.kernel.org/r/20210521163526.GA17916@redhat.com Link: https://lkml.kernel.org/r/20210610133051.15337-4-pmladek@suse.com Signed-off-by: Petr Mladek <pmladek@suse.com> Reported-by: Oleg Nesterov <oleg@redhat.com> Cc: Nathan Chancellor <nathan@kernel.org> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Minchan Kim <minchan@google.com> Cc: <jenhaochen@google.com> Cc: Martin Liu <liumartin@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Paul E. McKenney
|
d9b40ebd44 |
clocksource: Check per-CPU clock synchronization when marked unstable
[ Upstream commit 7560c02bdffb7c52d1457fa551b9e745d4b9e754 ] Some sorts of per-CPU clock sources have a history of going out of synchronization with each other. However, this problem has purportedy been solved in the past ten years. Except that it is all too possible that the problem has instead simply been made less likely, which might mean that some of the occasional "Marking clocksource 'tsc' as unstable" messages might be due to desynchronization. How would anyone know? Therefore apply CPU-to-CPU synchronization checking to newly unstable clocksource that are marked with the new CLOCK_SOURCE_VERIFY_PERCPU flag. Lists of desynchronized CPUs are printed, with the caveat that if it is the reporting CPU that is itself desynchronized, it will appear that all the other clocks are wrong. Just like in real life. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-2-paulmck@kernel.org Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Paul E. McKenney
|
03a65c14ab |
clocksource: Retry clock read if long delays detected
[ Upstream commit db3a34e17433de2390eb80d436970edcebd0ca3e ] When the clocksource watchdog marks a clock as unstable, this might be due to that clock being unstable or it might be due to delays that happen to occur between the reads of the two clocks. Yes, interrupts are disabled across those two reads, but there are no shortage of things that can delay interrupts-disabled regions of code ranging from SMI handlers to vCPU preemption. It would be good to have some indication as to why the clock was marked unstable. Therefore, re-read the watchdog clock on either side of the read from the clock under test. If the watchdog clock shows an excessive time delta between its pair of reads, the reads are retried. The maximum number of retries is specified by a new kernel boot parameter clocksource.max_cswd_read_retries, which defaults to three, that is, up to four reads, one initial and up to three retries. If more than one retry was required, a message is printed on the console (the occasional single retry is expected behavior, especially in guest OSes). If the maximum number of retries is exceeded, the clock under test will be marked unstable. However, the probability of this happening due to various sorts of delays is quite small. In addition, the reason (clock-read delays) for the unstable marking will be apparent. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Boqun Feng
|
963baea02d |
lockding/lockdep: Avoid to find wrong lock dep path in check_irq_usage()
[ Upstream commit 7b1f8c6179769af6ffa055e1169610b51d71edd5 ] In the step #3 of check_irq_usage(), we seach backwards to find a lock whose usage conflicts the usage of @target_entry1 on safe/unsafe. However, we should only keep the irq-unsafe usage of @target_entry1 into consideration, because it could be a case where a lock is hardirq-unsafe but soft-safe, and in check_irq_usage() we find it because its hardirq-unsafe could result into a hardirq-safe-unsafe deadlock, but currently since we don't filter out the other usage bits, so we may find a lock dependency path softirq-unsafe -> softirq-safe, which in fact doesn't cause a deadlock. And this may cause misleading lockdep splats. Fix this by only keeping LOCKF_ENABLED_IRQ_ALL bits when we try the backwards search. Reported-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210618170110.3699115-4-boqun.feng@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Boqun Feng
|
93cc59d8d0 |
locking/lockdep: Fix the dep path printing for backwards BFS
[ Upstream commit 69c7a5fb2482636f525f016c8333fdb9111ecb9d ] We use the same code to print backwards lock dependency path as the forwards lock dependency path, and this could result into incorrect printing because for a backwards lock_list ->trace is not the call trace where the lock of ->class is acquired. Fix this by introducing a separate function on printing the backwards dependency path. Also add a few comments about the printing while we are at it. Reported-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210618170110.3699115-2-boqun.feng@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Odin Ugedal
|
9fa8542a63 |
sched/fair: Fix ascii art by relpacing tabs
[ Upstream commit 08f7c2f4d0e9f4283f5796b8168044c034a1bfcb ] When using something other than 8 spaces per tab, this ascii art makes not sense, and the reader might end up wondering what this advanced equation "is". Signed-off-by: Odin Ugedal <odin@uged.al> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210518125202.78658-4-odin@uged.al Signed-off-by: Sasha Levin <sashal@kernel.org> |
||
Valentin Schneider
|
3c51d82d0b |
sched/core: Initialize the idle task with preemption disabled
[ Upstream commit f1a0a376ca0c4ef1fc3d24e3e502acbb5b795674 ]
As pointed out by commit
|