Commit Graph

15677 Commits

Author SHA1 Message Date
Tony W Wang-oc
0f378d73d4 x86/apic: Mask IOAPIC entries when disabling the local APIC
When a system suspends, the local APIC is disabled in the suspend sequence,
but the IOAPIC is left in the current state. This means unmasked interrupt
lines stay unmasked. This is usually the case for IOAPIC pin 9 to which the
ACPI interrupt is connected.

That means that in suspended state the IOAPIC can respond to an external
interrupt, e.g. the wakeup via keyboard/RTC/ACPI, but the interrupt message
cannot be handled by the disabled local APIC. As a consequence the Remote
IRR bit is set, but the local APIC does not send an EOI to acknowledge
it. This causes the affected interrupt line to become stale and the stale
Remote IRR bit will cause a hang when __synchronize_hardirq() is invoked
for that interrupt line.

To prevent this, mask all IOAPIC entries before disabling the local
APIC. The resume code already has the unmask operation inside.

[ tglx: Massaged changelog ]

Signed-off-by: Tony W Wang-oc <TonyWWang-oc@zhaoxin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/1579076539-7267-1-git-send-email-TonyWWang-oc@zhaoxin.com
2020-02-07 15:32:16 +01:00
Thomas Gleixner
6f1a4891a5 x86/apic/msi: Plug non-maskable MSI affinity race
Evan tracked down a subtle race between the update of the MSI message and
the device raising an interrupt internally on PCI devices which do not
support MSI masking. The update of the MSI message is non-atomic and
consists of either 2 or 3 sequential 32bit wide writes to the PCI config
space.

   - Write address low 32bits
   - Write address high 32bits (If supported by device)
   - Write data

When an interrupt is migrated then both address and data might change, so
the kernel attempts to mask the MSI interrupt first. But for MSI masking is
optional, so there exist devices which do not provide it. That means that
if the device raises an interrupt internally between the writes then a MSI
message is sent built from half updated state.

On x86 this can lead to spurious interrupts on the wrong interrupt
vector when the affinity setting changes both address and data. As a
consequence the device interrupt can be lost causing the device to
become stuck or malfunctioning.

Evan tried to handle that by disabling MSI accross an MSI message
update. That's not feasible because disabling MSI has issues on its own:

 If MSI is disabled the PCI device is routing an interrupt to the legacy
 INTx mechanism. The INTx delivery can be disabled, but the disablement is
 not working on all devices.

 Some devices lose interrupts when both MSI and INTx delivery are disabled.

Another way to solve this would be to enforce the allocation of the same
vector on all CPUs in the system for this kind of screwed devices. That
could be done, but it would bring back the vector space exhaustion problems
which got solved a few years ago.

Fortunately the high address (if supported by the device) is only relevant
when X2APIC is enabled which implies interrupt remapping. In the interrupt
remapping case the affinity setting is happening at the interrupt remapping
unit and the PCI MSI message is programmed only once when the PCI device is
initialized.

That makes it possible to solve it with a two step update:

  1) Target the MSI msg to the new vector on the current target CPU

  2) Target the MSI msg to the new vector on the new target CPU

In both cases writing the MSI message is only changing a single 32bit word
which prevents the issue of inconsistency.

After writing the final destination it is necessary to check whether the
device issued an interrupt while the intermediate state #1 (new vector,
current CPU) was in effect.

This is possible because the affinity change is always happening on the
current target CPU. The code runs with interrupts disabled, so the
interrupt can be detected by checking the IRR of the local APIC. If the
vector is pending in the IRR then the interrupt is retriggered on the new
target CPU by sending an IPI for the associated vector on the target CPU.

This can cause spurious interrupts on both the local and the new target
CPU.

 1) If the new vector is not in use on the local CPU and the device
    affected by the affinity change raised an interrupt during the
    transitional state (step #1 above) then interrupt entry code will
    ignore that spurious interrupt. The vector is marked so that the
    'No irq handler for vector' warning is supressed once.

 2) If the new vector is in use already on the local CPU then the IRR check
    might see an pending interrupt from the device which is using this
    vector. The IPI to the new target CPU will then invoke the handler of
    the device, which got the affinity change, even if that device did not
    issue an interrupt

 3) If the new vector is in use already on the local CPU and the device
    affected by the affinity change raised an interrupt during the
    transitional state (step #1 above) then the handler of the device which
    uses that vector on the local CPU will be invoked.

expose issues in device driver interrupt handlers which are not prepared to
handle a spurious interrupt correctly. This not a regression, it's just
exposing something which was already broken as spurious interrupts can
happen for a lot of reasons and all driver handlers need to be able to deal
with them.

Reported-by: Evan Green <evgreen@chromium.org>
Debugged-by: Evan Green <evgreen@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Evan Green <evgreen@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87imkr4s7n.fsf@nanos.tec.linutronix.de
2020-02-01 09:31:47 +01:00
Thomas Gleixner
979923871f x86/timer: Don't skip PIT setup when APIC is disabled or in legacy mode
Tony reported a boot regression caused by the recent workaround for systems
which have a disabled (clock gate off) PIT.

On his machine the kernel fails to initialize the PIT because
apic_needs_pit() does not take into account whether the local APIC
interrupt delivery mode will actually allow to setup and use the local
APIC timer. This should be easy to reproduce with acpi=off on the
command line which also disables HPET.

Due to the way the PIT/HPET and APIC setup ordering works (APIC setup can
require working PIT/HPET) the information is not available at the point
where apic_needs_pit() makes this decision.

To address this, split out the interrupt mode selection from
apic_intr_mode_init(), invoke the selection before making the decision
whether PIT is required or not, and add the missing checks into
apic_needs_pit().

Fixes: c8c4076723 ("x86/timer: Skip PIT initialization on modern chipsets")
Reported-by: Anthony Buckley <tony.buckley000@gmail.com>
Tested-by: Anthony Buckley <tony.buckley000@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Daniel Drake <drake@endlessm.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206125
Link: https://lore.kernel.org/r/87sgk6tmk2.fsf@nanos.tec.linutronix.de
2020-01-29 12:50:12 +01:00
Ingo Molnar
6bd3357b61 Merge branches 'x86/hyperv', 'x86/kdump' and 'x86/misc' into x86/urgent, to pick up single-commit branches
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-01-28 19:08:52 +01:00
Xiaochen Shen
32ada3b9e0 x86/resctrl: Clean up unused function parameter in mkdir path
Commit

  334b0f4e9b ("x86/resctrl: Fix a deadlock due to inaccurate reference")

changed the argument to rdtgroup_kn_lock_live()/rdtgroup_kn_unlock()
within mkdir_rdt_prepare(). That change resulted in an unused function
parameter to mkdir_rdt_prepare().

Clean up the unused function parameter in mkdir_rdt_prepare() and its
callers rdtgroup_mkdir_mon() and rdtgroup_mkdir_ctrl_mon().

Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1578500886-21771-5-git-send-email-xiaochen.shen@intel.com
2020-01-20 17:00:41 +01:00
Xiaochen Shen
334b0f4e9b x86/resctrl: Fix a deadlock due to inaccurate reference
There is a race condition which results in a deadlock when rmdir and
mkdir execute concurrently:

$ ls /sys/fs/resctrl/c1/mon_groups/m1/
cpus  cpus_list  mon_data  tasks

Thread 1: rmdir /sys/fs/resctrl/c1
Thread 2: mkdir /sys/fs/resctrl/c1/mon_groups/m1

3 locks held by mkdir/48649:
 #0:  (sb_writers#17){.+.+}, at: [<ffffffffb4ca2aa0>] mnt_want_write+0x20/0x50
 #1:  (&type->i_mutex_dir_key#8/1){+.+.}, at: [<ffffffffb4c8c13b>] filename_create+0x7b/0x170
 #2:  (rdtgroup_mutex){+.+.}, at: [<ffffffffb4a4389d>] rdtgroup_kn_lock_live+0x3d/0x70

4 locks held by rmdir/48652:
 #0:  (sb_writers#17){.+.+}, at: [<ffffffffb4ca2aa0>] mnt_want_write+0x20/0x50
 #1:  (&type->i_mutex_dir_key#8/1){+.+.}, at: [<ffffffffb4c8c3cf>] do_rmdir+0x13f/0x1e0
 #2:  (&type->i_mutex_dir_key#8){++++}, at: [<ffffffffb4c86d5d>] vfs_rmdir+0x4d/0x120
 #3:  (rdtgroup_mutex){+.+.}, at: [<ffffffffb4a4389d>] rdtgroup_kn_lock_live+0x3d/0x70

Thread 1 is deleting control group "c1". Holding rdtgroup_mutex,
kernfs_remove() removes all kernfs nodes under directory "c1"
recursively, then waits for sub kernfs node "mon_groups" to drop active
reference.

Thread 2 is trying to create a subdirectory "m1" in the "mon_groups"
directory. The wrapper kernfs_iop_mkdir() takes an active reference to
the "mon_groups" directory but the code drops the active reference to
the parent directory "c1" instead.

As a result, Thread 1 is blocked on waiting for active reference to drop
and never release rdtgroup_mutex, while Thread 2 is also blocked on
trying to get rdtgroup_mutex.

Thread 1 (rdtgroup_rmdir)   Thread 2 (rdtgroup_mkdir)
(rmdir /sys/fs/resctrl/c1)  (mkdir /sys/fs/resctrl/c1/mon_groups/m1)
-------------------------   -------------------------
                            kernfs_iop_mkdir
                              /*
                               * kn: "m1", parent_kn: "mon_groups",
                               * prgrp_kn: parent_kn->parent: "c1",
                               *
                               * "mon_groups", parent_kn->active++: 1
                               */
                              kernfs_get_active(parent_kn)
kernfs_iop_rmdir
  /* "c1", kn->active++ */
  kernfs_get_active(kn)

  rdtgroup_kn_lock_live
    atomic_inc(&rdtgrp->waitcount)
    /* "c1", kn->active-- */
    kernfs_break_active_protection(kn)
    mutex_lock

  rdtgroup_rmdir_ctrl
    free_all_child_rdtgrp
      sentry->flags = RDT_DELETED

    rdtgroup_ctrl_remove
      rdtgrp->flags = RDT_DELETED
      kernfs_get(kn)
      kernfs_remove(rdtgrp->kn)
        __kernfs_remove
          /* "mon_groups", sub_kn */
          atomic_add(KN_DEACTIVATED_BIAS, &sub_kn->active)
          kernfs_drain(sub_kn)
            /*
             * sub_kn->active == KN_DEACTIVATED_BIAS + 1,
             * waiting on sub_kn->active to drop, but it
             * never drops in Thread 2 which is blocked
             * on getting rdtgroup_mutex.
             */
Thread 1 hangs here ---->
            wait_event(sub_kn->active == KN_DEACTIVATED_BIAS)
            ...
                              rdtgroup_mkdir
                                rdtgroup_mkdir_mon(parent_kn, prgrp_kn)
                                  mkdir_rdt_prepare(parent_kn, prgrp_kn)
                                    rdtgroup_kn_lock_live(prgrp_kn)
                                      atomic_inc(&rdtgrp->waitcount)
                                      /*
                                       * "c1", prgrp_kn->active--
                                       *
                                       * The active reference on "c1" is
                                       * dropped, but not matching the
                                       * actual active reference taken
                                       * on "mon_groups", thus causing
                                       * Thread 1 to wait forever while
                                       * holding rdtgroup_mutex.
                                       */
                                      kernfs_break_active_protection(
                                                               prgrp_kn)
                                      /*
                                       * Trying to get rdtgroup_mutex
                                       * which is held by Thread 1.
                                       */
Thread 2 hangs here ---->             mutex_lock
                                      ...

The problem is that the creation of a subdirectory in the "mon_groups"
directory incorrectly releases the active protection of its parent
directory instead of itself before it starts waiting for rdtgroup_mutex.
This is triggered by the rdtgroup_mkdir() flow calling
rdtgroup_kn_lock_live()/rdtgroup_kn_unlock() with kernfs node of the
parent control group ("c1") as argument. It should be called with kernfs
node "mon_groups" instead. What is currently missing is that the
kn->priv of "mon_groups" is NULL instead of pointing to the rdtgrp.

Fix it by pointing kn->priv to rdtgrp when "mon_groups" is created. Then
it could be passed to rdtgroup_kn_lock_live()/rdtgroup_kn_unlock()
instead. And then it operates on the same rdtgroup structure but handles
the active reference of kernfs node "mon_groups" to prevent deadlock.
The same changes are also made to the "mon_data" directories.

This results in some unused function parameters that will be cleaned up
in follow-up patch as the focus here is on the fix only in support of
backporting efforts.

Fixes: c7d9aac613 ("x86/intel_rdt/cqm: Add mkdir support for RDT monitoring")
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1578500886-21771-4-git-send-email-xiaochen.shen@intel.com
2020-01-20 16:57:53 +01:00
Xiaochen Shen
074fadee59 x86/resctrl: Fix use-after-free due to inaccurate refcount of rdtgroup
There is a race condition in the following scenario which results in an
use-after-free issue when reading a monitoring file and deleting the
parent ctrl_mon group concurrently:

Thread 1 calls atomic_inc() to take refcount of rdtgrp and then calls
kernfs_break_active_protection() to drop the active reference of kernfs
node in rdtgroup_kn_lock_live().

In Thread 2, kernfs_remove() is a blocking routine. It waits on all sub
kernfs nodes to drop the active reference when removing all subtree
kernfs nodes recursively. Thread 2 could block on kernfs_remove() until
Thread 1 calls kernfs_break_active_protection(). Only after
kernfs_remove() completes the refcount of rdtgrp could be trusted.

Before Thread 1 calls atomic_inc() and kernfs_break_active_protection(),
Thread 2 could call kfree() when the refcount of rdtgrp (sentry) is 0
instead of 1 due to the race.

In Thread 1, in rdtgroup_kn_unlock(), referring to earlier rdtgrp memory
(rdtgrp->waitcount) which was already freed in Thread 2 results in
use-after-free issue.

Thread 1 (rdtgroup_mondata_show)  Thread 2 (rdtgroup_rmdir)
--------------------------------  -------------------------
rdtgroup_kn_lock_live
  /*
   * kn active protection until
   * kernfs_break_active_protection(kn)
   */
  rdtgrp = kernfs_to_rdtgroup(kn)
                                  rdtgroup_kn_lock_live
                                    atomic_inc(&rdtgrp->waitcount)
                                    mutex_lock
                                  rdtgroup_rmdir_ctrl
                                    free_all_child_rdtgrp
                                      /*
                                       * sentry->waitcount should be 1
                                       * but is 0 now due to the race.
                                       */
                                      kfree(sentry)*[1]
  /*
   * Only after kernfs_remove()
   * completes, the refcount of
   * rdtgrp could be trusted.
   */
  atomic_inc(&rdtgrp->waitcount)
  /* kn->active-- */
  kernfs_break_active_protection(kn)
                                    rdtgroup_ctrl_remove
                                      rdtgrp->flags = RDT_DELETED
                                      /*
                                       * Blocking routine, wait for
                                       * all sub kernfs nodes to drop
                                       * active reference in
                                       * kernfs_break_active_protection.
                                       */
                                      kernfs_remove(rdtgrp->kn)
                                  rdtgroup_kn_unlock
                                    mutex_unlock
                                    atomic_dec_and_test(
                                                &rdtgrp->waitcount)
                                    && (flags & RDT_DELETED)
                                      kernfs_unbreak_active_protection(kn)
                                      kfree(rdtgrp)
  mutex_lock
mon_event_read
rdtgroup_kn_unlock
  mutex_unlock
  /*
   * Use-after-free: refer to earlier rdtgrp
   * memory which was freed in [1].
   */
  atomic_dec_and_test(&rdtgrp->waitcount)
  && (flags & RDT_DELETED)
    /* kn->active++ */
    kernfs_unbreak_active_protection(kn)
    kfree(rdtgrp)

Fix it by moving free_all_child_rdtgrp() to after kernfs_remove() in
rdtgroup_rmdir_ctrl() to ensure it has the accurate refcount of rdtgrp.

Fixes: f3cbeacaa0 ("x86/intel_rdt/cqm: Add rmdir support")
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1578500886-21771-3-git-send-email-xiaochen.shen@intel.com
2020-01-20 16:56:11 +01:00
Xiaochen Shen
b8511ccc75 x86/resctrl: Fix use-after-free when deleting resource groups
A resource group (rdtgrp) contains a reference count (rdtgrp->waitcount)
that indicates how many waiters expect this rdtgrp to exist. Waiters
could be waiting on rdtgroup_mutex or some work sitting on a task's
workqueue for when the task returns from kernel mode or exits.

The deletion of a rdtgrp is intended to have two phases:

  (1) while holding rdtgroup_mutex the necessary cleanup is done and
  rdtgrp->flags is set to RDT_DELETED,

  (2) after releasing the rdtgroup_mutex, the rdtgrp structure is freed
  only if there are no waiters and its flag is set to RDT_DELETED. Upon
  gaining access to rdtgroup_mutex or rdtgrp, a waiter is required to check
  for the RDT_DELETED flag.

When unmounting the resctrl file system or deleting ctrl_mon groups,
all of the subdirectories are removed and the data structure of rdtgrp
is forcibly freed without checking rdtgrp->waitcount. If at this point
there was a waiter on rdtgrp then a use-after-free issue occurs when the
waiter starts running and accesses the rdtgrp structure it was waiting
on.

See kfree() calls in [1], [2] and [3] in these two call paths in
following scenarios:
(1) rdt_kill_sb() -> rmdir_all_sub() -> free_all_child_rdtgrp()
(2) rdtgroup_rmdir() -> rdtgroup_rmdir_ctrl() -> free_all_child_rdtgrp()

There are several scenarios that result in use-after-free issue in
following:

Scenario 1:
-----------
In Thread 1, rdtgroup_tasks_write() adds a task_work callback
move_myself(). If move_myself() is scheduled to execute after Thread 2
rdt_kill_sb() is finished, referring to earlier rdtgrp memory
(rdtgrp->waitcount) which was already freed in Thread 2 results in
use-after-free issue.

Thread 1 (rdtgroup_tasks_write)        Thread 2 (rdt_kill_sb)
-------------------------------        ----------------------
rdtgroup_kn_lock_live
  atomic_inc(&rdtgrp->waitcount)
  mutex_lock
rdtgroup_move_task
  __rdtgroup_move_task
    /*
     * Take an extra refcount, so rdtgrp cannot be freed
     * before the call back move_myself has been invoked
     */
    atomic_inc(&rdtgrp->waitcount)
    /* Callback move_myself will be scheduled for later */
    task_work_add(move_myself)
rdtgroup_kn_unlock
  mutex_unlock
  atomic_dec_and_test(&rdtgrp->waitcount)
  && (flags & RDT_DELETED)
                                       mutex_lock
                                       rmdir_all_sub
                                         /*
                                          * sentry and rdtgrp are freed
                                          * without checking refcount
                                          */
                                         free_all_child_rdtgrp
                                           kfree(sentry)*[1]
                                         kfree(rdtgrp)*[2]
                                       mutex_unlock
/*
 * Callback is scheduled to execute
 * after rdt_kill_sb is finished
 */
move_myself
  /*
   * Use-after-free: refer to earlier rdtgrp
   * memory which was freed in [1] or [2].
   */
  atomic_dec_and_test(&rdtgrp->waitcount)
  && (flags & RDT_DELETED)
    kfree(rdtgrp)

Scenario 2:
-----------
In Thread 1, rdtgroup_tasks_write() adds a task_work callback
move_myself(). If move_myself() is scheduled to execute after Thread 2
rdtgroup_rmdir() is finished, referring to earlier rdtgrp memory
(rdtgrp->waitcount) which was already freed in Thread 2 results in
use-after-free issue.

Thread 1 (rdtgroup_tasks_write)        Thread 2 (rdtgroup_rmdir)
-------------------------------        -------------------------
rdtgroup_kn_lock_live
  atomic_inc(&rdtgrp->waitcount)
  mutex_lock
rdtgroup_move_task
  __rdtgroup_move_task
    /*
     * Take an extra refcount, so rdtgrp cannot be freed
     * before the call back move_myself has been invoked
     */
    atomic_inc(&rdtgrp->waitcount)
    /* Callback move_myself will be scheduled for later */
    task_work_add(move_myself)
rdtgroup_kn_unlock
  mutex_unlock
  atomic_dec_and_test(&rdtgrp->waitcount)
  && (flags & RDT_DELETED)
                                       rdtgroup_kn_lock_live
                                         atomic_inc(&rdtgrp->waitcount)
                                         mutex_lock
                                       rdtgroup_rmdir_ctrl
                                         free_all_child_rdtgrp
                                           /*
                                            * sentry is freed without
                                            * checking refcount
                                            */
                                           kfree(sentry)*[3]
                                         rdtgroup_ctrl_remove
                                           rdtgrp->flags = RDT_DELETED
                                       rdtgroup_kn_unlock
                                         mutex_unlock
                                         atomic_dec_and_test(
                                                     &rdtgrp->waitcount)
                                         && (flags & RDT_DELETED)
                                           kfree(rdtgrp)
/*
 * Callback is scheduled to execute
 * after rdt_kill_sb is finished
 */
move_myself
  /*
   * Use-after-free: refer to earlier rdtgrp
   * memory which was freed in [3].
   */
  atomic_dec_and_test(&rdtgrp->waitcount)
  && (flags & RDT_DELETED)
    kfree(rdtgrp)

If CONFIG_DEBUG_SLAB=y, Slab corruption on kmalloc-2k can be observed
like following. Note that "0x6b" is POISON_FREE after kfree(). The
corrupted bits "0x6a", "0x64" at offset 0x424 correspond to
waitcount member of struct rdtgroup which was freed:

  Slab corruption (Not tainted): kmalloc-2k start=ffff9504c5b0d000, len=2048
  420: 6b 6b 6b 6b 6a 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkjkkkkkkkkkkk
  Single bit error detected. Probably bad RAM.
  Run memtest86+ or a similar memory test tool.
  Next obj: start=ffff9504c5b0d800, len=2048
  000: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkkkkkkkkk
  010: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkkkkkkkkk

  Slab corruption (Not tainted): kmalloc-2k start=ffff9504c58ab800, len=2048
  420: 6b 6b 6b 6b 64 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkdkkkkkkkkkkk
  Prev obj: start=ffff9504c58ab000, len=2048
  000: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkkkkkkkkk
  010: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b  kkkkkkkkkkkkkkkk

Fix this by taking reference count (waitcount) of rdtgrp into account in
the two call paths that currently do not do so. Instead of always
freeing the resource group it will only be freed if there are no waiters
on it. If there are waiters, the resource group will have its flags set
to RDT_DELETED.

It will be left to the waiter to free the resource group when it starts
running and finding that it was the last waiter and the resource group
has been removed (rdtgrp->flags & RDT_DELETED) since. (1) rdt_kill_sb()
-> rmdir_all_sub() -> free_all_child_rdtgrp() (2) rdtgroup_rmdir() ->
rdtgroup_rmdir_ctrl() -> free_all_child_rdtgrp()

Fixes: f3cbeacaa0 ("x86/intel_rdt/cqm: Add rmdir support")
Fixes: 60cf5e101f ("x86/intel_rdt: Add mkdir to resctrl file system")
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1578500886-21771-2-git-send-email-xiaochen.shen@intel.com
2020-01-20 16:45:43 +01:00
Linus Torvalds
0cc2682d8b Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
 "Misc fixes:

   - a resctrl fix for uninitialized objects found by debugobjects

   - a resctrl memory leak fix

   - fix the unintended re-enabling of the of SME and SEV CPU flags if
     memory encryption was disabled at bootup via the MSR space"

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/CPU/AMD: Ensure clearing of SME/SEV features is maintained
  x86/resctrl: Fix potential memory leak
  x86/resctrl: Fix an imbalance in domain_remove_cpu()
2020-01-18 13:02:12 -08:00
Tom Lendacky
a006483b2f x86/CPU/AMD: Ensure clearing of SME/SEV features is maintained
If the SME and SEV features are present via CPUID, but memory encryption
support is not enabled (MSR 0xC001_0010[23]), the feature flags are cleared
using clear_cpu_cap(). However, if get_cpu_cap() is later called, these
feature flags will be reset back to present, which is not desired.

Change from using clear_cpu_cap() to setup_clear_cpu_cap() so that the
clearing of the flags is maintained.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org> # 4.16.x-
Link: https://lkml.kernel.org/r/226de90a703c3c0be5a49565047905ac4e94e8f3.1579125915.git.thomas.lendacky@amd.com
2020-01-16 20:23:20 +01:00
Chuansheng Liu
978370956d x86/mce/therm_throt: Do not access uninitialized therm_work
It is relatively easy to trigger the following boot splat on an Ice Lake
client platform. The call stack is like:

  kernel BUG at kernel/timer/timer.c:1152!

  Call Trace:
  __queue_delayed_work
  queue_delayed_work_on
  therm_throt_process
  intel_thermal_interrupt
  ...

The reason is that a CPU's thermal interrupt is enabled prior to
executing its hotplug onlining callback which will initialize the
throttling workqueues.

Such a race can lead to therm_throt_process() accessing an uninitialized
therm_work, leading to the above BUG at a very early bootup stage.

Therefore, unmask the thermal interrupt vector only after having setup
the workqueues completely.

 [ bp: Heavily massage commit message and correct comment formatting. ]

Fixes: f6656208f0 ("x86/mce/therm_throt: Optimize notifications of thermal throttle")
Signed-off-by: Chuansheng Liu <chuansheng.liu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200107004116.59353-1-chuansheng.liu@intel.com
2020-01-15 11:31:33 +01:00
Shakeel Butt
ab6a211443 x86/resctrl: Fix potential memory leak
set_cache_qos_cfg() is leaking memory when the given level is not
RDT_RESOURCE_L3 or RDT_RESOURCE_L2. At the moment, this function is
called with only valid levels but move the allocation after the valid
level checks in order to make it more robust and future proof.

 [ bp: Massage commit message. ]

Fixes: 99adde9b37 ("x86/intel_rdt: Enable L2 CDP in MSR IA32_L2_QOS_CFG")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Reinette Chatre <reinette.chatre@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20200102165844.133133-1-shakeelb@google.com
2020-01-02 18:26:27 +01:00
Qian Cai
e278af89f1 x86/resctrl: Fix an imbalance in domain_remove_cpu()
A system that supports resource monitoring may have multiple resources
while not all of these resources are capable of monitoring. Monitoring
related state is initialized only for resources that are capable of
monitoring and correspondingly this state should subsequently only be
removed from these resources that are capable of monitoring.

domain_add_cpu() calls domain_setup_mon_state() only when r->mon_capable
is true where it will initialize d->mbm_over. However,
domain_remove_cpu() calls cancel_delayed_work(&d->mbm_over) without
checking r->mon_capable resulting in an attempt to cancel d->mbm_over on
all resources, even those that never initialized d->mbm_over because
they are not capable of monitoring. Hence, it triggers a debugobjects
warning when offlining CPUs because those timer debugobjects are never
initialized:

  ODEBUG: assert_init not available (active state 0) object type:
  timer_list hint: 0x0
  WARNING: CPU: 143 PID: 789 at lib/debugobjects.c:484
  debug_print_object
  Hardware name: HP Synergy 680 Gen9/Synergy 680 Gen9 Compute Module, BIOS I40 05/23/2018
  RIP: 0010:debug_print_object
  Call Trace:
  debug_object_assert_init
  del_timer
  try_to_grab_pending
  cancel_delayed_work
  resctrl_offline_cpu
  cpuhp_invoke_callback
  cpuhp_thread_fun
  smpboot_thread_fn
  kthread
  ret_from_fork

Fixes: e33026831b ("x86/intel_rdt/mbm: Handle counter overflow")
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: john.stultz@linaro.org
Cc: sboyd@kernel.org
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: tj@kernel.org
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vikas Shivappa <vikas.shivappa@linux.intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191211033042.2188-1-cai@lca.pw
2019-12-30 19:25:59 +01:00
Omar Sandoval
8757dc970f x86/crash: Define arch_crash_save_vmcoreinfo() if CONFIG_CRASH_CORE=y
On x86 kernels configured with CONFIG_PROC_KCORE=y and
CONFIG_KEXEC_CORE=n, the vmcoreinfo note in /proc/kcore is incomplete.

Specifically, it is missing arch-specific information like the KASLR
offset and whether 5-level page tables are enabled. This breaks
applications like drgn [1] and crash [2], which need this information
for live debugging via /proc/kcore.

This happens because:

1. CONFIG_PROC_KCORE selects CONFIG_CRASH_CORE.
2. kernel/crash_core.c (compiled if CONFIG_CRASH_CORE=y) calls
   arch_crash_save_vmcoreinfo() to get the arch-specific parts of
   vmcoreinfo. If it is not defined, then it uses a no-op fallback.
3. x86 defines arch_crash_save_vmcoreinfo() in
   arch/x86/kernel/machine_kexec_*.c, which is only compiled if
   CONFIG_KEXEC_CORE=y.

Therefore, an x86 kernel with CONFIG_CRASH_CORE=y and
CONFIG_KEXEC_CORE=n uses the no-op fallback and gets incomplete
vmcoreinfo data. This isn't relevant to kdump, which requires
CONFIG_KEXEC_CORE. It only affects applications which read vmcoreinfo at
runtime, like the ones mentioned above.

Fix it by moving arch_crash_save_vmcoreinfo() into two new
arch/x86/kernel/crash_core_*.c files, which are gated behind
CONFIG_CRASH_CORE.

1: 73dd7def12/libdrgn/program.c (L385)
2: 60a42d7092

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kairui Song <kasong@redhat.com>
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/0589961254102cca23e3618b96541b89f2b249e2.1576858905.git.osandov@fb.com
2019-12-23 12:58:41 +01:00
Linus Torvalds
5c741e2583 Merge branch 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 RAS fixes from Borislav Petkov:
 "Three urgent RAS fixes for the AMD side of things:

   - initialize struct mce.bank so that calculated error severity on AMD
     SMCA machines is correct

   - do not send IPIs early during bank initialization, when interrupts
     are disabled

   - a fix for when only a subset of MCA banks are enabled, which led to
     boot hangs on some new AMD CPUs"

* 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mce: Fix possibly incorrect severity calculation on AMD
  x86/MCE/AMD: Allow Reserved types to be overwritten in smca_banks[]
  x86/MCE/AMD: Do not use rdmsr_safe_on_cpu() in smca_configure()
2019-12-21 06:04:12 -08:00
Linus Torvalds
2abf193275 Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fixes from Ingo Molnar:
 "Add HPET quirks for the Intel 'Coffee Lake H' and 'Ice Lake' platforms"

* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/intel: Disable HPET on Intel Ice Lake platforms
  x86/intel: Disable HPET on Intel Coffee Lake H platforms
2019-12-17 11:11:08 -08:00
Jan H. Schönherr
a3a57ddad0 x86/mce: Fix possibly incorrect severity calculation on AMD
The function mce_severity_amd_smca() requires m->bank to be initialized
for correct operation. Fix the one case, where mce_severity() is called
without doing so.

Fixes: 6bda529ec4 ("x86/mce: Grade uncorrected errors for SMCA-enabled systems")
Fixes: d28af26faa ("x86/MCE: Initialize mce.bank in the case of a fatal error in mce_no_way_out()")
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Link: https://lkml.kernel.org/r/20191210000733.17979-4-jschoenh@amazon.de
2019-12-17 09:39:53 +01:00
Yazen Ghannam
966af20929 x86/MCE/AMD: Allow Reserved types to be overwritten in smca_banks[]
Each logical CPU in Scalable MCA systems controls a unique set of MCA
banks in the system. These banks are not shared between CPUs. The bank
types and ordering will be the same across CPUs on currently available
systems.

However, some CPUs may see a bank as Reserved/Read-as-Zero (RAZ) while
other CPUs do not. In this case, the bank seen as Reserved on one CPU is
assumed to be the same type as the bank seen as a known type on another
CPU.

In general, this occurs when the hardware represented by the MCA bank
is disabled, e.g. disabled memory controllers on certain models, etc.
The MCA bank is disabled in the hardware, so there is no possibility of
getting an MCA/MCE from it even if it is assumed to have a known type.

For example:

Full system:
	Bank  |  Type seen on CPU0  |  Type seen on CPU1
	------------------------------------------------
	 0    |         LS          |          LS
	 1    |         UMC         |          UMC
	 2    |         CS          |          CS

System with hardware disabled:
	Bank  |  Type seen on CPU0  |  Type seen on CPU1
	------------------------------------------------
	 0    |         LS          |          LS
	 1    |         UMC         |          RAZ
	 2    |         CS          |          CS

For this reason, there is a single, global struct smca_banks[] that is
initialized at boot time. This array is initialized on each CPU as it
comes online. However, the array will not be updated if an entry already
exists.

This works as expected when the first CPU (usually CPU0) has all
possible MCA banks enabled. But if the first CPU has a subset, then it
will save a "Reserved" type in smca_banks[]. Successive CPUs will then
not be able to update smca_banks[] even if they encounter a known bank
type.

This may result in unexpected behavior. Depending on the system
configuration, a user may observe issues enumerating the MCA
thresholding sysfs interface. The issues may be as trivial as sysfs
entries not being available, or as severe as system hangs.

For example:

	Bank  |  Type seen on CPU0  |  Type seen on CPU1
	------------------------------------------------
	 0    |         LS          |          LS
	 1    |         RAZ         |          UMC
	 2    |         CS          |          CS

Extend the smca_banks[] entry check to return if the entry is a
non-reserved type. Otherwise, continue so that CPUs that encounter a
known bank type can update smca_banks[].

Fixes: 68627a697c ("x86/mce/AMD, EDAC/mce_amd: Enumerate Reserved SMCA bank type")
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191121141508.141273-1-Yazen.Ghannam@amd.com
2019-12-17 09:39:53 +01:00
Konstantin Khlebnikov
246ff09f89 x86/MCE/AMD: Do not use rdmsr_safe_on_cpu() in smca_configure()
... because interrupts are disabled that early and sending IPIs can
deadlock:

  BUG: sleeping function called from invalid context at kernel/sched/completion.c:99
  in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 0, name: swapper/1
  no locks held by swapper/1/0.
  irq event stamp: 0
  hardirqs last  enabled at (0): [<0000000000000000>] 0x0
  hardirqs last disabled at (0): [<ffffffff8106dda9>] copy_process+0x8b9/0x1ca0
  softirqs last  enabled at (0): [<ffffffff8106dda9>] copy_process+0x8b9/0x1ca0
  softirqs last disabled at (0): [<0000000000000000>] 0x0
  Preemption disabled at:
  [<ffffffff8104703b>] start_secondary+0x3b/0x190
  CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.5.0-rc2+ #1
  Hardware name: GIGABYTE MZ01-CE1-00/MZ01-CE1-00, BIOS F02 08/29/2018
  Call Trace:
   dump_stack
   ___might_sleep.cold.92
   wait_for_completion
   ? generic_exec_single
   rdmsr_safe_on_cpu
   ? wrmsr_on_cpus
   mce_amd_feature_init
   mcheck_cpu_init
   identify_cpu
   identify_secondary_cpu
   smp_store_cpu_info
   start_secondary
   secondary_startup_64

The function smca_configure() is called only on the current CPU anyway,
therefore replace rdmsr_safe_on_cpu() with atomic rdmsr_safe() and avoid
the IPI.

 [ bp: Update commit message. ]

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/157252708836.3876.4604398213417262402.stgit@buzz
2019-12-17 09:39:33 +01:00
Linus Torvalds
22ff311af9 treewide conversion from FIELD_SIZEOF() to sizeof_field()
-----BEGIN PGP SIGNATURE-----
 Comment: Kees Cook <kees@outflux.net>
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAl3umDgWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJlvsD/49R12HK7UzTxNTrcpvbadJ4t7j
 j/qJvjMerW7iVNAPOoNAOePUa21+y3rI1AZPvoPyzIqp1Bf2eOICf5SdisG2cG+O
 X0A8EKWvS0SSQWSKaT6udUKJ3nBJItwvOvQ5B58KQzcOj3S4X7B9iVBWgieMHrzz
 urkZm7pqowrZB3wuF8keRtli5IZaoiCwzApy48Qrn70G3OeXymknFbpHTDwIAiGw
 RiE5Xh0R4EzQdsYyCgjR8U56gBchadAmj8BUJU0ppMnOFMyIAG670hNLrs0L3roP
 8TOIeyb993ZC5GZaMlnR8mz0jfibfkPa3Z85VAsVyQSPaOQldwc9j8TGBqD5Gfat
 1PjOU5RVwma0pH5xTPOeevWPQpIK9KovQpQYqMMN9GMxOEx96IOUjwTrnNK2xWoN
 UGyOVlESFGoniClhCiKYzPSrYOjlIBk5ovf15PdTe+bwyUDMfyfy5CZV88OS2DHz
 ZBZvpLrH/EMW9zJ+FqMTp0C4s4wa2Ioid3bSh6XuNUTtltKSjp71eUja8ZEz+2sd
 5AGstCC+hYqxaEk+6/851pfkQ9sbBjwuGtNrtX+pqreiLUvWLhQ0yUj6cLXlEQNH
 aucjCukCjI+4lMzofeaQ2LbNhtff4YsfO4b1Ye8maoDdHjzUVL57n3bTOxKhdzbt
 y6FM3lApOjk3OyaTJQ==
 =YU4A
 -----END PGP SIGNATURE-----

Merge tag 'sizeof_field-v5.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull FIELD_SIZEOF conversion from Kees Cook:
 "A mostly mechanical treewide conversion from FIELD_SIZEOF() to
  sizeof_field(). This avoids the redundancy of having 2 macros
  (actually 3) doing the same thing, and consolidates on sizeof_field().
  While "field" is not an accurate name, it is the common name used in
  the kernel, and doesn't result in any unintended innuendo.

  As there are still users of FIELD_SIZEOF() in -next, I will clean up
  those during this coming development cycle and send the final old
  macro removal patch at that time"

* tag 'sizeof_field-v5.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  treewide: Use sizeof_field() macro
  MIPS: OCTEON: Replace SIZEOF_FIELD() macro
2019-12-13 14:02:12 -08:00
Linus Torvalds
6674fdb25a This contains 3 changes:
- Removal of code I accidentally applied when doing a minor fix up
    to a patch, and then using "git commit -a --amend", which pulled
    in some other changes I was playing with.
 
  - Remove an used variable in trace_events_inject code
 
  - Fix to function graph tracer when it traces a ftrace direct function.
    It will now ignore tracing a function that has a ftrace direct
    tramploine attached. This is needed for eBPF to use the ftrace direct
    code.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXfD/thQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qoo2AP4j7ONw7BTmMyo+GdYqPPntBeDnClHK
 vfMKrgK1j5BxYgEA7LgkwuUT9bcyLjfJVcyfeW67rB2PtmovKTWnKihFOwI=
 =DZ6N
 -----END PGP SIGNATURE-----

Merge tag 'trace-v5.5-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace

Pull tracing fixes from Steven Rostedt:

 - Remove code I accidentally applied when doing a minor fix up to a
   patch, and then using "git commit -a --amend", which pulled in some
   other changes I was playing with.

 - Remove an used variable in trace_events_inject code

 - Fix function graph tracer when it traces a ftrace direct function.
   It will now ignore tracing a function that has a ftrace direct
   tramploine attached. This is needed for eBPF to use the ftrace direct
   code.

* tag 'trace-v5.5-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
  ftrace: Fix function_graph tracer interaction with BPF trampoline
  tracing: remove set but not used variable 'buffer'
  module: Remove accidental change of module_enable_x()
2019-12-11 12:22:38 -08:00
Alexei Starovoitov
ff205766db ftrace: Fix function_graph tracer interaction with BPF trampoline
Depending on type of BPF programs served by BPF trampoline it can call original
function. In such case the trampoline will skip one stack frame while
returning. That will confuse function_graph tracer and will cause crashes with
bad RIP. Teach graph tracer to skip functions that have BPF trampoline attached.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-12-10 13:53:59 -05:00
Pankaj Bharadiya
c593642c8b treewide: Use sizeof_field() macro
Replace all the occurrences of FIELD_SIZEOF() with sizeof_field() except
at places where these are defined. Later patches will remove the unused
definition of FIELD_SIZEOF().

This patch is generated using following script:

EXCLUDE_FILES="include/linux/stddef.h|include/linux/kernel.h"

git grep -l -e "\bFIELD_SIZEOF\b" | while read file;
do

	if [[ "$file" =~ $EXCLUDE_FILES ]]; then
		continue
	fi
	sed -i  -e 's/\bFIELD_SIZEOF\b/sizeof_field/g' $file;
done

Signed-off-by: Pankaj Bharadiya <pankaj.laxminarayan.bharadiya@intel.com>
Link: https://lore.kernel.org/r/20190924105839.110713-3-pankaj.laxminarayan.bharadiya@intel.com
Co-developed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: David Miller <davem@davemloft.net> # for net
2019-12-09 10:36:44 -08:00
Linus Torvalds
e5b3fc125d Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
 "Various fixes:

   - Fix the PAT performance regression that downgraded write-combining
     device memory regions to uncached.

   - There's been a number of bugs in 32-bit double fault handling -
     hopefully all fixed now.

   - Fix an LDT crash

   - Fix an FPU over-optimization that broke with GCC9 code
     optimizations.

   - Misc cleanups"

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mm/pat: Fix off-by-one bugs in interval tree search
  x86/ioperm: Save an indentation level in tss_update_io_bitmap()
  x86/fpu: Don't cache access to fpu_fpregs_owner_ctx
  x86/entry/32: Remove unused 'restore_all_notrace' local label
  x86/ptrace: Document FSBASE and GSBASE ABI oddities
  x86/ptrace: Remove set_segment_reg() implementations for current
  x86/traps: die() instead of panicking on a double fault
  x86/doublefault/32: Rewrite the x86_32 #DF handler and unify with 64-bit
  x86/doublefault/32: Move #DF stack and TSS to cpu_entry_area
  x86/doublefault/32: Rename doublefault.c to doublefault_32.c
  x86/traps: Disentangle the 32-bit and 64-bit doublefault code
  lkdtm: Add a DOUBLE_FAULT crash type on x86
  selftests/x86/single_step_syscall: Check SYSENTER directly
  x86/mm/32: Sync only to VMALLOC_END in vmalloc_sync_all()
2019-12-01 19:05:07 -08:00
Linus Torvalds
8fa91bfa9b Merge branch 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS fix from Borislav Petkov:
 "One urgent fix for the thermal throttling machinery: the recent change
  reworking the thermal notifications forgot to mask out read-only and
  reserved bits in the thermal status MSRs, leading to exceptions while
  writing those MSRs.

  The fix takes care of masking out those bits first"

* 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mce/therm_throt: Mask out read-only and reserved MSR bits
2019-11-30 14:49:08 -08:00
Borislav Petkov
7b0b8cfd26 x86/ioperm: Save an indentation level in tss_update_io_bitmap()
... for better readability.

No functional changes.

[ Minor edit. ]

Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-30 18:06:56 +01:00
Kai-Heng Feng
e0748539e3 x86/intel: Disable HPET on Intel Ice Lake platforms
Like CFL and CFL-H, ICL SoC has skewed HPET timer once it hits PC10.
So let's disable HPET on ICL.

Signed-off-by: Kai-Heng Feng <kai.heng.feng@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: feng.tang@intel.com
Cc: harry.pan@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20191129062303.18982-2-kai.heng.feng@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-29 12:17:58 +01:00
Kai-Heng Feng
f8edbde885 x86/intel: Disable HPET on Intel Coffee Lake H platforms
Coffee Lake H SoC has similar behavior as Coffee Lake, skewed HPET timer
once the SoCs entered PC10.

So let's disable HPET on CFL-H platforms.

Signed-off-by: Kai-Heng Feng <kai.heng.feng@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: feng.tang@intel.com
Cc: harry.pan@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20191129062303.18982-1-kai.heng.feng@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-29 12:17:58 +01:00
Srinivas Pandruvada
5a43b87b3c x86/mce/therm_throt: Mask out read-only and reserved MSR bits
While writing to MSR IA32_THERM_STATUS/IA32_PKG_THERM_STATUS, avoid
writing 1 to read only and reserved fields because updating some fields
generates exception.

 [ bp: Vertically align for better readability. ]

Fixes: f6656208f0 ("x86/mce/therm_throt: Optimize notifications of thermal throttle")
Reported-by: Dominik Brodowski <linux@dominikbrodowski.net>
Tested-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191128150824.22413-1-srinivas.pandruvada@linux.intel.com
2019-11-29 09:17:52 +01:00
Linus Torvalds
81b6b96475 dma-mapping updates for 5.5-rc1
- improve dma-debug scalability (Eric Dumazet)
  - tiny dma-debug cleanup (Dan Carpenter)
  - check for vmap memory in dma_map_single (Kees Cook)
  - check for dma_addr_t overflows in dma-direct when using
    DMA offsets (Nicolas Saenz Julienne)
  - switch the x86 sta2x11 SOC to use more generic DMA code
    (Nicolas Saenz Julienne)
  - fix arm-nommu dma-ranges handling (Vladimir Murzin)
  - use __initdata in CMA (Shyam Saini)
  - replace the bus dma mask with a limit (Nicolas Saenz Julienne)
  - merge the remapping helpers into the main dma-direct flow (me)
  - switch xtensa to the generic dma remap handling (me)
  - various cleanups around dma_capable (me)
  - remove unused dev arguments to various dma-noncoherent helpers (me)
 -----BEGIN PGP SIGNATURE-----
 
 iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl3f+eULHGhjaEBsc3Qu
 ZGUACgkQD55TZVIEUYPyPg/+PVHCrhmepudQQFHu6wfurE5U77iNnoUifvG+b5z5
 5mHmTMkQwyox6rKDe8NuFApAhz1VJDSUgSelPmvTSOIEIGXCvX1p+GqRSVS5YQON
 aLzGvbWKE8hCpaPdDHKYDauD1FZGMM8L2P5oOMF9X9fQ94xxRqfqJM6c8iD16Sgg
 +aOgPNzTnxQHJFF/Dbt/mjJrKXWI+XF+bgUbH+l9yKa7Dd7ibmJR8yl9hs1jmp0H
 1CZ+CizwnAs57rCd1a6Ybc6gj59tySc03NMnnbTko+KDxrcbD3Ee2tpqHVkkCjYz
 Yl0m4FIpbotrpokL/FIS727bVvkjbWgoeM+kiVPoYzmZea3pq/tFDr6tp/BxDhFj
 TZXSFfgQljlYMD3ppSoklFlfjGriVWV0tPO3arPXwuuMF5EX/IMQmvxei05jpc8n
 iELNXOP9iZZkY4tLHy2hn2uWrxBRrS1WQwlLg9hahlNRzyfFSyHeP0zWlVDt+RgF
 5CCbEI+HQcUqg1FApB30lQNWTn1+dJftrpKVBlgNBIyIa/z2rFbt8GdSnItxjfQX
 /XX8EZbFvF6AcXkgURkYFIoKM/EbYShOSLcYA3PTUtcuTnF6Kk5eimySiGWZTVCS
 prruSFDZJOvL3SnOIMIiYVmBdB7lEbDyLI/VYuhoECXEDCJpVmRktNkJNg4q6/E+
 fjQ=
 =e5wO
 -----END PGP SIGNATURE-----

Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux; tag 'dma-mapping-5.5' of git://git.infradead.org/users/hch/dma-mapping

Pull dma-mapping updates from Christoph Hellwig:

 - improve dma-debug scalability (Eric Dumazet)

 - tiny dma-debug cleanup (Dan Carpenter)

 - check for vmap memory in dma_map_single (Kees Cook)

 - check for dma_addr_t overflows in dma-direct when using DMA offsets
   (Nicolas Saenz Julienne)

 - switch the x86 sta2x11 SOC to use more generic DMA code (Nicolas
   Saenz Julienne)

 - fix arm-nommu dma-ranges handling (Vladimir Murzin)

 - use __initdata in CMA (Shyam Saini)

 - replace the bus dma mask with a limit (Nicolas Saenz Julienne)

 - merge the remapping helpers into the main dma-direct flow (me)

 - switch xtensa to the generic dma remap handling (me)

 - various cleanups around dma_capable (me)

 - remove unused dev arguments to various dma-noncoherent helpers (me)

* 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux:

* tag 'dma-mapping-5.5' of git://git.infradead.org/users/hch/dma-mapping: (22 commits)
  dma-mapping: treat dev->bus_dma_mask as a DMA limit
  dma-direct: exclude dma_direct_map_resource from the min_low_pfn check
  dma-direct: don't check swiotlb=force in dma_direct_map_resource
  dma-debug: clean up put_hash_bucket()
  powerpc: remove support for NULL dev in __phys_to_dma / __dma_to_phys
  dma-direct: avoid a forward declaration for phys_to_dma
  dma-direct: unify the dma_capable definitions
  dma-mapping: drop the dev argument to arch_sync_dma_for_*
  x86/PCI: sta2x11: use default DMA address translation
  dma-direct: check for overflows on 32 bit DMA addresses
  dma-debug: increase HASH_SIZE
  dma-debug: reorder struct dma_debug_entry fields
  xtensa: use the generic uncached segment support
  dma-mapping: merge the generic remapping helpers into dma-direct
  dma-direct: provide mmap and get_sgtable method overrides
  dma-direct: remove the dma_handle argument to __dma_direct_alloc_pages
  dma-direct: remove __dma_direct_free_pages
  usb: core: Remove redundant vmap checks
  kernel: dma-contiguous: mark CMA parameters __initdata/__initconst
  dma-debug: add a schedule point in debug_dma_dump_mappings()
  ...
2019-11-28 11:16:43 -08:00
Linus Torvalds
95f1fa9e34 New tracing features:
- PERAMAENT flag to ftrace_ops when attaching a callback to a function
    As /proc/sys/kernel/ftrace_enabled when set to zero will disable all
    attached callbacks in ftrace, this has a detrimental impact on live
    kernel tracing, as it disables all that it patched. If a ftrace_ops
    is registered to ftrace with the PERMANENT flag set, it will prevent
    ftrace_enabled from being disabled, and if ftrace_enabled is already
    disabled, it will prevent a ftrace_ops with PREMANENT flag set from
    being registered.
 
  - New register_ftrace_direct(). As eBPF would like to register its own
    trampolines to be called by the ftrace nop locations directly,
    without going through the ftrace trampoline, this function has been
    added. This allows for eBPF trampolines to live along side of
    ftrace, perf, kprobe and live patching. It also utilizes the ftrace
    enabled_functions file that keeps track of functions that have been
    modified in the kernel, to allow for security auditing.
 
  - Allow for kernel internal use of ftrace instances. Subsystems in
    the kernel can now create and destroy their own tracing instances
    which allows them to have their own tracing buffer, and be able
    to record events without worrying about other users from writing over
    their data.
 
  - New seq_buf_hex_dump() that lets users use the hex_dump() in their
    seq_buf usage.
 
  - Notifications now added to tracing_max_latency to allow user space
    to know when a new max latency is hit by one of the latency tracers.
 
  - Wider spread use of generic compare operations for use of bsearch and
    friends.
 
  - More synthetic event fields may be defined (32 up from 16)
 
  - Use of xarray for architectures with sparse system calls, for the
    system call trace events.
 
 This along with small clean ups and fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXdwv4BQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qnB5AP91vsdHQjwE1+/UWG/cO+qFtKvn2QJK
 QmBRIJNH/s+1TAD/fAOhgw+ojSK3o/qc+NpvPTEW9AEwcJL1wacJUn+XbQc=
 =ztql
 -----END PGP SIGNATURE-----

Merge tag 'trace-v5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace

Pull tracing updates from Steven Rostedt:
 "New tracing features:

   - New PERMANENT flag to ftrace_ops when attaching a callback to a
     function.

     As /proc/sys/kernel/ftrace_enabled when set to zero will disable
     all attached callbacks in ftrace, this has a detrimental impact on
     live kernel tracing, as it disables all that it patched. If a
     ftrace_ops is registered to ftrace with the PERMANENT flag set, it
     will prevent ftrace_enabled from being disabled, and if
     ftrace_enabled is already disabled, it will prevent a ftrace_ops
     with PREMANENT flag set from being registered.

   - New register_ftrace_direct().

     As eBPF would like to register its own trampolines to be called by
     the ftrace nop locations directly, without going through the ftrace
     trampoline, this function has been added. This allows for eBPF
     trampolines to live along side of ftrace, perf, kprobe and live
     patching. It also utilizes the ftrace enabled_functions file that
     keeps track of functions that have been modified in the kernel, to
     allow for security auditing.

   - Allow for kernel internal use of ftrace instances.

     Subsystems in the kernel can now create and destroy their own
     tracing instances which allows them to have their own tracing
     buffer, and be able to record events without worrying about other
     users from writing over their data.

   - New seq_buf_hex_dump() that lets users use the hex_dump() in their
     seq_buf usage.

   - Notifications now added to tracing_max_latency to allow user space
     to know when a new max latency is hit by one of the latency
     tracers.

   - Wider spread use of generic compare operations for use of bsearch
     and friends.

   - More synthetic event fields may be defined (32 up from 16)

   - Use of xarray for architectures with sparse system calls, for the
     system call trace events.

  This along with small clean ups and fixes"

* tag 'trace-v5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (51 commits)
  tracing: Enable syscall optimization for MIPS
  tracing: Use xarray for syscall trace events
  tracing: Sample module to demonstrate kernel access to Ftrace instances.
  tracing: Adding new functions for kernel access to Ftrace instances
  tracing: Fix Kconfig indentation
  ring-buffer: Fix typos in function ring_buffer_producer
  ftrace: Use BIT() macro
  ftrace: Return ENOTSUPP when DYNAMIC_FTRACE_WITH_DIRECT_CALLS is not configured
  ftrace: Rename ftrace_graph_stub to ftrace_stub_graph
  ftrace: Add a helper function to modify_ftrace_direct() to allow arch optimization
  ftrace: Add helper find_direct_entry() to consolidate code
  ftrace: Add another check for match in register_ftrace_direct()
  ftrace: Fix accounting bug with direct->count in register_ftrace_direct()
  ftrace/selftests: Fix spelling mistake "wakeing" -> "waking"
  tracing: Increase SYNTH_FIELDS_MAX for synthetic_events
  ftrace/samples: Add a sample module that implements modify_ftrace_direct()
  ftrace: Add modify_ftrace_direct()
  tracing: Add missing "inline" in stub function of latency_fsnotify()
  tracing: Remove stray tab in TRACE_EVAL_MAP_FILE's help text
  tracing: Use seq_buf_hex_dump() to dump buffers
  ...
2019-11-27 11:42:01 -08:00
Linus Torvalds
6e9f879684 ACPI updates for 5.5-rc1
- Update the ACPICA code in the kernel to upstream revision 20191018
    including:
 
    * Fixes for Clang warnings (Bob Moore).
 
    * Fix for possible overflow in get_tick_count() (Bob Moore).
 
    * Introduction of acpi_unload_table() (Bob Moore).
 
    * Debugger and utilities updates (Erik Schmauss).
 
    * Fix for unloading tables loaded via configfs (Nikolaus Voss).
 
  - Add support for EFI specific purpose memory to optionally allow
    either application-exclusive or core-kernel-mm managed access to
    differentiated memory (Dan Williams).
 
  - Fix and clean up processing of the HMAT table (Brice Goglin,
    Qian Cai, Tao Xu).
 
  - Update the ACPI EC driver to make it work on systems with
    hardware-reduced ACPI (Daniel Drake).
 
  - Always build in support for the Generic Event Device (GED) to
    allow one kernel binary to work both on systems with full
    hardware ACPI and hardware-reduced ACPI (Arjan van de Ven).
 
  - Fix the table unload mechanism to unregister platform devices
    created when the given table was loaded (Andy Shevchenko).
 
  - Rework the lid blacklist handling in the button driver and add
    more lid quirks to it (Hans de Goede).
 
  - Improve ACPI-based device enumeration for some platforms based
    on Intel BayTrail SoCs (Hans de Goede).
 
  - Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC
    and prevent handlers from being registered for unhandled PMIC
    OpRegions (Hans de Goede).
 
  - Unify ACPI _HID/_UID matching (Andy Shevchenko).
 
  - Clean up documentation and comments (Cao jin, James Pack, Kacper
    Piwiński).
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl3dHNkSHHJqd0Byand5
 c29ja2kubmV0AAoJEILEb/54YlRx/NkP/2y6DWjslA6UW4gjZwaRBcjYoyWExMtQ
 Z86goiRJtP+/NqOwm09wHFcV6FdZ4kitUno3UgMCDZJjrURapg1D0rxb1lSYtMzs
 mGr2FBZlVsJ9erOVSzKj1x2afVhdgl0Rl0fxPzoKgCFt8tCJar6cXy4CVEQKdeLs
 eUui2ksXMIEODGhpN/tr/fJqY4O4jlLmPY6gKWfFpSTsv6lnZmzcCxLf5EvUU7JW
 O91/jXdWz4Vl6IdP32sce6dGDjkvwnY105c7HeBf5EQWUe9RHFuSex982qhCD8U+
 iE+JzlhoYpUb03EktJSXbL++IKUHvoUpTanbhka6unMhazC86x0hDf7ruUtYo2Bk
 V8347CFeQ1x2O5IabfJNnUfKaMYhYmOXIoFHJTLKFO5mcCJmP8KOOyDAYilC1psb
 RJpl1fDoAhk7NqhMttyBqfxiotP0kMoKuqtAAl8Y0hTF0DwR9IfKntuTtp1yTGds
 R4dpJrizUDzw1/o4fCWbc3dFZQR3NFGpL/EAyfPzqjGaeaBBkLoNYstqkal5XHwT
 CILmQg2WHoNuQLXZ4NFFDrM2k2G+VUAjQdkYcb/MCOFbw+aTVPu1wyQq37RLtbMo
 9UwGeeT6SXW3iA1nyMoM+YvitjmxS7gHPPPl+b9G6kBubAzBPp91Ra0Mj9dPIGRB
 Evv5nzOIh8Hi
 =7Cqr
 -----END PGP SIGNATURE-----

Merge tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull ACPI updates from Rafael Wysocki:
 "These update the ACPICA code in the kernel to upstream revision
  20191018, add support for EFI specific purpose memory, update the ACPI
  EC driver to make it work on systems with hardware-reduced ACPI,
  improve ACPI-based device enumeration for some platforms, rework the
  lid blacklist handling in the button driver and add more lid quirks to
  it, unify ACPI _HID/_UID matching, fix assorted issues and clean up
  the code and documentation.

  Specifics:

   - Update the ACPICA code in the kernel to upstream revision 20191018
     including:
      * Fixes for Clang warnings (Bob Moore)
      * Fix for possible overflow in get_tick_count() (Bob Moore)
      * Introduction of acpi_unload_table() (Bob Moore)
      * Debugger and utilities updates (Erik Schmauss)
      * Fix for unloading tables loaded via configfs (Nikolaus Voss)

   - Add support for EFI specific purpose memory to optionally allow
     either application-exclusive or core-kernel-mm managed access to
     differentiated memory (Dan Williams)

   - Fix and clean up processing of the HMAT table (Brice Goglin, Qian
     Cai, Tao Xu)

   - Update the ACPI EC driver to make it work on systems with
     hardware-reduced ACPI (Daniel Drake)

   - Always build in support for the Generic Event Device (GED) to allow
     one kernel binary to work both on systems with full hardware ACPI
     and hardware-reduced ACPI (Arjan van de Ven)

   - Fix the table unload mechanism to unregister platform devices
     created when the given table was loaded (Andy Shevchenko)

   - Rework the lid blacklist handling in the button driver and add more
     lid quirks to it (Hans de Goede)

   - Improve ACPI-based device enumeration for some platforms based on
     Intel BayTrail SoCs (Hans de Goede)

   - Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC and
     prevent handlers from being registered for unhandled PMIC OpRegions
     (Hans de Goede)

   - Unify ACPI _HID/_UID matching (Andy Shevchenko)

   - Clean up documentation and comments (Cao jin, James Pack, Kacper
     Piwiński)"

* tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (52 commits)
  ACPI: OSI: Shoot duplicate word
  ACPI: HMAT: use %u instead of %d to print u32 values
  ACPI: NUMA: HMAT: fix a section mismatch
  ACPI: HMAT: don't mix pxm and nid when setting memory target processor_pxm
  ACPI: NUMA: HMAT: Register "soft reserved" memory as an "hmem" device
  ACPI: NUMA: HMAT: Register HMAT at device_initcall level
  device-dax: Add a driver for "hmem" devices
  dax: Fix alloc_dax_region() compile warning
  lib: Uplevel the pmem "region" ida to a global allocator
  x86/efi: Add efi_fake_mem support for EFI_MEMORY_SP
  arm/efi: EFI soft reservation to memblock
  x86/efi: EFI soft reservation to E820 enumeration
  efi: Common enable/disable infrastructure for EFI soft reservation
  x86/efi: Push EFI_MEMMAP check into leaf routines
  efi: Enumerate EFI_MEMORY_SP
  ACPI: NUMA: Establish a new drivers/acpi/numa/ directory
  ACPICA: Update version to 20191018
  ACPICA: debugger: remove leading whitespaces when converting a string to a buffer
  ACPICA: acpiexec: initialize all simple types and field units from user input
  ACPICA: debugger: add field unit support for acpi_db_get_next_token
  ...
2019-11-26 19:25:25 -08:00
Linus Torvalds
3f59dbcace Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
 "The main kernel side changes in this cycle were:

   - Various Intel-PT updates and optimizations (Alexander Shishkin)

   - Prohibit kprobes on Xen/KVM emulate prefixes (Masami Hiramatsu)

   - Add support for LSM and SELinux checks to control access to the
     perf syscall (Joel Fernandes)

   - Misc other changes, optimizations, fixes and cleanups - see the
     shortlog for details.

  There were numerous tooling changes as well - 254 non-merge commits.
  Here are the main changes - too many to list in detail:

   - Enhancements to core tooling infrastructure, perf.data, libperf,
     libtraceevent, event parsing, vendor events, Intel PT, callchains,
     BPF support and instruction decoding.

   - There were updates to the following tools:

        perf annotate
        perf diff
        perf inject
        perf kvm
        perf list
        perf maps
        perf parse
        perf probe
        perf record
        perf report
        perf script
        perf stat
        perf test
        perf trace

   - And a lot of other changes: please see the shortlog and Git log for
     more details"

* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (279 commits)
  perf parse: Fix potential memory leak when handling tracepoint errors
  perf probe: Fix spelling mistake "addrees" -> "address"
  libtraceevent: Fix memory leakage in copy_filter_type
  libtraceevent: Fix header installation
  perf intel-bts: Does not support AUX area sampling
  perf intel-pt: Add support for decoding AUX area samples
  perf intel-pt: Add support for recording AUX area samples
  perf pmu: When using default config, record which bits of config were changed by the user
  perf auxtrace: Add support for queuing AUX area samples
  perf session: Add facility to peek at all events
  perf auxtrace: Add support for dumping AUX area samples
  perf inject: Cut AUX area samples
  perf record: Add aux-sample-size config term
  perf record: Add support for AUX area sampling
  perf auxtrace: Add support for AUX area sample recording
  perf auxtrace: Move perf_evsel__find_pmu()
  perf record: Add a function to test for kernel support for AUX area sampling
  perf tools: Add kernel AUX area sampling definitions
  perf/core: Make the mlock accounting simple again
  perf report: Jump to symbol source view from total cycles view
  ...
2019-11-26 15:04:47 -08:00
Andy Lutomirski
56f2ab41b6 x86/ptrace: Document FSBASE and GSBASE ABI oddities
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-26 22:00:12 +01:00
Andy Lutomirski
8e05f1b4f2 x86/ptrace: Remove set_segment_reg() implementations for current
seg_segment_reg() should be unreachable with task == current.
Rather than confusingly trying to make it work, just explicitly
disable this case.

(regset->get is used for current in the coredump code, but the ->set
 interface is only used for ptrace, and you can't ptrace yourself.)

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-26 22:00:12 +01:00
Andy Lutomirski
0337b7ebfc x86/traps: die() instead of panicking on a double fault
A double fault has a decent chance of being recoverable by killing
the offending thread.  Use die() so that we at least try to recover.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-26 22:00:12 +01:00
Andy Lutomirski
7d8d8cfdee x86/doublefault/32: Rewrite the x86_32 #DF handler and unify with 64-bit
The old x86_32 doublefault_fn() was old and crufty, and it did not
even try to recover.  do_double_fault() is much nicer.  Rewrite the
32-bit double fault code to sanitize CPU state and call
do_double_fault().  This is mostly an exercise i386 archaeology.

With this patch applied, 32-bit double faults get a real stack trace,
just like 64-bit double faults.

[ mingo: merged the patch to a later kernel base. ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-26 22:00:04 +01:00
Andy Lutomirski
dc4e0021b0 x86/doublefault/32: Move #DF stack and TSS to cpu_entry_area
There are three problems with the current layout of the doublefault
stack and TSS.  First, the TSS is only cacheline-aligned, which is
not enough -- if the hardware portion of the TSS (struct x86_hw_tss)
crosses a page boundary, horrible things happen [0].  Second, the
stack and TSS are global, so simultaneous double faults on different
CPUs will cause massive corruption.  Third, the whole mechanism
won't work if user CR3 is loaded, resulting in a triple fault [1].

Let the doublefault stack and TSS share a page (which prevents the
TSS from spanning a page boundary), make it percpu, and move it into
cpu_entry_area.  Teach the stack dump code about the doublefault
stack.

[0] Real hardware will read past the end of the page onto the next
    *physical* page if a task switch happens.  Virtual machines may
    have any number of bugs, and I would consider it reasonable for
    a VM to summarily kill the guest if it tries to task-switch to
    a page-spanning TSS.

[1] Real hardware triple faults.  At least some VMs seem to hang.
    I'm not sure what's going on.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-26 21:53:34 +01:00
Andy Lutomirski
e99b6f46ee x86/doublefault/32: Rename doublefault.c to doublefault_32.c
doublefault.c now only contains 32-bit code.  Rename it to
doublefault_32.c.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-26 21:53:34 +01:00
Andy Lutomirski
93efbde2c3 x86/traps: Disentangle the 32-bit and 64-bit doublefault code
The 64-bit doublefault handler is much nicer than the 32-bit one.
As a first step toward unifying them, make the 64-bit handler
self-contained.  This should have no effect no functional effect
except in the odd case of x86_64 with CONFIG_DOUBLEFAULT=n in which
case it will change the logging a bit.

This also gets rid of CONFIG_DOUBLEFAULT configurability on 64-bit
kernels.  It didn't do anything useful -- CONFIG_DOUBLEFAULT=n
didn't actually disable doublefault handling on x86_64.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-26 21:53:34 +01:00
Linus Torvalds
ab851d49f6 Merge branch 'x86-iopl-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 iopl updates from Ingo Molnar:
 "This implements a nice simplification of the iopl and ioperm code that
  Thomas Gleixner discovered: we can implement the IO privilege features
  of the iopl system call by using the IO permission bitmap in
  permissive mode, while trapping CLI/STI/POPF/PUSHF uses in user-space
  if they change the interrupt flag.

  This implements that feature, with testing facilities and related
  cleanups"

[ "Simplification" may be an over-statement. The main goal is to avoid
  the cli/sti of iopl by effectively implementing the IO port access
  parts of iopl in terms of ioperm.

  This may end up not workign well in case people actually depend on
  cli/sti being available, or if there are mixed uses of iopl and
  ioperm. We will see..       - Linus ]

* 'x86-iopl-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
  x86/ioperm: Fix use of deprecated config option
  x86/entry/32: Clarify register saving in __switch_to_asm()
  selftests/x86/iopl: Extend test to cover IOPL emulation
  x86/ioperm: Extend IOPL config to control ioperm() as well
  x86/iopl: Remove legacy IOPL option
  x86/iopl: Restrict iopl() permission scope
  x86/iopl: Fixup misleading comment
  selftests/x86/ioperm: Extend testing so the shared bitmap is exercised
  x86/ioperm: Share I/O bitmap if identical
  x86/ioperm: Remove bitmap if all permissions dropped
  x86/ioperm: Move TSS bitmap update to exit to user work
  x86/ioperm: Add bitmap sequence number
  x86/ioperm: Move iobitmap data into a struct
  x86/tss: Move I/O bitmap data into a seperate struct
  x86/io: Speedup schedule out of I/O bitmap user
  x86/ioperm: Avoid bitmap allocation if no permissions are set
  x86/ioperm: Simplify first ioperm() invocation logic
  x86/iopl: Cleanup include maze
  x86/tss: Fix and move VMX BUILD_BUG_ON()
  x86/cpu: Unify cpu_init()
  ...
2019-11-26 11:12:02 -08:00
Linus Torvalds
1d87200446 Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 asm updates from Ingo Molnar:
 "The main changes in this cycle were:

   - Cross-arch changes to move the linker sections for NOTES and
     EXCEPTION_TABLE into the RO_DATA area, where they belong on most
     architectures. (Kees Cook)

   - Switch the x86 linker fill byte from x90 (NOP) to 0xcc (INT3), to
     trap jumps into the middle of those padding areas instead of
     sliding execution. (Kees Cook)

   - A thorough cleanup of symbol definitions within x86 assembler code.
     The rather randomly named macros got streamlined around a
     (hopefully) straightforward naming scheme:

        SYM_START(name, linkage, align...)
        SYM_END(name, sym_type)

        SYM_FUNC_START(name)
        SYM_FUNC_END(name)

        SYM_CODE_START(name)
        SYM_CODE_END(name)

        SYM_DATA_START(name)
        SYM_DATA_END(name)

     etc - with about three times of these basic primitives with some
     label, local symbol or attribute variant, expressed via postfixes.

     No change in functionality intended. (Jiri Slaby)

   - Misc other changes, cleanups and smaller fixes"

* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
  x86/entry/64: Remove pointless jump in paranoid_exit
  x86/entry/32: Remove unused resume_userspace label
  x86/build/vdso: Remove meaningless CFLAGS_REMOVE_*.o
  m68k: Convert missed RODATA to RO_DATA
  x86/vmlinux: Use INT3 instead of NOP for linker fill bytes
  x86/mm: Report actual image regions in /proc/iomem
  x86/mm: Report which part of kernel image is freed
  x86/mm: Remove redundant address-of operators on addresses
  xtensa: Move EXCEPTION_TABLE to RO_DATA segment
  powerpc: Move EXCEPTION_TABLE to RO_DATA segment
  parisc: Move EXCEPTION_TABLE to RO_DATA segment
  microblaze: Move EXCEPTION_TABLE to RO_DATA segment
  ia64: Move EXCEPTION_TABLE to RO_DATA segment
  h8300: Move EXCEPTION_TABLE to RO_DATA segment
  c6x: Move EXCEPTION_TABLE to RO_DATA segment
  arm64: Move EXCEPTION_TABLE to RO_DATA segment
  alpha: Move EXCEPTION_TABLE to RO_DATA segment
  x86/vmlinux: Move EXCEPTION_TABLE to RO_DATA segment
  x86/vmlinux: Actually use _etext for the end of the text segment
  vmlinux.lds.h: Allow EXCEPTION_TABLE to live in RO_DATA
  ...
2019-11-26 10:42:40 -08:00
Linus Torvalds
5c4a1c090d Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
 "These are the fixes left over from the v5.4 cycle:

   - Various low level 32-bit entry code fixes and improvements by Andy
     Lutomirski, Peter Zijlstra and Thomas Gleixner.

   - Fix 32-bit Xen PV breakage, by Jan Beulich"

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/entry/32: Fix FIXUP_ESPFIX_STACK with user CR3
  x86/pti/32: Calculate the various PTI cpu_entry_area sizes correctly, make the CPU_ENTRY_AREA_PAGES assert precise
  selftests/x86/sigreturn/32: Invalidate DS and ES when abusing the kernel
  selftests/x86/mov_ss_trap: Fix the SYSENTER test
  x86/entry/32: Fix NMI vs ESPFIX
  x86/entry/32: Unwind the ESPFIX stack earlier on exception entry
  x86/entry/32: Move FIXUP_FRAME after pushing %fs in SAVE_ALL
  x86/entry/32: Use %ss segment where required
  x86/entry/32: Fix IRET exception
  x86/cpu_entry_area: Add guard page for entry stack on 32bit
  x86/pti/32: Size initial_page_table correctly
  x86/doublefault/32: Fix stack canaries in the double fault handler
  x86/xen/32: Simplify ring check in xen_iret_crit_fixup()
  x86/xen/32: Make xen_iret_crit_fixup() independent of frame layout
  x86/stackframe/32: Repair 32-bit Xen PV
2019-11-26 10:12:28 -08:00
Linus Torvalds
53a07a148f Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 PTI updates from Ingo Molnar:
 "Fix reporting bugs of the MDS and TAA mitigation status, if one or
  both are set via a boot option.

  No change to mitigation behavior intended"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/speculation: Fix redundant MDS mitigation message
  x86/speculation: Fix incorrect MDS/TAA mitigation status
2019-11-26 10:11:01 -08:00
Linus Torvalds
da42761df5 Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 platform updates from Ingo Molnar:
 "UV platform updates (with a 'hubless' variant) and Jailhouse updates
  for better UART support"

* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/jailhouse: Only enable platform UARTs if available
  x86/jailhouse: Improve setup data version comparison
  x86/platform/uv: Account for UV Hubless in is_uvX_hub Ops
  x86/platform/uv: Check EFI Boot to set reboot type
  x86/platform/uv: Decode UVsystab Info
  x86/platform/uv: Add UV Hubbed/Hubless Proc FS Files
  x86/platform/uv: Setup UV functions for Hubless UV Systems
  x86/platform/uv: Add return code to UV BIOS Init function
  x86/platform/uv: Return UV Hubless System Type
  x86/platform/uv: Save OEM_ID from ACPI MADT probe
2019-11-26 09:52:37 -08:00
Linus Torvalds
1c134b198d Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Ingo Molnar:
 "The main changes in this cycle were:

   - A PAT series from Davidlohr Bueso, which simplifies the memtype
     rbtree by using the interval tree helpers. (There's more cleanups
     in this area queued up, but they didn't make the merge window.)

   - Also flip over CONFIG_X86_5LEVEL to default-y. This might draw in a
     few more testers, as all the major distros are going to have
     5-level paging enabled by default in their next iterations.

   - Misc cleanups"

* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mm/pat: Rename pat_rbtree.c to pat_interval.c
  x86/mm/pat: Drop the rbt_ prefix from external memtype calls
  x86/mm/pat: Do not pass 'rb_root' down the memtype tree helper functions
  x86/mm/pat: Convert the PAT tree to a generic interval tree
  x86/mm: Clean up the pmd_read_atomic() comments
  x86/mm: Fix function name typo in pmd_read_atomic() comment
  x86/cpu: Clean up intel_tlb_table[]
  x86/mm: Enable 5-level paging support by default
2019-11-26 09:50:14 -08:00
Linus Torvalds
24ee25a6da Merge branch 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 kdump updates from Ingo Molnar:
 "This solves a kdump artifact where encrypted memory contents are
  dumped, instead of unencrypted ones.

  The solution also happens to simplify the kdump code, to everyone's
  delight"

* 'x86-kdump-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/crash: Align function arguments on opening braces
  x86/kdump: Remove the backup region handling
  x86/kdump: Always reserve the low 1M when the crashkernel option is specified
  x86/crash: Add a forward declaration of struct kimage
2019-11-26 09:48:19 -08:00
Linus Torvalds
64d6a12094 Merge branch 'x86-hyperv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 hyperv updates from Ingo Molnar:
 "Misc updates to the hyperv guest code:

   - Rework clockevents initialization to better support hibernation

   - Allow guests to enable InvariantTSC

   - Micro-optimize send_ipi_one"

* 'x86-hyperv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/hyperv: Initialize clockevents earlier in CPU onlining
  x86/hyperv: Allow guests to enable InvariantTSC
  x86/hyperv: Micro-optimize send_ipi_one()
2019-11-26 09:43:34 -08:00
Linus Torvalds
a25bbc2644 Merge branches 'x86-cpu-for-linus' and 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu and fpu updates from Ingo Molnar:

 - math-emu fixes

 - CPUID updates

 - sanity-check RDRAND output to see whether the CPU at least pretends
   to produce random data

 - various unaligned-access across cachelines fixes in preparation of
   hardware level split-lock detection

 - fix MAXSMP constraints to not allow !CPUMASK_OFFSTACK kernels with
   larger than 512 NR_CPUS

 - misc FPU related cleanups

* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/cpu: Align the x86_capability array to size of unsigned long
  x86/cpu: Align cpu_caps_cleared and cpu_caps_set to unsigned long
  x86/umip: Make the comments vendor-agnostic
  x86/Kconfig: Rename UMIP config parameter
  x86/Kconfig: Enforce limit of 512 CPUs with MAXSMP and no CPUMASK_OFFSTACK
  x86/cpufeatures: Add feature bit RDPRU on AMD
  x86/math-emu: Limit MATH_EMULATION to 486SX compatibles
  x86/math-emu: Check __copy_from_user() result
  x86/rdrand: Sanity-check RDRAND output

* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/fpu: Use XFEATURE_FP/SSE enum values instead of hardcoded numbers
  x86/fpu: Shrink space allocated for xstate_comp_offsets
  x86/fpu: Update stale variable name in comment
2019-11-26 08:58:08 -08:00
Linus Torvalds
85fbf15bc9 Merge branch 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 boot updates from Ingo Molnar:
 "The main changes were:

   - Extend the boot protocol to allow future extensions without hitting
     the setup_header size limit.

   - Add quirk to devicetree systems to disable the RTC unless it's
     listed as a supported device.

   - Fix ld.lld linker pedantry"

* 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/boot: Introduce setup_indirect
  x86/boot: Introduce kernel_info.setup_type_max
  x86/boot: Introduce kernel_info
  x86/init: Allow DT configured systems to disable RTC at boot time
  x86/realmode: Explicitly set entry point via ENTRY in linker script
2019-11-26 08:40:20 -08:00