syzbot reported a possible deadlock in perf_event_detach_bpf_prog.
The error details:
======================================================
WARNING: possible circular locking dependency detected
4.16.0-rc7+ #3 Not tainted
------------------------------------------------------
syz-executor7/24531 is trying to acquire lock:
(bpf_event_mutex){+.+.}, at: [<000000008a849b07>] perf_event_detach_bpf_prog+0x92/0x3d0 kernel/trace/bpf_trace.c:854
but task is already holding lock:
(&mm->mmap_sem){++++}, at: [<0000000038768f87>] vm_mmap_pgoff+0x198/0x280 mm/util.c:353
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&mm->mmap_sem){++++}:
__might_fault+0x13a/0x1d0 mm/memory.c:4571
_copy_to_user+0x2c/0xc0 lib/usercopy.c:25
copy_to_user include/linux/uaccess.h:155 [inline]
bpf_prog_array_copy_info+0xf2/0x1c0 kernel/bpf/core.c:1694
perf_event_query_prog_array+0x1c7/0x2c0 kernel/trace/bpf_trace.c:891
_perf_ioctl kernel/events/core.c:4750 [inline]
perf_ioctl+0x3e1/0x1480 kernel/events/core.c:4770
vfs_ioctl fs/ioctl.c:46 [inline]
do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686
SYSC_ioctl fs/ioctl.c:701 [inline]
SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692
do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x42/0xb7
-> #0 (bpf_event_mutex){+.+.}:
lock_acquire+0x1d5/0x580 kernel/locking/lockdep.c:3920
__mutex_lock_common kernel/locking/mutex.c:756 [inline]
__mutex_lock+0x16f/0x1a80 kernel/locking/mutex.c:893
mutex_lock_nested+0x16/0x20 kernel/locking/mutex.c:908
perf_event_detach_bpf_prog+0x92/0x3d0 kernel/trace/bpf_trace.c:854
perf_event_free_bpf_prog kernel/events/core.c:8147 [inline]
_free_event+0xbdb/0x10f0 kernel/events/core.c:4116
put_event+0x24/0x30 kernel/events/core.c:4204
perf_mmap_close+0x60d/0x1010 kernel/events/core.c:5172
remove_vma+0xb4/0x1b0 mm/mmap.c:172
remove_vma_list mm/mmap.c:2490 [inline]
do_munmap+0x82a/0xdf0 mm/mmap.c:2731
mmap_region+0x59e/0x15a0 mm/mmap.c:1646
do_mmap+0x6c0/0xe00 mm/mmap.c:1483
do_mmap_pgoff include/linux/mm.h:2223 [inline]
vm_mmap_pgoff+0x1de/0x280 mm/util.c:355
SYSC_mmap_pgoff mm/mmap.c:1533 [inline]
SyS_mmap_pgoff+0x462/0x5f0 mm/mmap.c:1491
SYSC_mmap arch/x86/kernel/sys_x86_64.c:100 [inline]
SyS_mmap+0x16/0x20 arch/x86/kernel/sys_x86_64.c:91
do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x42/0xb7
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&mm->mmap_sem);
lock(bpf_event_mutex);
lock(&mm->mmap_sem);
lock(bpf_event_mutex);
*** DEADLOCK ***
======================================================
The bug is introduced by Commit f371b304f1 ("bpf/tracing: allow
user space to query prog array on the same tp") where copy_to_user,
which requires mm->mmap_sem, is called inside bpf_event_mutex lock.
At the same time, during perf_event file descriptor close,
mm->mmap_sem is held first and then subsequent
perf_event_detach_bpf_prog needs bpf_event_mutex lock.
Such a senario caused a deadlock.
As suggested by Daniel, moving copy_to_user out of the
bpf_event_mutex lock should fix the problem.
Fixes: f371b304f1 ("bpf/tracing: allow user space to query prog array on the same tp")
Reported-by: syzbot+dc5ca0e4c9bfafaf2bae@syzkaller.appspotmail.com
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
syzkaller tried to perform a prog query in perf_event_query_prog_array()
where struct perf_event_query_bpf had an ids_len of 1,073,741,353 and
thus causing a warning due to failed kcalloc() allocation out of the
bpf_prog_array_copy_to_user() helper. Given we cannot attach more than
64 programs to a perf event, there's no point in allowing huge ids_len.
Therefore, allow a buffer that would fix the maximum number of ids and
also add a __GFP_NOWARN to the temporary ids buffer.
Fixes: f371b304f1 ("bpf/tracing: allow user space to query prog array on the same tp")
Fixes: 0911287ce3 ("bpf: fix bpf_prog_array_copy_to_user() issues")
Reported-by: syzbot+cab5816b0edbabf598b3@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
1. move copy_to_user out of rcu section to fix the following issue:
./include/linux/rcupdate.h:302 Illegal context switch in RCU read-side critical section!
stack backtrace:
__dump_stack lib/dump_stack.c:17 [inline]
dump_stack+0x194/0x257 lib/dump_stack.c:53
lockdep_rcu_suspicious+0x123/0x170 kernel/locking/lockdep.c:4592
rcu_preempt_sleep_check include/linux/rcupdate.h:301 [inline]
___might_sleep+0x385/0x470 kernel/sched/core.c:6079
__might_sleep+0x95/0x190 kernel/sched/core.c:6067
__might_fault+0xab/0x1d0 mm/memory.c:4532
_copy_to_user+0x2c/0xc0 lib/usercopy.c:25
copy_to_user include/linux/uaccess.h:155 [inline]
bpf_prog_array_copy_to_user+0x217/0x4d0 kernel/bpf/core.c:1587
bpf_prog_array_copy_info+0x17b/0x1c0 kernel/bpf/core.c:1685
perf_event_query_prog_array+0x196/0x280 kernel/trace/bpf_trace.c:877
_perf_ioctl kernel/events/core.c:4737 [inline]
perf_ioctl+0x3e1/0x1480 kernel/events/core.c:4757
2. move *prog under rcu, since it's not ok to dereference it afterwards
3. in a rare case of prog array being swapped between bpf_prog_array_length()
and bpf_prog_array_copy_to_user() calls make sure to copy zeros to user space,
so the user doesn't walk over uninited prog_ids while kernel reported
uattr->query.prog_cnt > 0
Reported-by: syzbot+7dbcd2d3b85f9b608b23@syzkaller.appspotmail.com
Fixes: 468e2f64d2 ("bpf: introduce BPF_PROG_QUERY command")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
One of the ugly leftovers from the early eBPF days is that div/mod
operations based on registers have a hard-coded src_reg == 0 test
in the interpreter as well as in JIT code generators that would
return from the BPF program with exit code 0. This was basically
adopted from cBPF interpreter for historical reasons.
There are multiple reasons why this is very suboptimal and prone
to bugs. To name one: the return code mapping for such abnormal
program exit of 0 does not always match with a suitable program
type's exit code mapping. For example, '0' in tc means action 'ok'
where the packet gets passed further up the stack, which is just
undesirable for such cases (e.g. when implementing policy) and
also does not match with other program types.
While trying to work out an exception handling scheme, I also
noticed that programs crafted like the following will currently
pass the verifier:
0: (bf) r6 = r1
1: (85) call pc+8
caller:
R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1
callee:
frame1: R1=ctx(id=0,off=0,imm=0) R10=fp0,call_1
10: (b4) (u32) r2 = (u32) 0
11: (b4) (u32) r3 = (u32) 1
12: (3c) (u32) r3 /= (u32) r2
13: (61) r0 = *(u32 *)(r1 +76)
14: (95) exit
returning from callee:
frame1: R0_w=pkt(id=0,off=0,r=0,imm=0)
R1=ctx(id=0,off=0,imm=0) R2_w=inv0
R3_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff))
R10=fp0,call_1
to caller at 2:
R0_w=pkt(id=0,off=0,r=0,imm=0) R6=ctx(id=0,off=0,imm=0)
R10=fp0,call_-1
from 14 to 2: R0=pkt(id=0,off=0,r=0,imm=0)
R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1
2: (bf) r1 = r6
3: (61) r1 = *(u32 *)(r1 +80)
4: (bf) r2 = r0
5: (07) r2 += 8
6: (2d) if r2 > r1 goto pc+1
R0=pkt(id=0,off=0,r=8,imm=0) R1=pkt_end(id=0,off=0,imm=0)
R2=pkt(id=0,off=8,r=8,imm=0) R6=ctx(id=0,off=0,imm=0)
R10=fp0,call_-1
7: (71) r0 = *(u8 *)(r0 +0)
8: (b7) r0 = 1
9: (95) exit
from 6 to 8: safe
processed 16 insns (limit 131072), stack depth 0+0
Basically what happens is that in the subprog we make use of a
div/mod by 0 exception and in the 'normal' subprog's exit path
we just return skb->data back to the main prog. This has the
implication that the verifier thinks we always get a pkt pointer
in R0 while we still have the implicit 'return 0' from the div
as an alternative unconditional return path earlier. Thus, R0
then contains 0, meaning back in the parent prog we get the
address range of [0x0, skb->data_end] as read and writeable.
Similar can be crafted with other pointer register types.
Since i) BPF_ABS/IND is not allowed in programs that contain
BPF to BPF calls (and generally it's also disadvised to use in
native eBPF context), ii) unknown opcodes don't return zero
anymore, iii) we don't return an exception code in dead branches,
the only last missing case affected and to fix is the div/mod
handling.
What we would really need is some infrastructure to propagate
exceptions all the way to the original prog unwinding the
current stack and returning that code to the caller of the
BPF program. In user space such exception handling for similar
runtimes is typically implemented with setjmp(3) and longjmp(3)
as one possibility which is not available in the kernel,
though (kgdb used to implement it in kernel long time ago). I
implemented a PoC exception handling mechanism into the BPF
interpreter with porting setjmp()/longjmp() into x86_64 and
adding a new internal BPF_ABRT opcode that can use a program
specific exception code for all exception cases we have (e.g.
div/mod by 0, unknown opcodes, etc). While this seems to work
in the constrained BPF environment (meaning, here, we don't
need to deal with state e.g. from memory allocations that we
would need to undo before going into exception state), it still
has various drawbacks: i) we would need to implement the
setjmp()/longjmp() for every arch supported in the kernel and
for x86_64, arm64, sparc64 JITs currently supporting calls,
ii) it has unconditional additional cost on main program
entry to store CPU register state in initial setjmp() call,
and we would need some way to pass the jmp_buf down into
___bpf_prog_run() for main prog and all subprogs, but also
storing on stack is not really nice (other option would be
per-cpu storage for this, but it also has the drawback that
we need to disable preemption for every BPF program types).
All in all this approach would add a lot of complexity.
Another poor-man's solution would be to have some sort of
additional shared register or scratch buffer to hold state
for exceptions, and test that after every call return to
chain returns and pass R0 all the way down to BPF prog caller.
This is also problematic in various ways: i) an additional
register doesn't map well into JITs, and some other scratch
space could only be on per-cpu storage, which, again has the
side-effect that this only works when we disable preemption,
or somewhere in the input context which is not available
everywhere either, and ii) this adds significant runtime
overhead by putting conditionals after each and every call,
as well as implementation complexity.
Yet another option is to teach verifier that div/mod can
return an integer, which however is also complex to implement
as verifier would need to walk such fake 'mov r0,<code>; exit;'
sequeuence and there would still be no guarantee for having
propagation of this further down to the BPF caller as proper
exception code. For parent prog, it is also is not distinguishable
from a normal return of a constant scalar value.
The approach taken here is a completely different one with
little complexity and no additional overhead involved in
that we make use of the fact that a div/mod by 0 is undefined
behavior. Instead of bailing out, we adapt the same behavior
as on some major archs like ARMv8 [0] into eBPF as well:
X div 0 results in 0, and X mod 0 results in X. aarch64 and
aarch32 ISA do not generate any traps or otherwise aborts
of program execution for unsigned divides. I verified this
also with a test program compiled by gcc and clang, and the
behavior matches with the spec. Going forward we adapt the
eBPF verifier to emit such rewrites once div/mod by register
was seen. cBPF is not touched and will keep existing 'return 0'
semantics. Given the options, it seems the most suitable from
all of them, also since major archs have similar schemes in
place. Given this is all in the realm of undefined behavior,
we still have the option to adapt if deemed necessary and
this way we would also have the option of more flexibility
from LLVM code generation side (which is then fully visible
to verifier). Thus, this patch i) fixes the panic seen in
above program and ii) doesn't bypass the verifier observations.
[0] ARM Architecture Reference Manual, ARMv8 [ARM DDI 0487B.b]
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487b.b/DDI0487B_b_armv8_arm.pdf
1) aarch64 instruction set: section C3.4.7 and C6.2.279 (UDIV)
"A division by zero results in a zero being written to
the destination register, without any indication that
the division by zero occurred."
2) aarch32 instruction set: section F1.4.8 and F5.1.263 (UDIV)
"For the SDIV and UDIV instructions, division by zero
always returns a zero result."
Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Recent findings by syzcaller fixed in 7891a87efc ("bpf: arsh is
not supported in 32 bit alu thus reject it") triggered a warning
in the interpreter due to unknown opcode not being rejected by
the verifier. The 'return 0' for an unknown opcode is really not
optimal, since with BPF to BPF calls, this would go untracked by
the verifier.
Do two things here to improve the situation: i) perform basic insn
sanity check early on in the verification phase and reject every
non-uapi insn right there. The bpf_opcode_in_insntable() table
reuses the same mapping as the jumptable in ___bpf_prog_run() sans
the non-public mappings. And ii) in ___bpf_prog_run() we do need
to BUG in the case where the verifier would ever create an unknown
opcode due to some rewrites.
Note that JITs do not have such issues since they would punt to
interpreter in these situations. Moreover, the BPF_JIT_ALWAYS_ON
would also help to avoid such unknown opcodes in the first place.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2018-01-19
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) bpf array map HW offload, from Jakub.
2) support for bpf_get_next_key() for LPM map, from Yonghong.
3) test_verifier now runs loaded programs, from Alexei.
4) xdp cpumap monitoring, from Jesper.
5) variety of tests, cleanups and small x64 JIT optimization, from Daniel.
6) user space can now retrieve HW JITed program, from Jiong.
Note there is a minor conflict between Russell's arm32 JIT fixes
and removal of bpf_jit_enable variable by Daniel which should
be resolved by keeping Russell's comment and removing that variable.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
The BPF verifier conflict was some minor contextual issue.
The TUN conflict was less trivial. Cong Wang fixed a memory leak of
tfile->tx_array in 'net'. This is an skb_array. But meanwhile in
net-next tun changed tfile->tx_arry into tfile->tx_ring which is a
ptr_ring.
Signed-off-by: David S. Miller <davem@davemloft.net>
Having a pure_initcall() callback just to permanently enable BPF
JITs under CONFIG_BPF_JIT_ALWAYS_ON is unnecessary and could leave
a small race window in future where JIT is still disabled on boot.
Since we know about the setting at compilation time anyway, just
initialize it properly there. Also consolidate all the individual
bpf_jit_enable variables into a single one and move them under one
location. Moreover, don't allow for setting unspecified garbage
values on them.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Divides by zero are not nice, lets avoid them if possible.
Also do_div() seems not needed when dealing with 32bit operands,
but this seems a minor detail.
Fixes: bd4cf0ed33 ("net: filter: rework/optimize internal BPF interpreter's instruction set")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BPF alignment tests got a conflict because the registers
are output as Rn_w instead of just Rn in net-next, and
in net a fixup for a testcase prohibits logical operations
on pointers before using them.
Also, we should attempt to patch BPF call args if JIT always on is
enabled. Instead, if we fail to JIT the subprogs we should pass
an error back up and fail immediately.
Signed-off-by: David S. Miller <davem@davemloft.net>
The BPF interpreter has been used as part of the spectre 2 attack CVE-2017-5715.
A quote from goolge project zero blog:
"At this point, it would normally be necessary to locate gadgets in
the host kernel code that can be used to actually leak data by reading
from an attacker-controlled location, shifting and masking the result
appropriately and then using the result of that as offset to an
attacker-controlled address for a load. But piecing gadgets together
and figuring out which ones work in a speculation context seems annoying.
So instead, we decided to use the eBPF interpreter, which is built into
the host kernel - while there is no legitimate way to invoke it from inside
a VM, the presence of the code in the host kernel's text section is sufficient
to make it usable for the attack, just like with ordinary ROP gadgets."
To make attacker job harder introduce BPF_JIT_ALWAYS_ON config
option that removes interpreter from the kernel in favor of JIT-only mode.
So far eBPF JIT is supported by:
x64, arm64, arm32, sparc64, s390, powerpc64, mips64
The start of JITed program is randomized and code page is marked as read-only.
In addition "constant blinding" can be turned on with net.core.bpf_jit_harden
v2->v3:
- move __bpf_prog_ret0 under ifdef (Daniel)
v1->v2:
- fix init order, test_bpf and cBPF (Daniel's feedback)
- fix offloaded bpf (Jakub's feedback)
- add 'return 0' dummy in case something can invoke prog->bpf_func
- retarget bpf tree. For bpf-next the patch would need one extra hunk.
It will be sent when the trees are merged back to net-next
Considered doing:
int bpf_jit_enable __read_mostly = BPF_EBPF_JIT_DEFAULT;
but it seems better to land the patch as-is and in bpf-next remove
bpf_jit_enable global variable from all JITs, consolidate in one place
and remove this jit_init() function.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Typical JIT does several passes over bpf instructions to
compute total size and relative offsets of jumps and calls.
With multitple bpf functions calling each other all relative calls
will have invalid offsets intially therefore we need to additional
last pass over the program to emit calls with correct offsets.
For example in case of three bpf functions:
main:
call foo
call bpf_map_lookup
exit
foo:
call bar
exit
bar:
exit
We will call bpf_int_jit_compile() indepedently for main(), foo() and bar()
x64 JIT typically does 4-5 passes to converge.
After these initial passes the image for these 3 functions
will be good except call targets, since start addresses of
foo() and bar() are unknown when we were JITing main()
(note that call bpf_map_lookup will be resolved properly
during initial passes).
Once start addresses of 3 functions are known we patch
call_insn->imm to point to right functions and call
bpf_int_jit_compile() again which needs only one pass.
Additional safety checks are done to make sure this
last pass doesn't produce image that is larger or smaller
than previous pass.
When constant blinding is on it's applied to all functions
at the first pass, since doing it once again at the last
pass can change size of the JITed code.
Tested on x64 and arm64 hw with JIT on/off, blinding on/off.
x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter.
All other JITs that support normal BPF_CALL will behave the same way
since bpf-to-bpf call is equivalent to bpf-to-kernel call from
JITs point of view.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
global bpf_jit_enable variable is tested multiple times in JITs,
blinding and verifier core. The malicious root can try to toggle
it while loading the programs. This race condition was accounted
for and there should be no issues, but it's safer to avoid
this race condition.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
though bpf_call is still the same call instruction and
calling convention 'bpf to bpf' and 'bpf to helper' is the same
the interpreter has to oparate on 'struct bpf_insn *'.
To distinguish these two cases add a kernel internal opcode and
mark call insns with it.
This opcode is seen by interpreter only. JITs will never see it.
Also add tiny bit of debug code to aid interpreter debugging.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Error injection is sloppy and very ad-hoc. BPF could fill this niche
perfectly with it's kprobe functionality. We could make sure errors are
only triggered in specific call chains that we care about with very
specific situations. Accomplish this with the bpf_override_funciton
helper. This will modify the probe'd callers return value to the
specified value and set the PC to an override function that simply
returns, bypassing the originally probed function. This gives us a nice
clean way to implement systematic error injection for all of our code
paths.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit e87c6bc385 ("bpf: permit multiple bpf attachments
for a single perf event") added support to attach multiple
bpf programs to a single perf event.
Although this provides flexibility, users may want to know
what other bpf programs attached to the same tp interface.
Besides getting visibility for the underlying bpf system,
such information may also help consolidate multiple bpf programs,
understand potential performance issues due to a large array,
and debug (e.g., one bpf program which overwrites return code
may impact subsequent program results).
Commit 2541517c32 ("tracing, perf: Implement BPF programs
attached to kprobes") utilized the existing perf ioctl
interface and added the command PERF_EVENT_IOC_SET_BPF
to attach a bpf program to a tracepoint. This patch adds a new
ioctl command, given a perf event fd, to query the bpf program
array attached to the same perf tracepoint event.
The new uapi ioctl command:
PERF_EVENT_IOC_QUERY_BPF
The new uapi/linux/perf_event.h structure:
struct perf_event_query_bpf {
__u32 ids_len;
__u32 prog_cnt;
__u32 ids[0];
};
User space provides buffer "ids" for kernel to copy to.
When returning from the kernel, the number of available
programs in the array is set in "prog_cnt".
The usage:
struct perf_event_query_bpf *query =
malloc(sizeof(*query) + sizeof(u32) * ids_len);
query.ids_len = ids_len;
err = ioctl(pmu_efd, PERF_EVENT_IOC_QUERY_BPF, query);
if (err == 0) {
/* query.prog_cnt is the number of available progs,
* number of progs in ids: (ids_len == 0) ? 0 : query.prog_cnt
*/
} else if (errno == ENOSPC) {
/* query.ids_len number of progs copied,
* query.prog_cnt is the number of available progs
*/
} else {
/* other errors */
}
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
cgropu+bpf prog array has a maximum number of 64 programs.
Let us apply the same limit here.
Fixes: e87c6bc385 ("bpf: permit multiple bpf attachments for a single perf event")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Merge updates from Andrew Morton:
- a few misc bits
- ocfs2 updates
- almost all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (131 commits)
memory hotplug: fix comments when adding section
mm: make alloc_node_mem_map a void call if we don't have CONFIG_FLAT_NODE_MEM_MAP
mm: simplify nodemask printing
mm,oom_reaper: remove pointless kthread_run() error check
mm/page_ext.c: check if page_ext is not prepared
writeback: remove unused function parameter
mm: do not rely on preempt_count in print_vma_addr
mm, sparse: do not swamp log with huge vmemmap allocation failures
mm/hmm: remove redundant variable align_end
mm/list_lru.c: mark expected switch fall-through
mm/shmem.c: mark expected switch fall-through
mm/page_alloc.c: broken deferred calculation
mm: don't warn about allocations which stall for too long
fs: fuse: account fuse_inode slab memory as reclaimable
mm, page_alloc: fix potential false positive in __zone_watermark_ok
mm: mlock: remove lru_add_drain_all()
mm, sysctl: make NUMA stats configurable
shmem: convert shmem_init_inodecache() to void
Unify migrate_pages and move_pages access checks
mm, pagevec: rename pagevec drained field
...
Patch series "kmemcheck: kill kmemcheck", v2.
As discussed at LSF/MM, kill kmemcheck.
KASan is a replacement that is able to work without the limitation of
kmemcheck (single CPU, slow). KASan is already upstream.
We are also not aware of any users of kmemcheck (or users who don't
consider KASan as a suitable replacement).
The only objection was that since KASAN wasn't supported by all GCC
versions provided by distros at that time we should hold off for 2
years, and try again.
Now that 2 years have passed, and all distros provide gcc that supports
KASAN, kill kmemcheck again for the very same reasons.
This patch (of 4):
Remove kmemcheck annotations, and calls to kmemcheck from the kernel.
[alexander.levin@verizon.com: correctly remove kmemcheck call from dma_map_sg_attrs]
Link: http://lkml.kernel.org/r/20171012192151.26531-1-alexander.levin@verizon.com
Link: http://lkml.kernel.org/r/20171007030159.22241-2-alexander.levin@verizon.com
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tim Hansen <devtimhansen@gmail.com>
Cc: Vegard Nossum <vegardno@ifi.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Error injection is sloppy and very ad-hoc. BPF could fill this niche
perfectly with it's kprobe functionality. We could make sure errors are
only triggered in specific call chains that we care about with very
specific situations. Accomplish this with the bpf_override_funciton
helper. This will modify the probe'd callers return value to the
specified value and set the PC to an override function that simply
returns, bypassing the originally probed function. This gives us a nice
clean way to implement systematic error injection for all of our code
paths.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
The fact that we don't know which device the program is going
to be used on is quite limiting in current eBPF infrastructure.
We have to reverse or limit the changes which kernel makes to
the loaded bytecode if we want it to be offloaded to a networking
device. We also have to invent new APIs for debugging and
troubleshooting support.
Make it possible to load programs for a specific netdev. This
helps us to bring the debug information closer to the core
eBPF infrastructure (e.g. we will be able to reuse the verifer
log in device JIT). It allows device JITs to perform translation
on the original bytecode.
__bpf_prog_get() when called to get a reference for an attachment
point will now refuse to give it if program has a device assigned.
Following patches will add a version of that function which passes
the expected netdev in. @type argument in __bpf_prog_get() is
renamed to attach_type to make it clearer that it's only set on
attachment.
All calls to ndo_bpf are protected by rtnl, only verifier callbacks
are not. We need a wait queue to make sure netdev doesn't get
destroyed while verifier is still running and calling its driver.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch enables multiple bpf attachments for a
kprobe/uprobe/tracepoint single trace event.
Each trace_event keeps a list of attached perf events.
When an event happens, all attached bpf programs will
be executed based on the order of attachment.
A global bpf_event_mutex lock is introduced to protect
prog_array attaching and detaching. An alternative will
be introduce a mutex lock in every trace_event_call
structure, but it takes a lot of extra memory.
So a global bpf_event_mutex lock is a good compromise.
The bpf prog detachment involves allocation of memory.
If the allocation fails, a dummy do-nothing program
will replace to-be-detached program in-place.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
All the trace events defined in include/trace/events/bpf.h are only
used when CONFIG_BPF_SYSCALL is defined. But this file gets included by
include/linux/bpf_trace.h which is included by the networking code with
CREATE_TRACE_POINTS defined.
If a trace event is created but not used it still has data structures
and functions created for its use, even though nothing is using them.
To not waste space, do not define the BPF trace events in bpf.h unless
CONFIG_BPF_SYSCALL is defined.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch makes the bpf_prog's name available
in kallsyms.
The new format is bpf_prog_tag[_name].
Sample kallsyms from running selftests/bpf/test_progs:
[root@arch-fb-vm1 ~]# egrep ' bpf_prog_[0-9a-fA-F]{16}' /proc/kallsyms
ffffffffa0048000 t bpf_prog_dabf0207d1992486_test_obj_id
ffffffffa0038000 t bpf_prog_a04f5eef06a7f555__123456789ABCDE
ffffffffa0050000 t bpf_prog_a04f5eef06a7f555
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
introduce BPF_PROG_QUERY command to retrieve a set of either
attached programs to given cgroup or a set of effective programs
that will execute for events within a cgroup
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
for cgroup bits
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
introduce BPF_F_ALLOW_MULTI flag that can be used to attach multiple
bpf programs to a cgroup.
The difference between three possible flags for BPF_PROG_ATTACH command:
- NONE(default): No further bpf programs allowed in the subtree.
- BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
the program in this cgroup yields to sub-cgroup program.
- BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
that cgroup program gets run in addition to the program in this cgroup.
NONE and BPF_F_ALLOW_OVERRIDE existed before. This patch doesn't
change their behavior. It only clarifies the semantics in relation
to new flag.
Only one program is allowed to be attached to a cgroup with
NONE or BPF_F_ALLOW_OVERRIDE flag.
Multiple programs are allowed to be attached to a cgroup with
BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
(those that were attached first, run first)
The programs of sub-cgroup are executed first, then programs of
this cgroup and then programs of parent cgroup.
All eligible programs are executed regardless of return code from
earlier programs.
To allow efficient execution of multiple programs attached to a cgroup
and to avoid penalizing cgroups without any programs attached
introduce 'struct bpf_prog_array' which is RCU protected array
of pointers to bpf programs.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
for cgroup bits
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
- bpf prog_array just like all other types of bpf array accepts 32-bit index.
Clarify that in the comment.
- fix x64 JIT of bpf_tail_call which was incorrectly loading 8 instead of 4 bytes
- tighten corresponding check in the interpreter to stay consistent
The JIT bug can be triggered after introduction of BPF_F_NUMA_NODE flag
in commit 96eabe7a40 in 4.14. Before that the map_flags would stay zero and
though JIT code is wrong it will check bounds correctly.
Hence two fixes tags. All other JITs don't have this problem.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Fixes: 96eabe7a40 ("bpf: Allow selecting numa node during map creation")
Fixes: b52f00e6a7 ("x86: bpf_jit: implement bpf_tail_call() helper")
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Resolve issues with !CONFIG_BPF_SYSCALL and !STREAM_PARSER
net/core/filter.c: In function ‘do_sk_redirect_map’:
net/core/filter.c:1881:3: error: implicit declaration of function ‘__sock_map_lookup_elem’ [-Werror=implicit-function-declaration]
sk = __sock_map_lookup_elem(ri->map, ri->ifindex);
^
net/core/filter.c:1881:6: warning: assignment makes pointer from integer without a cast [enabled by default]
sk = __sock_map_lookup_elem(ri->map, ri->ifindex);
Fixes: 174a79ff95 ("bpf: sockmap with sk redirect support")
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, eBPF only understands BPF_JGT (>), BPF_JGE (>=),
BPF_JSGT (s>), BPF_JSGE (s>=) instructions, this means that
particularly *JLT/*JLE counterparts involving immediates need
to be rewritten from e.g. X < [IMM] by swapping arguments into
[IMM] > X, meaning the immediate first is required to be loaded
into a register Y := [IMM], such that then we can compare with
Y > X. Note that the destination operand is always required to
be a register.
This has the downside of having unnecessarily increased register
pressure, meaning complex program would need to spill other
registers temporarily to stack in order to obtain an unused
register for the [IMM]. Loading to registers will thus also
affect state pruning since we need to account for that register
use and potentially those registers that had to be spilled/filled
again. As a consequence slightly more stack space might have
been used due to spilling, and BPF programs are a bit longer
due to extra code involving the register load and potentially
required spill/fills.
Thus, add BPF_JLT (<), BPF_JLE (<=), BPF_JSLT (s<), BPF_JSLE (s<=)
counterparts to the eBPF instruction set. Modifying LLVM to
remove the NegateCC() workaround in a PoC patch at [1] and
allowing it to also emit the new instructions resulted in
cilium's BPF programs that are injected into the fast-path to
have a reduced program length in the range of 2-3% (e.g.
accumulated main and tail call sections from one of the object
file reduced from 4864 to 4729 insns), reduced complexity in
the range of 10-30% (e.g. accumulated sections reduced in one
of the cases from 116432 to 88428 insns), and reduced stack
usage in the range of 1-5% (e.g. accumulated sections from one
of the object files reduced from 824 to 784b).
The modification for LLVM will be incorporated in a backwards
compatible way. Plan is for LLVM to have i) a target specific
option to offer a possibility to explicitly enable the extension
by the user (as we have with -m target specific extensions today
for various CPU insns), and ii) have the kernel checked for
presence of the extensions and enable them transparently when
the user is selecting more aggressive options such as -march=native
in a bpf target context. (Other frontends generating BPF byte
code, e.g. ply can probe the kernel directly for its code
generation.)
[1] https://github.com/borkmann/llvm/tree/bpf-insns
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The index is off-by-one when fp->aux->stack_depth
has already been rounded up to 32. In particular,
if stack_depth is 512, the index will be 16.
The fix is to round_up and then takes -1 instead of round_down.
[ 22.318680] ==================================================================
[ 22.319745] BUG: KASAN: global-out-of-bounds in bpf_prog_select_runtime+0x48a/0x670
[ 22.320737] Read of size 8 at addr ffffffff82aadae0 by task sockex3/1946
[ 22.321646]
[ 22.321858] CPU: 1 PID: 1946 Comm: sockex3 Tainted: G W 4.12.0-rc6-01680-g2ee87db3a287 #22
[ 22.323061] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.3-1.el7.centos 04/01/2014
[ 22.324260] Call Trace:
[ 22.324612] dump_stack+0x67/0x99
[ 22.325081] print_address_description+0x1e8/0x290
[ 22.325734] ? bpf_prog_select_runtime+0x48a/0x670
[ 22.326360] kasan_report+0x265/0x350
[ 22.326860] __asan_report_load8_noabort+0x19/0x20
[ 22.327484] bpf_prog_select_runtime+0x48a/0x670
[ 22.328109] bpf_prog_load+0x626/0xd40
[ 22.328637] ? __bpf_prog_charge+0xc0/0xc0
[ 22.329222] ? check_nnp_nosuid.isra.61+0x100/0x100
[ 22.329890] ? __might_fault+0xf6/0x1b0
[ 22.330446] ? lock_acquire+0x360/0x360
[ 22.331013] SyS_bpf+0x67c/0x24d0
[ 22.331491] ? trace_hardirqs_on+0xd/0x10
[ 22.332049] ? __getnstimeofday64+0xaf/0x1c0
[ 22.332635] ? bpf_prog_get+0x20/0x20
[ 22.333135] ? __audit_syscall_entry+0x300/0x600
[ 22.333770] ? syscall_trace_enter+0x540/0xdd0
[ 22.334339] ? exit_to_usermode_loop+0xe0/0xe0
[ 22.334950] ? do_syscall_64+0x48/0x410
[ 22.335446] ? bpf_prog_get+0x20/0x20
[ 22.335954] do_syscall_64+0x181/0x410
[ 22.336454] entry_SYSCALL64_slow_path+0x25/0x25
[ 22.337121] RIP: 0033:0x7f263fe81f19
[ 22.337618] RSP: 002b:00007ffd9a3440c8 EFLAGS: 00000202 ORIG_RAX: 0000000000000141
[ 22.338619] RAX: ffffffffffffffda RBX: 0000000000aac5fb RCX: 00007f263fe81f19
[ 22.339600] RDX: 0000000000000030 RSI: 00007ffd9a3440d0 RDI: 0000000000000005
[ 22.340470] RBP: 0000000000a9a1e0 R08: 0000000000a9a1e0 R09: 0000009d00000001
[ 22.341430] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000010000
[ 22.342411] R13: 0000000000a9a023 R14: 0000000000000001 R15: 0000000000000003
[ 22.343369]
[ 22.343593] The buggy address belongs to the variable:
[ 22.344241] interpreters+0x80/0x980
[ 22.344708]
[ 22.344908] Memory state around the buggy address:
[ 22.345556] ffffffff82aad980: 00 00 00 04 fa fa fa fa 04 fa fa fa fa fa fa fa
[ 22.346449] ffffffff82aada00: 00 00 00 00 00 fa fa fa fa fa fa fa 00 00 00 00
[ 22.347361] >ffffffff82aada80: 00 00 00 00 00 00 00 00 00 00 00 00 fa fa fa fa
[ 22.348301] ^
[ 22.349142] ffffffff82aadb00: 00 01 fa fa fa fa fa fa 00 00 00 00 00 00 00 00
[ 22.350058] ffffffff82aadb80: 00 00 07 fa fa fa fa fa 00 00 05 fa fa fa fa fa
[ 22.350984] ==================================================================
Fixes: b870aa901f ("bpf: use different interpreter depending on required stack size")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
16 __bpf_prog_run() interpreters for various stack sizes add .text
but not a lot comparing to run-time stack savings
text data bss dec hex filename
26350 10328 624 37302 91b6 kernel/bpf/core.o.before_split
25777 10328 624 36729 8f79 kernel/bpf/core.o.after_split
26970 10328 624 37922 9422 kernel/bpf/core.o.now
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
free up BPF_JMP | BPF_CALL | BPF_X opcode to be used by actual
indirect call by register and use kernel internal opcode to
mark call instruction into bpf_tail_call() helper.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
__vmalloc* allows users to provide gfp flags for the underlying
allocation. This API is quite popular
$ git grep "=[[:space:]]__vmalloc\|return[[:space:]]*__vmalloc" | wc -l
77
The only problem is that many people are not aware that they really want
to give __GFP_HIGHMEM along with other flags because there is really no
reason to consume precious lowmemory on CONFIG_HIGHMEM systems for pages
which are mapped to the kernel vmalloc space. About half of users don't
use this flag, though. This signals that we make the API unnecessarily
too complex.
This patch simply uses __GFP_HIGHMEM implicitly when allocating pages to
be mapped to the vmalloc space. Current users which add __GFP_HIGHMEM
are simplified and drop the flag.
Link: http://lkml.kernel.org/r/20170307141020.29107-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Cristopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hannes rightfully spotted that the bpf_lock doesn't need to be
irqsave variant. We never perform any such updates where this
would be necessary (neither right now nor in future), therefore
relax this further.
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
It took me quite some time to figure out how this was linked,
so in order to save the next person the effort of finding it
add a comment in __bpf_prog_run() that indicates what exactly
determines that a program can access the ctx == skb.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Long standing issue with JITed programs is that stack traces from
function tracing check whether a given address is kernel code
through {__,}kernel_text_address(), which checks for code in core
kernel, modules and dynamically allocated ftrace trampolines. But
what is still missing is BPF JITed programs (interpreted programs
are not an issue as __bpf_prog_run() will be attributed to them),
thus when a stack trace is triggered, the code walking the stack
won't see any of the JITed ones. The same for address correlation
done from user space via reading /proc/kallsyms. This is read by
tools like perf, but the latter is also useful for permanent live
tracing with eBPF itself in combination with stack maps when other
eBPF types are part of the callchain. See offwaketime example on
dumping stack from a map.
This work tries to tackle that issue by making the addresses and
symbols known to the kernel. The lookup from *kernel_text_address()
is implemented through a latched RB tree that can be read under
RCU in fast-path that is also shared for symbol/size/offset lookup
for a specific given address in kallsyms. The slow-path iteration
through all symbols in the seq file done via RCU list, which holds
a tiny fraction of all exported ksyms, usually below 0.1 percent.
Function symbols are exported as bpf_prog_<tag>, in order to aide
debugging and attribution. This facility is currently enabled for
root-only when bpf_jit_kallsyms is set to 1, and disabled if hardening
is active in any mode. The rationale behind this is that still a lot
of systems ship with world read permissions on kallsyms thus addresses
should not get suddenly exposed for them. If that situation gets
much better in future, we always have the option to change the
default on this. Likewise, unprivileged programs are not allowed
to add entries there either, but that is less of a concern as most
such programs types relevant in this context are for root-only anyway.
If enabled, call graphs and stack traces will then show a correct
attribution; one example is illustrated below, where the trace is
now visible in tooling such as perf script --kallsyms=/proc/kallsyms
and friends.
Before:
7fff8166889d bpf_clone_redirect+0x80007f0020ed (/lib/modules/4.9.0-rc8+/build/vmlinux)
f5d80 __sendmsg_nocancel+0xffff006451f1a007 (/usr/lib64/libc-2.18.so)
After:
7fff816688b7 bpf_clone_redirect+0x80007f002107 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fffa0575728 bpf_prog_33c45a467c9e061a+0x8000600020fb (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fffa07ef1fc cls_bpf_classify+0x8000600020dc (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff81678b68 tc_classify+0x80007f002078 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164d40b __netif_receive_skb_core+0x80007f0025fb (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164d718 __netif_receive_skb+0x80007f002018 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164e565 process_backlog+0x80007f002095 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164dc71 net_rx_action+0x80007f002231 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff81767461 __softirqentry_text_start+0x80007f0020d1 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff817658ac do_softirq_own_stack+0x80007f00201c (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff810a2c20 do_softirq+0x80007f002050 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff810a2cb5 __local_bh_enable_ip+0x80007f002085 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8168d452 ip_finish_output2+0x80007f002152 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8168ea3d ip_finish_output+0x80007f00217d (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8168f2af ip_output+0x80007f00203f (/lib/modules/4.9.0-rc8+/build/vmlinux)
[...]
7fff81005854 do_syscall_64+0x80007f002054 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff817649eb return_from_SYSCALL_64+0x80007f002000 (/lib/modules/4.9.0-rc8+/build/vmlinux)
f5d80 __sendmsg_nocancel+0xffff01c484812007 (/usr/lib64/libc-2.18.so)
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove the dummy bpf_jit_compile() stubs for eBPF JITs and make
that a single __weak function in the core that can be overridden
similarly to the eBPF one. Also remove stale pr_err() mentions
of bpf_jit_compile.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work adds a number of tracepoints to paths that are either
considered slow-path or exception-like states, where monitoring or
inspecting them would be desirable.
For bpf(2) syscall, tracepoints have been placed for main commands
when they succeed. In XDP case, tracepoint is for exceptions, that
is, f.e. on abnormal BPF program exit such as unknown or XDP_ABORTED
return code, or when error occurs during XDP_TX action and the packet
could not be forwarded.
Both have been split into separate event headers, and can be further
extended. Worst case, if they unexpectedly should get into our way in
future, they can also removed [1]. Of course, these tracepoints (like
any other) can be analyzed by eBPF itself, etc. Example output:
# ./perf record -a -e bpf:* sleep 10
# ./perf script
sock_example 6197 [005] 283.980322: bpf:bpf_map_create: map type=ARRAY ufd=4 key=4 val=8 max=256 flags=0
sock_example 6197 [005] 283.980721: bpf:bpf_prog_load: prog=a5ea8fa30ea6849c type=SOCKET_FILTER ufd=5
sock_example 6197 [005] 283.988423: bpf:bpf_prog_get_type: prog=a5ea8fa30ea6849c type=SOCKET_FILTER
sock_example 6197 [005] 283.988443: bpf:bpf_map_lookup_elem: map type=ARRAY ufd=4 key=[06 00 00 00] val=[00 00 00 00 00 00 00 00]
[...]
sock_example 6197 [005] 288.990868: bpf:bpf_map_lookup_elem: map type=ARRAY ufd=4 key=[01 00 00 00] val=[14 00 00 00 00 00 00 00]
swapper 0 [005] 289.338243: bpf:bpf_prog_put_rcu: prog=a5ea8fa30ea6849c type=SOCKET_FILTER
[1] https://lwn.net/Articles/705270/
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 7bd509e311 ("bpf: add prog_digest and expose it via
fdinfo/netlink") was recently discussed, partially due to
admittedly suboptimal name of "prog_digest" in combination
with sha1 hash usage, thus inevitably and rightfully concerns
about its security in terms of collision resistance were
raised with regards to use-cases.
The intended use cases are for debugging resp. introspection
only for providing a stable "tag" over the instruction sequence
that both kernel and user space can calculate independently.
It's not usable at all for making a security relevant decision.
So collisions where two different instruction sequences generate
the same tag can happen, but ideally at a rather low rate. The
"tag" will be dumped in hex and is short enough to introspect
in tracepoints or kallsyms output along with other data such
as stack trace, etc. Thus, this patch performs a rename into
prog_tag and truncates the tag to a short output (64 bits) to
make it obvious it's not collision-free.
Should in future a hash or facility be needed with a security
relevant focus, then we can think about requirements, constraints,
etc that would fit to that situation. For now, rework the exposed
parts for the current use cases as long as nothing has been
released yet. Tested on x86_64 and s390x.
Fixes: 7bd509e311 ("bpf: add prog_digest and expose it via fdinfo/netlink")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit aaac3ba95e ("bpf: charge user for creation of BPF maps and
programs") made a wrong assumption of charging against prog->pages.
Unlike map->pages, prog->pages are still subject to change when we
need to expand the program through bpf_prog_realloc().
This can for example happen during verification stage when we need to
expand and rewrite parts of the program. Should the required space
cross a page boundary, then prog->pages is not the same anymore as
its original value that we used to bpf_prog_charge_memlock() on. Thus,
we'll hit a wrap-around during bpf_prog_uncharge_memlock() when prog
is freed eventually. I noticed this that despite having unlimited
memlock, programs suddenly refused to load with EPERM error due to
insufficient memlock.
There are two ways to fix this issue. One would be to add a cached
variable to struct bpf_prog that takes a snapshot of prog->pages at the
time of charging. The other approach is to also account for resizes. I
chose to go with the latter for a couple of reasons: i) We want accounting
rather to be more accurate instead of further fooling limits, ii) adding
yet another page counter on struct bpf_prog would also be a waste just
for this purpose. We also do want to charge as early as possible to
avoid going into the verifier just to find out later on that we crossed
limits. The only place that needs to be fixed is bpf_prog_realloc(),
since only here we expand the program, so we try to account for the
needed delta and should we fail, call-sites check for outcome anyway.
On cBPF to eBPF migrations, we don't grab a reference to the user as
they are charged differently. With that in place, my test case worked
fine.
Fixes: aaac3ba95e ("bpf: charge user for creation of BPF maps and programs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Geert rightfully complained that 7bd509e311 ("bpf: add prog_digest
and expose it via fdinfo/netlink") added a too large allocation of
variable 'raw' from bss section, and should instead be done dynamically:
# ./scripts/bloat-o-meter kernel/bpf/core.o.1 kernel/bpf/core.o.2
add/remove: 3/0 grow/shrink: 0/0 up/down: 33291/0 (33291)
function old new delta
raw - 32832 +32832
[...]
Since this is only relevant during program creation path, which can be
considered slow-path anyway, lets allocate that dynamically and be not
implicitly dependent on verifier mutex. Move bpf_prog_calc_digest() at
the beginning of replace_map_fd_with_map_ptr() and also error handling
stays straight forward.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch allows XDP prog to extend/remove the packet
data at the head (like adding or removing header). It is
done by adding a new XDP helper bpf_xdp_adjust_head().
It also renames bpf_helper_changes_skb_data() to
bpf_helper_changes_pkt_data() to better reflect
that XDP prog does not work on skb.
This patch adds one "xdp_adjust_head" bit to bpf_prog for the
XDP-capable driver to check if the XDP prog requires
bpf_xdp_adjust_head() support. The driver can then decide
to error out during XDP_SETUP_PROG.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When loading a BPF program via bpf(2), calculate the digest over
the program's instruction stream and store it in struct bpf_prog's
digest member. This is done at a point in time before any instructions
are rewritten by the verifier. Any unstable map file descriptor
number part of the imm field will be zeroed for the hash.
fdinfo example output for progs:
# cat /proc/1590/fdinfo/5
pos: 0
flags: 02000002
mnt_id: 11
prog_type: 1
prog_jited: 1
prog_digest: b27e8b06da22707513aa97363dfb11c7c3675d28
memlock: 4096
When programs are pinned and retrieved by an ELF loader, the loader
can check the program's digest through fdinfo and compare it against
one that was generated over the ELF file's program section to see
if the program needs to be reloaded. Furthermore, this can also be
exposed through other means such as netlink in case of a tc cls/act
dump (or xdp in future), but also through tracepoints or other
facilities to identify the program. Other than that, the digest can
also serve as a base name for the work in progress kallsyms support
of programs. The digest doesn't depend/select the crypto layer, since
we need to keep dependencies to a minimum. iproute2 will get support
for this facility.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use case is mainly for soreuseport to select sockets for the local
numa node, but since generic, lets also add this for other networking
and tracing program types.
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
put_cpu_var takes the percpu data, not the data returned from
get_cpu_var.
This doesn't change the behavior.
Cc: Tejun Heo <tj@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Shaohua Li <shli@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>