Commit Graph

24 Commits

Author SHA1 Message Date
Ben Skeggs
ff37116ea4 drm/nouveau/kms/nv50-: convert core head_or() to new push macros
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
2020-07-24 18:50:55 +10:00
Ben Skeggs
246db5fd38 drm/nouveau/kms/nv50-: convert core head_procamp() to new push macros
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
2020-07-24 18:50:55 +10:00
Ben Skeggs
2f819f2be0 drm/nouveau/kms/nv50-: convert core head_dither() to new push macros
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
2020-07-24 18:50:55 +10:00
Ben Skeggs
db2a20693e drm/nouveau/kms/nv50-: convert core head_ovly() to new push macros
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
2020-07-24 18:50:55 +10:00
Ben Skeggs
93f7f05457 drm/nouveau/kms/nv50-: convert core head_base() to new push macros
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
2020-07-24 18:50:55 +10:00
Ben Skeggs
bc5af56a8f drm/nouveau/kms/nv50-: convert core head_curs_clr() to new push macros
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
2020-07-24 18:50:55 +10:00
Ben Skeggs
9549c14b32 drm/nouveau/kms/nv50-: convert core head_curs_set() to new push macros
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
2020-07-24 18:50:55 +10:00
Ben Skeggs
aabe253e38 drm/nouveau/kms/nv50-: convert core head_core_clr() to new push macros
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
2020-07-24 18:50:55 +10:00
Ben Skeggs
a38870a21c drm/nouveau/kms/nv50-: convert core head_core_set() to new push macros
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
2020-07-24 18:50:54 +10:00
Ben Skeggs
4fbf03a32f drm/nouveau/kms/nv50-: convert core head_olut_clr() to new push macros
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
2020-07-24 18:50:54 +10:00
Ben Skeggs
a5df76301c drm/nouveau/kms/nv50-: convert core head_olut_set() to new push macros
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
2020-07-24 18:50:54 +10:00
Ben Skeggs
caa966a7a6 drm/nouveau/kms/nv50-: convert core head_mode() to new push macros
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
2020-07-24 18:50:54 +10:00
Ben Skeggs
1f772f5a08 drm/nouveau/kms/nv50-: convert core head_view() to new push macros
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reviewed-by: Lyude Paul <lyude@redhat.com>
2020-07-24 18:50:54 +10:00
Lyude Paul
12885ecbfe drm/nouveau/kms/nvd9-: Add CRC support
This introduces support for CRC readback on gf119+, using the
documentation generously provided to us by Nvidia:

https://github.com/NVIDIA/open-gpu-doc/blob/master/Display-CRC/display-crc.txt

We expose all available CRC sources. SF, SOR, PIOR, and DAC are exposed
through a single set of "outp" sources: outp-active/auto for a CRC of
the scanout region, outp-complete for a CRC of both the scanout and
blanking/sync region combined, and outp-inactive for a CRC of only the
blanking/sync region. For each source, nouveau selects the appropriate
tap point based on the output path in use. We also expose an "rg"
source, which allows for capturing CRCs of the scanout raster before
it's encoded into a video signal in the output path. This tap point is
referred to as the raster generator.

Note that while there's some other neat features that can be used with
CRC capture on nvidia hardware, like capturing from two CRC sources
simultaneously, I couldn't see any usecase for them and did not
implement them.

Nvidia only allows for accessing CRCs through a shared DMA region that
we program through the core EVO/NvDisplay channel which is referred to
as the notifier context. The notifier context is limited to either 255
(for Fermi-Pascal) or 2047 (Volta+) entries to store CRCs in, and
unfortunately the hardware simply drops CRCs and reports an overflow
once all available entries in the notifier context are filled.

Since the DRM CRC API and igt-gpu-tools don't expect there to be a limit
on how many CRCs can be captured, we work around this in nouveau by
allocating two separate notifier contexts for each head instead of one.
We schedule a vblank worker ahead of time so that once we start getting
close to filling up all of the available entries in the notifier
context, we can swap the currently used notifier context out with
another pre-prepared notifier context in a manner similar to page
flipping.

Unfortunately, the hardware only allows us to this by flushing two
separate updates on the core channel: one to release the current
notifier context handle, and one to program the next notifier context's
handle. When the hardware processes the first update, the CRC for the
current frame is lost. However, the second update can be flushed
immediately without waiting for the first to complete so that CRC
generation resumes on the next frame. According to Nvidia's hardware
engineers, there isn't any cleaner way of flipping notifier contexts
that would avoid this.

Since using vblank workers to swap out the notifier context will ensure
we can usually flush both updates to hardware within the timespan of a
single frame, we can also ensure that there will only be exactly one
frame lost between the first and second update being executed by the
hardware. This gives us the guarantee that we're always correctly
matching each CRC entry with it's respective frame even after a context
flip. And since IGT will retrieve the CRC entry for a frame by waiting
until it receives a CRC for any subsequent frames, this doesn't cause an
issue with any tests and is much simpler than trying to change the
current DRM API to accommodate.

In order to facilitate testing of correct handling of this limitation,
we also expose a debugfs interface to manually control the threshold for
when we start trying to flip the notifier context. We will use this in
igt to trigger a context flip for testing purposes without needing to
wait for the notifier to completely fill up. This threshold is reset
to the default value set by nouveau after each capture, and is exposed
in a separate folder within each CRTC's debugfs directory labelled
"nv_crc".

Changes since v1:
* Forgot to finish saving crc.h before saving, whoops. This just adds
  some corrections to the empty function declarations that we use if
  CONFIG_DEBUG_FS isn't enabled.
Changes since v2:
* Don't check return code from debugfs_create_dir() or
  debugfs_create_file() - Greg K-H
Changes since v3:
  (no functional changes)
* Fix SPDX license identifiers (checkpatch)
* s/uint32_t/u32/ (checkpatch)
* Fix indenting in switch cases (checkpatch)
Changes since v4:
* Remove unneeded param changes with nv50_head_flush_clr/set
* Rebase
Changes since v5:
* Remove set but unused variable (outp) in nv50_crc_atomic_check() -
  Kbuild bot

Signed-off-by: Lyude Paul <lyude@redhat.com>
Reviewed-by: Ben Skeggs <bskeggs@redhat.com>
Acked-by: Dave Airlie <airlied@gmail.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200627194657.156514-10-lyude@redhat.com
2020-07-16 18:16:33 -04:00
Lyude Paul
dbdaf719c6 drm/nouveau/kms/nv140-: Track wndw mappings in nv50_head_atom
While we're not quite ready yet to add support for flexible wndw
mappings, we are going to need to at least keep track of the static wndw
mappings we're currently using in each head's atomic state. We'll likely
use this in the future to implement real flexible window mapping, but
the primary reason we'll need this is for CRC support.

See: on nvidia hardware, each CRC entry in the CRC notifier dma context
has a "tag". This tag corresponds to the nth update on a specific
EVO/NvDisplay channel, which itself is referred to as the "controlling
channel". For gf119+ this can be the core channel, ovly channel, or base
channel. Since we don't expose CRC entry tags to userspace, we simply
ignore this feature and always use the core channel as the controlling
channel. Simple.

Things get a little bit more complicated on gv100+ though. GV100+ only
lets us set the controlling channel to a specific wndw channel, and that
wndw must be owned by the head that we're grabbing CRCs when we enable
CRC generation. Thus, we always need to make sure that each atomic head
state has at least one wndw that is mapped to the head, which will be
used as the controlling channel.

Note that since we don't have flexible wndw mappings yet, we don't
expect to run into any scenarios yet where we'd have a head with no
mapped wndws. When we do add support for flexible wndw mappings however,
we'll need to make sure that we handle reprogramming CRC capture if our
controlling wndw is moved to another head (and potentially reject the
new head state entirely if we can't find another available wndw to
replace it).

With that being said, nouveau currently tracks wndw visibility on heads.
It does not keep track of the actual ownership mappings, which are
(currently) statically programmed. To fix this, we introduce another
bitmask into nv50_head_atom.wndw to keep track of ownership separately
from visibility. We then introduce a nv50_head callback to handle
populating the wndw ownership map, and call it during the atomic check
phase when core->assign_windows is set to true.

Signed-off-by: Lyude Paul <lyude@redhat.com>
Reviewed-by: Ben Skeggs <bskeggs@redhat.com>
Acked-by: Dave Airlie <airlied@gmail.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200627194657.156514-7-lyude@redhat.com
2020-07-16 18:16:32 -04:00
Lyude Paul
5ff0cb1ce2 drm/nouveau/kms/nv50-: Use less encoders by making mstos per-head
Currently, for every single MST capable DRM connector we create a set of
fake encoders, one for each possible head. Unfortunately this ends up
being a huge waste of encoders. While this currently isn't causing us
any problems, it's extremely close to doing so.

The ThinkPad P71 is a good example of this. Originally when trying to
figure out why nouveau was failing to load on this laptop, I discovered
it was because nouveau was creating too many encoders. This ended up
being because we were mistakenly creating MST encoders for the eDP port,
however we are still extremely close to hitting the encoder limit on
this machine as it exposes 1 eDP port and 5 DP ports, resulting in 31
encoders.

So while this fix didn't end up being necessary to fix the P71, we still
need to implement this so that we avoid hitting the encoder limit for
valid display configurations in the event that some machine with more
connectors then this becomes available. Plus, we don't want to let good
code go to waste :)

So, use less encoders by only creating one MSTO per head. Then, attach
each new MSTC to each MSTO which corresponds to a head that it's parent
DP port is capable of using. This brings the number of encoders we
register on the ThinkPad P71 from 31, down to just 15. Yay!

Signed-off-by: Lyude Paul <lyude@redhat.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2020-01-15 10:49:58 +10:00
Ilia Mirkin
131992709d drm/nouveau/kms/gf119-: allow both 256- and 1024-sized LUTs to be used
The hardware supports either size. Also add checks to ensure that only
these two sizes may be used for supplying a LUT.

Signed-off-by: Ilia Mirkin <imirkin@alum.mit.edu>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2020-01-15 10:49:58 +10:00
Ben Skeggs
563737c525 drm/nouveau/kms/tu104: initial support
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2018-12-11 15:37:55 +10:00
Ben Skeggs
cb55cd0c66 drm/nouveau/kms/nv50-: allow more flexibility with lut formats
Will be required for Turing.

Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2018-12-11 15:37:49 +10:00
Ben Skeggs
facaed62b4 drm/nouveau/kms/gv100: initial support
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2018-05-18 15:01:46 +10:00
Ben Skeggs
01d380ab4f drm/nouveau/kms/gk104-: support additional cursor sizes
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2018-05-18 15:01:30 +10:00
Ben Skeggs
119608a7f3 drm/nouveau/kms/nv50-: handle degamma LUT from window channels
Required to eventually support DRM colour management APIs, and to
support Volta.

Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2018-05-18 15:01:29 +10:00
Ben Skeggs
09e1b78aab drm/nouveau/kms/nv50-: split core implementation by hardware class
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2018-05-18 15:01:28 +10:00
Ben Skeggs
1590700d94 drm/nouveau/kms/nv50-: split each resource type into their own source files
There should be no code changes here, just shuffling stuff around.

Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2018-05-18 15:01:28 +10:00