Introduce a new KVM device that represents an ARM Interrupt Translation
Service (ITS) controller. Since there can be multiple of this per guest,
we can't piggy back on the existing GICv3 distributor device, but create
a new type of KVM device.
On the KVM_CREATE_DEVICE ioctl we allocate and initialize the ITS data
structure and store the pointer in the kvm_device data.
Upon an explicit init ioctl from userland (after having setup the MMIO
address) we register the handlers with the kvm_io_bus framework.
Any reference to an ITS thus has to go via this interface.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Let's not provide the device attribute for cmma enabling and clearing
if the hardware doesn't support it.
This also helps getting rid of the undocumented return value "-EINVAL"
in case CMMA is not available when trying to enable it.
Also properly document the meaning of -EINVAL for CMMA clearing.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We have certain instructions that indicate available subfunctions via
a query subfunction (crypto functions and ptff), or via a test bit
function (plo).
By exposing these "subfunction blocks" to user space, we allow user space
to
1) query available subfunctions and make sure subfunctions won't get lost
during migration - e.g. properly indicate them via a CPU model
2) change the subfunctions to be reported to the guest (even adding
unavailable ones)
This mechanism works just like the way we indicate the stfl(e) list to
user space.
This way, user space could even emulate some subfunctions in QEMU in the
future. If this is ever applicable, we have to make sure later on, that
unsupported subfunctions result in an intercept to QEMU.
Please note that support to indicate them to the guest is still missing
and requires hardware support. Usually, the IBC takes already care of these
subfunctions for migration safety. QEMU should make sure to always set
these bits properly according to the machine generation to be emulated.
Available subfunctions are only valid in combination with STFLE bits
retrieved via KVM_S390_VM_CPU_MACHINE and enabled via
KVM_S390_VM_CPU_PROCESSOR. If the applicable bits are available, the
indicated subfunctions are guaranteed to be correct.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
For now, we only have an interface to query and configure facilities
indicated via STFL(E). However, we also have features indicated via
SCLP, that have to be indicated to the guest by user space and usually
require KVM support.
This patch allows user space to query and configure available cpu features
for the guest.
Please note that disabling a feature doesn't necessarily mean that it is
completely disabled (e.g. ESOP is mostly handled by the SIE). We will try
our best to disable it.
Most features (e.g. SCLP) can't directly be forwarded, as most of them need
in addition to hardware support, support in KVM. As we later on want to
turn these features in KVM explicitly on/off (to simulate different
behavior), we have to filter all features provided by the hardware and
make them configurable.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Introduce a FLIC operation for clearing I/O interrupts for a subchannel.
Rationale: According to the platform specification, pending I/O
interruption requests have to be revoked in certain situations. For
instance, according to the Principles of Operation (page 17-27), a
subchannel put into the installed parameters initialized state is in the
same state as after an I/O system reset (just parameters possibly changed).
This implies that any I/O interrupts for that subchannel are no longer
pending (as I/O system resets clear I/O interrupts). Therefore, we need an
interface to clear pending I/O interrupts.
Signed-off-by: Halil Pasic <pasic@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
FLIC behavior deviates from the API documentation in reporting EINVAL
instead of ENXIO for KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR when the group
or attribute is unknown/unsupported. Unfortunately this can not be fixed
for historical reasons. Let us at least have it documented.
Signed-off-by: Halil Pasic <pasic@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- Various optimizations to the vgic save/restore code
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW36xjAAoJECPQ0LrRPXpDGQkQAMDppzcTOixT3e8VPdHAX09a
Z5PO0gyTMVV7Jyz5Ul3pedPJA2GSK9mxOCwqvIFbdxLAR6ZB00juO5FrTHkSdI91
1XLPj4bKoMWcVvhL/g5A4Glp/pVMW1k/9Yq8zZAtYlsLRlqG5rLOutSadcqHcYaJ
cTD/pFf7b2oPtkTPyoFml75KgHBT/8uvAvFDOWA66Id2z6T11+PsBT/6XnGDiwKg
tpGTNzx3kPIKIzOAOHqVW6UBxFOeabebXLT8wUz3VwNn/UbG6gkumMNApMAyF2q1
zU0nAh8+7Ek6Dr4OFWE6BfW6sgg/l7i1lA8XoAmqG7ZTrSptCc59fvaZJxPruG+Q
dMsU6QgR77JJjbZTinf9a1jReZ/liZrx2gZXedVKdILrjmDSq0UnGcxjUOEDZOGy
2/dbrlJhv+LhpcJtuPpxPCfoqbW5L0ynzmuYuXRdRz3lTHiOWIRx5gugrhO+wH4D
4gvZhbw3XCiYfpYHYhl8A1EH5kanKgdXDocz9yIm7mZm89gngufF/HkeXS3ZU25T
yThyBGulGjqN4FCdgf1HolkTfFjnfSx4qJovJ58eHga+HNLXRkTecZZcbFy2OOHv
8Bx0PIlwj4RgSaRLWQUudAhdhKS2g22DKDDljxFwhkMPNghvqkYMJCRDKLu6GBXQ
4YsLKM+TaShHFjSpx+ao
=rpvb
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM updates for 4.6
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- Various optimizations to the vgic save/restore code
Conflicts:
include/uapi/linux/kvm.h
To configure the virtual PMUv3 overflow interrupt number, we use the
vcpu kvm_device ioctl, encapsulating the KVM_ARM_VCPU_PMU_V3_IRQ
attribute within the KVM_ARM_VCPU_PMU_V3_CTRL group.
After configuring the PMUv3, call the vcpu ioctl with attribute
KVM_ARM_VCPU_PMU_V3_INIT to initialize the PMUv3.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Acked-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
In some cases it needs to get/set attributes specific to a vcpu and so
needs something else than ONE_REG.
Let's copy the KVM_DEVICE approach, and define the respective ioctls
for the vcpu file descriptor.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Acked-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The interface for adapter mappings was designed with code in mind
that maps each address only once; let's document this.
Otherwise, duplicate mappings are added to the list, which makes
the code ineffective and uses up the limited amount of mapping
needlessly.
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's properly document KVM_S390_VM_CRYPTO and its attributes.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Let's properly document KVM_S390_VM_TOD and its attributes.
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
While the userspace interface requests the maximum size the gmap code
expects to get a maximum address.
This error resulted in bigger page tables than necessary for some guest
sizes, e.g. a 2GB guest used 3 levels instead of 2.
At the same time we introduce KVM_S390_NO_MEM_LIMIT, which allows in a
bright future that a guest spans the complete 64 bit address space.
We also switch to TASK_MAX_SIZE for the initial memory size, this is a
cosmetic change as the previous size also resulted in a 4 level pagetable
creation.
Reported-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
handling.
PPC: Mostly bug fixes.
ARM: No big features, but many small fixes and prerequisites including:
- a number of fixes for the arch-timer
- introducing proper level-triggered semantics for the arch-timers
- a series of patches to synchronously halt a guest (prerequisite for
IRQ forwarding)
- some tracepoint improvements
- a tweak for the EL2 panic handlers
- some more VGIC cleanups getting rid of redundant state
x86: quite a few changes:
- support for VT-d posted interrupts (i.e. PCI devices can inject
interrupts directly into vCPUs). This introduces a new component (in
virt/lib/) that connects VFIO and KVM together. The same infrastructure
will be used for ARM interrupt forwarding as well.
- more Hyper-V features, though the main one Hyper-V synthetic interrupt
controller will have to wait for 4.5. These will let KVM expose Hyper-V
devices.
- nested virtualization now supports VPID (same as PCID but for vCPUs)
which makes it quite a bit faster
- for future hardware that supports NVDIMM, there is support for clflushopt,
clwb, pcommit
- support for "split irqchip", i.e. LAPIC in kernel + IOAPIC/PIC/PIT in
userspace, which reduces the attack surface of the hypervisor
- obligatory smattering of SMM fixes
- on the guest side, stable scheduler clock support was rewritten to not
require help from the hypervisor.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJWO2IQAAoJEL/70l94x66D/K0H/3AovAgYmJQToZlimsktMk6a
f2xhdIqfU5lIQQh5uNBCfL3o9o8H9Py1ym7aEw3fmztPHHJYc91oTatt2UEKhmEw
VtZHp/dFHt3hwaIdXmjRPEXiYctraKCyrhaUYdWmUYkoKi7lW5OL5h+S7frG2U6u
p/hFKnHRZfXHr6NSgIqvYkKqtnc+C0FWY696IZMzgCksOO8jB1xrxoSN3tANW3oJ
PDV+4og0fN/Fr1capJUFEc/fejREHneANvlKrLaa8ht0qJQutoczNADUiSFLcMPG
iHljXeDsv5eyjMtUuIL8+MPzcrIt/y4rY41ZPiKggxULrXc6H+JJL/e/zThZpXc=
=iv2z
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"First batch of KVM changes for 4.4.
s390:
A bunch of fixes and optimizations for interrupt and time handling.
PPC:
Mostly bug fixes.
ARM:
No big features, but many small fixes and prerequisites including:
- a number of fixes for the arch-timer
- introducing proper level-triggered semantics for the arch-timers
- a series of patches to synchronously halt a guest (prerequisite
for IRQ forwarding)
- some tracepoint improvements
- a tweak for the EL2 panic handlers
- some more VGIC cleanups getting rid of redundant state
x86:
Quite a few changes:
- support for VT-d posted interrupts (i.e. PCI devices can inject
interrupts directly into vCPUs). This introduces a new
component (in virt/lib/) that connects VFIO and KVM together.
The same infrastructure will be used for ARM interrupt
forwarding as well.
- more Hyper-V features, though the main one Hyper-V synthetic
interrupt controller will have to wait for 4.5. These will let
KVM expose Hyper-V devices.
- nested virtualization now supports VPID (same as PCID but for
vCPUs) which makes it quite a bit faster
- for future hardware that supports NVDIMM, there is support for
clflushopt, clwb, pcommit
- support for "split irqchip", i.e. LAPIC in kernel +
IOAPIC/PIC/PIT in userspace, which reduces the attack surface of
the hypervisor
- obligatory smattering of SMM fixes
- on the guest side, stable scheduler clock support was rewritten
to not require help from the hypervisor"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (123 commits)
KVM: VMX: Fix commit which broke PML
KVM: x86: obey KVM_X86_QUIRK_CD_NW_CLEARED in kvm_set_cr0()
KVM: x86: allow RSM from 64-bit mode
KVM: VMX: fix SMEP and SMAP without EPT
KVM: x86: move kvm_set_irq_inatomic to legacy device assignment
KVM: device assignment: remove pointless #ifdefs
KVM: x86: merge kvm_arch_set_irq with kvm_set_msi_inatomic
KVM: x86: zero apic_arb_prio on reset
drivers/hv: share Hyper-V SynIC constants with userspace
KVM: x86: handle SMBASE as physical address in RSM
KVM: x86: add read_phys to x86_emulate_ops
KVM: x86: removing unused variable
KVM: don't pointlessly leave KVM_COMPAT=y in non-KVM configs
KVM: arm/arm64: Merge vgic_set_lr() and vgic_sync_lr_elrsr()
KVM: arm/arm64: Clean up vgic_retire_lr() and surroundings
KVM: arm/arm64: Optimize away redundant LR tracking
KVM: s390: use simple switch statement as multiplexer
KVM: s390: drop useless newline in debugging data
KVM: s390: SCA must not cross page boundaries
KVM: arm: Do not indent the arguments of DECLARE_BITMAP
...
Correct some old mistakes in the API documentation:
1. VCPU is identified by index (using kvm_get_vcpu() function), but
"cpu id" can be mistaken for affinity ID.
2. Some error codes are wrong.
[ Slightly tweaked some grammer and did some s/CPU index/vcpu_index/
in the descriptions. -Christoffer ]
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch fix spelling typos in Documentation/virtual/kvm.
Signed-off-by: Masanari Iida <standby24x7@gmail.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This fixes a bug introduced with commit c05c4186bb ("KVM: s390:
add floating irq controller").
get_all_floating_irqs() does copy_to_user() while holding
a spin lock. Let's fix this by filling a temporary buffer
first and copy it to userspace after giving up the lock.
Cc: <stable@vger.kernel.org> # 3.18+: 69a8d45626 KVM: s390: no need to hold...
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
This patch enables cpu model support in kvm/s390 via the vm attribute
interface.
During KVM initialization, the host properties cpuid, IBC value and the
facility list are stored in the architecture specific cpu model structure.
During vcpu setup, these properties are taken to initialize the related SIE
state. This mechanism allows to adjust the properties from user space and thus
to implement different selectable cpu models.
This patch uses the IBC functionality to block instructions that have not
been implemented at the requested CPU type and GA level compared to the
full host capability.
Userspace has to initialize the cpu model before vcpu creation. A cpu model
change of running vcpus is not possible.
Signed-off-by: Michael Mueller <mimu@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
1. Generic
- sparse warning (make function static)
- optimize locking
- bugfixes for interrupt injection
- fix MVPG addressing modes
2. hrtimer/wakeup fun
A recent change can cause KVM hangs if adjtime is used in the host.
The hrtimer might wake up too early or too late. Too early is fatal
as vcpu_block will see that the wakeup condition is not met and
sleep again. This CPU might never wake up again.
This series addresses this problem. adjclock slowing down the host
clock will result in too late wakeups. This will require more work.
In addition to that we also change the hrtimer from REALTIME to
MONOTONIC to avoid similar problems with timedatectl set-time.
3. sigp rework
We will move all "slow" sigps to QEMU (protected with a capability that
can be enabled) to avoid several races between concurrent SIGP orders.
4. Optimize the shadow page table
Provide an interface to announce the maximum guest size. The kernel
will use that to make the pagetable 2,3,4 (or theoretically) 5 levels.
5. Provide an interface to set the guest TOD
We now use two vm attributes instead of two oneregs, as oneregs are
vcpu ioctl and we don't want to call them from other threads.
6. Protected key functions
The real HMC allows to enable/disable protected key CPACF functions.
Lets provide an implementation + an interface for QEMU to activate
this the protected key instructions.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.14 (GNU/Linux)
iQIcBAABAgAGBQJUwj60AAoJEBF7vIC1phx8iV0QAKq1LZRTmgTLS2fd0oyWKZeN
ShWUIUiB+7IUiuogYXZMfqOm61oogxwc95Ti+3tpSWYwkzUWagpS/RJQze7E1HOc
3pHpXwrR01ueUT6uVV4xc/vmVIlQAIl/ScRDDPahlAT2crCleWcKVC9l0zBs/Kut
IrfzN9pJcrkmXD178CDP8/VwXsn02ptLQEpidGibGHCd03YVFjp3X0wfwNdQxMbU
qOwNYCz3SLfDm5gsybO2DG+aVY3AbM2ZOJt/qLv2j4Phz4XB4t4W9iJnAefSz7JA
W4677wbMQpfZlUQYhI78H/Cl9SfWAuLug1xk83O/+lbEiR5u+8zLxB69dkFTiBaH
442OY957T6TQZ/V9d0jDo2XxFrcaU9OONbVLsfBQ56Vwv5cAg9/7zqG8eqH7Nq9R
gU3fQesgD4N0Kpa77T9k45TT/hBRnUEtsGixAPT6QYKyE6cK4AJATHKSjMSLbdfj
ELbt0p2mVtKhuCcANfEx54U2CxOrg5ElBmPz8hRw0OkXdwpqh1sGKmt0govcHP1I
BGSzE9G4mswwI1bQ7cqcyTk/lwL8g3+KQmRJoOcgCveQlnY12X5zGD5DhuPMPiIT
VENqbcTzjlxdu+4t7Enml+rXl7ySsewT9L231SSrbLsTQVgCudD1B9m72WLu5ZUT
9/Z6znv6tkeKV5rM9DYE
=zLjR
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-20150122' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into kvm-next
KVM: s390: fixes and features for kvm/next (3.20)
1. Generic
- sparse warning (make function static)
- optimize locking
- bugfixes for interrupt injection
- fix MVPG addressing modes
2. hrtimer/wakeup fun
A recent change can cause KVM hangs if adjtime is used in the host.
The hrtimer might wake up too early or too late. Too early is fatal
as vcpu_block will see that the wakeup condition is not met and
sleep again. This CPU might never wake up again.
This series addresses this problem. adjclock slowing down the host
clock will result in too late wakeups. This will require more work.
In addition to that we also change the hrtimer from REALTIME to
MONOTONIC to avoid similar problems with timedatectl set-time.
3. sigp rework
We will move all "slow" sigps to QEMU (protected with a capability that
can be enabled) to avoid several races between concurrent SIGP orders.
4. Optimize the shadow page table
Provide an interface to announce the maximum guest size. The kernel
will use that to make the pagetable 2,3,4 (or theoretically) 5 levels.
5. Provide an interface to set the guest TOD
We now use two vm attributes instead of two oneregs, as oneregs are
vcpu ioctl and we don't want to call them from other threads.
6. Protected key functions
The real HMC allows to enable/disable protected key CPACF functions.
Lets provide an implementation + an interface for QEMU to activate
this the protected key instructions.
With commit c6c956b80b ("KVM: s390/mm: support gmap page tables with less
than 5 levels") we are able to define a limit for the guest memory size.
As we round up the guest size in respect to the levels of page tables
we get to guest limits of: 2048 MB, 4096 GB, 8192 TB and 16384 PB.
We currently limit the guest size to 16 TB, which means we end up
creating a page table structure supporting guest sizes up to 8192 TB.
This patch introduces an interface that allows userspace to tune
this limit. This may bring performance improvements for small guests.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Although the GIC architecture requires us to map the MMIO regions
only at page aligned addresses, we currently do not enforce this from
the kernel side.
Restrict any vGICv2 regions to be 4K aligned and any GICv3 regions
to be 64K aligned. Document this requirement.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
With all of the GICv3 code in place now we allow userland to ask the
kernel for using a virtual GICv3 in the guest.
Also we provide the necessary support for guests setting the memory
addresses for the virtual distributor and redistributors.
This requires some userland code to make use of that feature and
explicitly ask for a virtual GICv3.
Document that KVM_CREATE_IRQCHIP only works for GICv2, but is
considered legacy and using KVM_CREATE_DEVICE is preferred.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Since the advent of VGIC dynamic initialization, this latter is
initialized quite late on the first vcpu run or "on-demand", when
injecting an IRQ or when the guest sets its registers.
This initialization could be initiated explicitly much earlier
by the users-space, as soon as it has provided the requested
dimensioning parameters.
This patch adds a new entry to the VGIC KVM device that allows
the user to manually request the VGIC init:
- a new KVM_DEV_ARM_VGIC_GRP_CTRL group is introduced.
- Its first attribute is KVM_DEV_ARM_VGIC_CTRL_INIT
The rationale behind introducing a group is to be able to add other
controls later on, if needed.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Documentation uses incorrect attribute names for some vm device
attributes: fix this.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
In order to make the number of interrupts configurable, use the new
fancy device management API to add KVM_DEV_ARM_VGIC_GRP_NR_IRQS as
a VGIC configurable attribute.
Userspace can now specify the exact size of the GIC (by increments
of 32 interrupts).
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
To enable CMMA and to reset its state we use the vm kvm_device ioctls,
encapsulating attributes within the KVM_S390_VM_MEM_CTRL group.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
We sometimes need to get/set attributes specific to a virtual machine
and so need something else than ONE_REG.
Let's copy the KVM_DEVICE approach, and define the respective ioctls
for the vm file descriptor.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Acked-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Add a new interface to register/deregister sources of adapter interrupts
identified by an unique id via the flic. Adapters may also be maskable
and carry a list of pinned pages.
These adapters will be used by irq routing later.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Cornelia Huck <cornelia.huck@de.ibm.com>
This patch enables async page faults for s390 kvm guests.
It provides the userspace API to enable and disable_wait this feature.
The disable_wait will enforce that the feature is off by waiting on it.
Also it includes the diagnose code, called by the guest to enable async page faults.
The async page faults will use an already existing guest interface for this
purpose, as described in "CP Programming Services (SC24-6084)".
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
This patch adds a floating irq controller as a kvm_device.
It will be necessary for migration of floating interrupts as well
as for hardening the reset code by allowing user space to explicitly
remove all pending floating interrupts.
Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Add infrastructure to handle distributor and cpu interface register
accesses through the KVM_{GET/SET}_DEVICE_ATTR interface by adding the
KVM_DEV_ARM_VGIC_GRP_DIST_REGS and KVM_DEV_ARM_VGIC_GRP_CPU_REGS groups
and defining the semantics of the attr field to be the MMIO offset as
specified in the GICv2 specs.
Missing register accesses or other changes in individual register access
functions to support save/restore of the VGIC state is added in
subsequent patches.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Support setting the distributor and cpu interface base addresses in the
VM physical address space through the KVM_{SET,GET}_DEVICE_ATTR API
in addition to the ARM specific API.
This has the added benefit of being able to share more code in user
space and do things in a uniform manner.
Also deprecate the older API at the same time, but backwards
compatibility will be maintained.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Support creating the ARM VGIC device through the KVM_CREATE_DEVICE
ioctl, which can then later be leveraged to use the
KVM_{GET/SET}_DEVICE_ATTR, which is useful both for setting addresses in
a more generic API than the ARM-specific one and is useful for
save/restore of VGIC state.
Adds KVM_CAP_DEVICE_CTRL to ARM capabilities.
Note that we change the check for creating a VGIC from bailing out if
any VCPUs were created, to bailing out if any VCPUs were ever run. This
is an important distinction that shouldn't break anything, but allows
creating the VGIC after the VCPUs have been created.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
So far we've succeeded at making KVM and VFIO mostly unaware of each
other, but areas are cropping up where a connection beyond eventfds
and irqfds needs to be made. This patch introduces a KVM-VFIO device
that is meant to be a gateway for such interaction. The user creates
the device and can add and remove VFIO groups to it via file
descriptors. When a group is added, KVM verifies the group is valid
and gets a reference to it via the VFIO external user interface.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds the API for userspace to instantiate an XICS device in a VM
and connect VCPUs to it. The API consists of a new device type for
the KVM_CREATE_DEVICE ioctl, a new capability KVM_CAP_IRQ_XICS, which
functions similarly to KVM_CAP_IRQ_MPIC, and the KVM_IRQ_LINE ioctl,
which is used to assert and deassert interrupt inputs of the XICS.
The XICS device has one attribute group, KVM_DEV_XICS_GRP_SOURCES.
Each attribute within this group corresponds to the state of one
interrupt source. The attribute number is the same as the interrupt
source number.
This does not support irq routing or irqfd yet.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
The default routes were removed from the code during patchset
respinning, but were not removed from the documentation.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Now that all the irq routing and irqfd pieces are generic, we can expose
real irqchip support to all of KVM's internal helpers.
This allows us to use irqfd with the in-kernel MPIC.
Signed-off-by: Alexander Graf <agraf@suse.de>
Hook the MPIC code up to the KVM interfaces, add locking, etc.
Signed-off-by: Scott Wood <scottwood@freescale.com>
[agraf: add stub function for kvmppc_mpic_set_epr, non-booke, 64bit]
Signed-off-by: Alexander Graf <agraf@suse.de>
Currently, devices that are emulated inside KVM are configured in a
hardcoded manner based on an assumption that any given architecture
only has one way to do it. If there's any need to access device state,
it is done through inflexible one-purpose-only IOCTLs (e.g.
KVM_GET/SET_LAPIC). Defining new IOCTLs for every little thing is
cumbersome and depletes a limited numberspace.
This API provides a mechanism to instantiate a device of a certain
type, returning an ID that can be used to set/get attributes of the
device. Attributes may include configuration parameters (e.g.
register base address), device state, operational commands, etc. It
is similar to the ONE_REG API, except that it acts on devices rather
than vcpus.
Both device types and individual attributes can be tested without having
to create the device or get/set the attribute, without the need for
separately managing enumerated capabilities.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>