mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-26 13:55:09 +07:00
0ea7e88d3f
385 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Mel Gorman
|
09a913a7a9 |
sched/numa: avoid trapping faults and attempting migration of file-backed dirty pages
change_pte_range is called from task work context to mark PTEs for receiving NUMA faulting hints. If the marked pages are dirty then migration may fail. Some filesystems cannot migrate dirty pages without blocking so are skipped in MIGRATE_ASYNC mode which just wastes CPU. Even when they can, it can be a waste of cycles when the pages are shared forcing higher scan rates. This patch avoids marking shared dirty pages for hinting faults but also will skip a migration if the page was dirtied after the scanner updated a clean page. This is most noticeable running the NASA Parallel Benchmark when backed by btrfs, the default root filesystem for some distributions, but also noticeable when using XFS. The following are results from a 4-socket machine running a 4.16-rc4 kernel with some scheduler patches that are pending for the next merge window. 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1 Time cg.D 459.07 ( 0.00%) 444.21 ( 3.24%) Time ep.D 76.96 ( 0.00%) 77.69 ( -0.95%) Time is.D 25.55 ( 0.00%) 27.85 ( -9.00%) Time lu.D 601.58 ( 0.00%) 596.87 ( 0.78%) Time mg.D 107.73 ( 0.00%) 108.22 ( -0.45%) is.D regresses slightly in terms of absolute time but note that that particular load varies quite a bit from run to run. The more relevant observation is the total system CPU usage. 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1 User 71471.91 70627.04 System 11078.96 8256.13 Elapsed 661.66 632.74 That is a substantial drop in system CPU usage and overall the workload completes faster. The NUMA balancing statistics are also interesting NUMA base PTE updates 111407972 139848884 NUMA huge PMD updates 206506 264869 NUMA page range updates 217139044 275461812 NUMA hint faults 4300924 3719784 NUMA hint local faults 3012539 3416618 NUMA hint local percent 70 91 NUMA pages migrated 1517487 1358420 While more PTEs are scanned due to changes in what faults are gathered, it's clear that a far higher percentage of faults are local as the bulk of the remote hits were dirty pages that, in this case with btrfs, had no chance of migrating. The following is a comparison when using XFS as that is a more realistic filesystem choice for a data partition 4.16.0-rc4 4.16.0-rc4 schedtip-20180309 nodirty-v1r47 Time cg.D 485.28 ( 0.00%) 442.62 ( 8.79%) Time ep.D 77.68 ( 0.00%) 77.54 ( 0.18%) Time is.D 26.44 ( 0.00%) 24.79 ( 6.24%) Time lu.D 597.46 ( 0.00%) 597.11 ( 0.06%) Time mg.D 142.65 ( 0.00%) 105.83 ( 25.81%) That is a reasonable gain on two relatively long-lived workloads. While not presented, there is also a substantial drop in system CPu usage and the NUMA balancing stats show similar improvements in locality as btrfs did. Link: http://lkml.kernel.org/r/20180326094334.zserdec62gwmmfqf@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dominik Brodowski
|
7addf44388 |
mm: add kernel_move_pages() helper, move compat syscall to mm/migrate.c
Move compat_sys_move_pages() to mm/migrate.c and make it call a newly introduced helper -- kernel_move_pages() -- instead of the syscall. This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: linux-mm@kvack.org Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> |
||
Michal Hocko
|
ab5ac90aec |
mm, hugetlb: do not rely on overcommit limit during migration
hugepage migration relies on __alloc_buddy_huge_page to get a new page. This has 2 main disadvantages. 1) it doesn't allow to migrate any huge page if the pool is used completely which is not an exceptional case as the pool is static and unused memory is just wasted. 2) it leads to a weird semantic when migration between two numa nodes might increase the pool size of the destination NUMA node while the page is in use. The issue is caused by per NUMA node surplus pages tracking (see free_huge_page). Address both issues by changing the way how we allocate and account pages allocated for migration. Those should temporal by definition. So we mark them that way (we will abuse page flags in the 3rd page) and update free_huge_page to free such pages to the page allocator. Page migration path then just transfers the temporal status from the new page to the old one which will be freed on the last reference. The global surplus count will never change during this path but we still have to be careful when migrating a per-node suprlus page. This is now handled in move_hugetlb_state which is called from the migration path and it copies the hugetlb specific page state and fixes up the accounting when needed Rename __alloc_buddy_huge_page to __alloc_surplus_huge_page to better reflect its purpose. The new allocation routine for the migration path is __alloc_migrate_huge_page. The user visible effect of this patch is that migrated pages are really temporal and they travel between NUMA nodes as per the migration request: Before migration /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:1 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0 After /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:1 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0 with the previous implementation, both nodes would have nr_hugepages:1 until the page is freed. Link: http://lkml.kernel.org/r/20180103093213.26329-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
f55e1014f9 |
Revert "mm, thp: Do not make pmd/pud dirty without a reason"
This reverts commit
|
||
Kirill A. Shutemov
|
152e93af3c |
mm, thp: Do not make pmd/pud dirty without a reason
Currently we make page table entries dirty all the time regardless of access type and don't even consider if the mapping is write-protected. The reasoning is that we don't really need dirty tracking on THP and making the entry dirty upfront may save some time on first write to the page. Unfortunately, such approach may result in false-positive can_follow_write_pmd() for huge zero page or read-only shmem file. Let's only make page dirty only if we about to write to the page anyway (as we do for small pages). I've restructured the code to make entry dirty inside maybe_p[mu]d_mkwrite(). It also takes into account if the vma is write-protected. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
4645b9fe84 |
mm/mmu_notifier: avoid call to invalidate_range() in range_end()
This is an optimization patch that only affect mmu_notifier users which rely on the invalidate_range() callback. This patch avoids calling that callback twice in a row from inside __mmu_notifier_invalidate_range_end Existing pattern (before this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_end() mmu_notifier_invalidate_range() New pattern (after this patch): mmu_notifier_invalidate_range_start() pte/pmd/pud_clear_flush_notify() mmu_notifier_invalidate_range() mmu_notifier_invalidate_range_only_end() We call the invalidate_range callback after clearing the page table under the page table lock and we skip the call to invalidate_range inside the __mmu_notifier_invalidate_range_end() function. Idea from Andrea Arcangeli Link: http://lkml.kernel.org/r/20171017031003.7481-3-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Alistair Popple <alistair@popple.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Mark Hairgrove
|
e20d103b6c |
mm/migrate: fix indexing bug (off by one) and avoid out of bound access
Index was incremented before last use and thus the second array could
dereference to an invalid address (not mentioning the fact that it did
not properly clear the entry we intended to clear).
Link: http://lkml.kernel.org/r/1506973525-16491-1-git-send-email-jglisse@redhat.com
Fixes:
|
||
Jérôme Glisse
|
6b368cd4a4 |
mm/hmm: avoid bloating arch that do not make use of HMM
This moves all new code including new page migration helper behind kernel Kconfig option so that there is no codee bloat for arch or user that do not want to use HMM or any of its associated features. arm allyesconfig (without all the patchset, then with and this patch): text data bss dec hex filename 83721896 46511131 27582964 157815991 96814b7 ../without/vmlinux 83722364 46511131 27582964 157816459 968168b vmlinux [jglisse@redhat.com: struct hmm is only use by HMM mirror functionality] Link: http://lkml.kernel.org/r/20170825213133.27286-1-jglisse@redhat.com [sfr@canb.auug.org.au: fix build (arm multi_v7_defconfig)] Link: http://lkml.kernel.org/r/20170828181849.323ab81b@canb.auug.org.au Link: http://lkml.kernel.org/r/20170818032858.7447-1-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
df6ad69838 |
mm/device-public-memory: device memory cache coherent with CPU
Platform with advance system bus (like CAPI or CCIX) allow device memory to be accessible from CPU in a cache coherent fashion. Add a new type of ZONE_DEVICE to represent such memory. The use case are the same as for the un-addressable device memory but without all the corners cases. Link: http://lkml.kernel.org/r/20170817000548.32038-19-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
8315ada7f0 |
mm/migrate: allow migrate_vma() to alloc new page on empty entry
This allows callers of migrate_vma() to allocate new page for empty CPU page table entry (pte_none or back by zero page). This is only for anonymous memory and it won't allow new page to be instanced if the userfaultfd is armed. This is useful to device driver that want to migrate a range of virtual address and would rather allocate new memory than having to fault later on. Link: http://lkml.kernel.org/r/20170817000548.32038-18-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
a5430dda8a |
mm/migrate: support un-addressable ZONE_DEVICE page in migration
Allow to unmap and restore special swap entry of un-addressable ZONE_DEVICE memory. Link: http://lkml.kernel.org/r/20170817000548.32038-17-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
8c3328f1f3 |
mm/migrate: migrate_vma() unmap page from vma while collecting pages
Common case for migration of virtual address range is page are map only once inside the vma in which migration is taking place. Because we already walk the CPU page table for that range we can directly do the unmap there and setup special migration swap entry. Link: http://lkml.kernel.org/r/20170817000548.32038-16-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Evgeny Baskakov <ebaskakov@nvidia.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Sherry Cheung <SCheung@nvidia.com> Signed-off-by: Subhash Gutti <sgutti@nvidia.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
8763cb45ab |
mm/migrate: new memory migration helper for use with device memory
This patch add a new memory migration helpers, which migrate memory backing a range of virtual address of a process to different memory (which can be allocated through special allocator). It differs from numa migration by working on a range of virtual address and thus by doing migration in chunk that can be large enough to use DMA engine or special copy offloading engine. Expected users are any one with heterogeneous memory where different memory have different characteristics (latency, bandwidth, ...). As an example IBM platform with CAPI bus can make use of this feature to migrate between regular memory and CAPI device memory. New CPU architecture with a pool of high performance memory not manage as cache but presented as regular memory (while being faster and with lower latency than DDR) will also be prime user of this patch. Migration to private device memory will be useful for device that have large pool of such like GPU, NVidia plans to use HMM for that. Link: http://lkml.kernel.org/r/20170817000548.32038-15-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Evgeny Baskakov <ebaskakov@nvidia.com> Signed-off-by: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Mark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: Sherry Cheung <SCheung@nvidia.com> Signed-off-by: Subhash Gutti <sgutti@nvidia.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
2916ecc0f9 |
mm/migrate: new migrate mode MIGRATE_SYNC_NO_COPY
Introduce a new migration mode that allow to offload the copy to a device DMA engine. This changes the workflow of migration and not all address_space migratepage callback can support this. This is intended to be use by migrate_vma() which itself is use for thing like HMM (see include/linux/hmm.h). No additional per-filesystem migratepage testing is needed. I disables MIGRATE_SYNC_NO_COPY in all problematic migratepage() callback and i added comment in those to explain why (part of this patch). The commit message is unclear it should say that any callback that wish to support this new mode need to be aware of the difference in the migration flow from other mode. Some of these callbacks do extra locking while copying (aio, zsmalloc, balloon, ...) and for DMA to be effective you want to copy multiple pages in one DMA operations. But in the problematic case you can not easily hold the extra lock accross multiple call to this callback. Usual flow is: For each page { 1 - lock page 2 - call migratepage() callback 3 - (extra locking in some migratepage() callback) 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) 5 - copy page 6 - (unlock any extra lock of migratepage() callback) 7 - return from migratepage() callback 8 - unlock page } The new mode MIGRATE_SYNC_NO_COPY: 1 - lock multiple pages For each page { 2 - call migratepage() callback 3 - abort in all problematic migratepage() callback 4 - migrate page state (freeze refcount, update page cache, buffer head, ...) } // finished all calls to migratepage() callback 5 - DMA copy multiple pages 6 - unlock all the pages To support MIGRATE_SYNC_NO_COPY in the problematic case we would need a new callback migratepages() (for instance) that deals with multiple pages in one transaction. Because the problematic cases are not important for current usage I did not wanted to complexify this patchset even more for no good reason. Link: http://lkml.kernel.org/r/20170817000548.32038-14-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
e8db67eb0d |
mm: migrate: move_pages() supports thp migration
This patch enables thp migration for move_pages(2). Link: http://lkml.kernel.org/r/20170717193955.20207-10-zi.yan@sent.com Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Zi Yan
|
616b837153 |
mm: thp: enable thp migration in generic path
Add thp migration's core code, including conversions between a PMD entry and a swap entry, setting PMD migration entry, removing PMD migration entry, and waiting on PMD migration entries. This patch makes it possible to support thp migration. If you fail to allocate a destination page as a thp, you just split the source thp as we do now, and then enter the normal page migration. If you succeed to allocate destination thp, you enter thp migration. Subsequent patches actually enable thp migration for each caller of page migration by allowing its get_new_page() callback to allocate thps. [zi.yan@cs.rutgers.edu: fix gcc-4.9.0 -Wmissing-braces warning] Link: http://lkml.kernel.org/r/A0ABA698-7486-46C3-B209-E95A9048B22C@cs.rutgers.edu [akpm@linux-foundation.org: fix x86_64 allnoconfig warning] Signed-off-by: Zi Yan <zi.yan@cs.rutgers.edu> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
197e7e5213 |
Sanitize 'move_pages()' permission checks
The 'move_paghes()' system call was introduced long long ago with the same permission checks as for sending a signal (except using CAP_SYS_NICE instead of CAP_SYS_KILL for the overriding capability). That turns out to not be a great choice - while the system call really only moves physical page allocations around (and you need other capabilities to do a lot of it), you can check the return value to map out some the virtual address choices and defeat ASLR of a binary that still shares your uid. So change the access checks to the more common 'ptrace_may_access()' model instead. This tightens the access checks for the uid, and also effectively changes the CAP_SYS_NICE check to CAP_SYS_PTRACE, but it's unlikely that anybody really _uses_ this legacy system call any more (we hav ebetter NUMA placement models these days), so I expect nobody to notice. Famous last words. Reported-by: Otto Ebeling <otto.ebeling@iki.fi> Acked-by: Eric W. Biederman <ebiederm@xmission.com> Cc: Willy Tarreau <w@1wt.eu> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Nadav Amit
|
a9b802500e |
Revert "mm: numa: defer TLB flush for THP migration as long as possible"
While deferring TLB flushes is a good practice, the reverted patch
caused pending TLB flushes to be checked while the page-table lock is
not taken. As a result, in architectures with weak memory model (PPC),
Linux may miss a memory-barrier, miss the fact TLB flushes are pending,
and cause (in theory) a memory corruption.
Since the alternative of using smp_mb__after_unlock_lock() was
considered a bit open-coded, and the performance impact is expected to
be small, the previous patch is reverted.
This reverts
|
||
Will Deacon
|
f4e177d126 |
mm/migrate.c: stabilise page count when migrating transparent hugepages
When migrating a transparent hugepage, migrate_misplaced_transhuge_page guards itself against a concurrent fastgup of the page by checking that the page count is equal to 2 before and after installing the new pmd. If the page count changes, then the pmd is reverted back to the original entry, however there is a small window where the new (possibly writable) pmd is installed and the underlying page could be written by userspace. Restoring the old pmd could therefore result in loss of data. This patch fixes the problem by freezing the page count whilst updating the page tables, which protects against a concurrent fastgup without the need to restore the old pmd in the failure case (since the page count can no longer change under our feet). Link: http://lkml.kernel.org/r/1497349722-6731-4-git-send-email-will.deacon@arm.com Signed-off-by: Will Deacon <will.deacon@arm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Steve Capper <steve.capper@arm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Anshuman Khandual
|
c3114a84f7 |
mm: hugetlb: soft-offline: dissolve source hugepage after successful migration
Currently hugepage migrated by soft-offline (i.e. due to correctable memory errors) is contained as a hugepage, which means many non-error pages in it are unreusable, i.e. wasted. This patch solves this issue by dissolving source hugepages into buddy. As done in previous patch, PageHWPoison is set only on a head page of the error hugepage. Then in dissoliving we move the PageHWPoison flag to the raw error page so that all healthy subpages return back to buddy. [arnd@arndb.de: fix warnings: replace some macros with inline functions] Link: http://lkml.kernel.org/r/20170609102544.2947326-1-arnd@arndb.de Link: http://lkml.kernel.org/r/1496305019-5493-5-git-send-email-n-horiguchi@ah.jp.nec.com Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com> Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
383321ab85 |
mm/hugetlb/migration: use set_huge_pte_at instead of set_pte_at
Patch series "HugeTLB migration support for PPC64", v2. This patch (of 9): The right interface to use to set a hugetlb pte entry is set_huge_pte_at. Use that instead of set_pte_at. Link: http://lkml.kernel.org/r/1494926612-23928-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Mike Kravetz <kravetz@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
e4b8222271 |
mm: make rmap_one boolean function
rmap_one's return value controls whether rmap_work should contine to scan other ptes or not so it's target for changing to boolean. Return true if the scan should be continued. Otherwise, return false to stop the scanning. This patch makes rmap_one's return value to boolean. Link: http://lkml.kernel.org/r/1489555493-14659-10-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Shaohua Li
|
d44d363f65 |
mm: don't assume anonymous pages have SwapBacked flag
There are a few places the code assumes anonymous pages should have SwapBacked flag set. MADV_FREE pages are anonymous pages but we are going to add them to LRU_INACTIVE_FILE list and clear SwapBacked flag for them. The assumption doesn't hold any more, so fix them. Link: http://lkml.kernel.org/r/3945232c0df3dd6c4ef001976f35a95f18dcb407.1487965799.git.shli@fb.com Signed-off-by: Shaohua Li <shli@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
15038d0de9 |
mm: remove unnecessary reclaimability check from NUMA balancing target
NUMA balancing already checks the watermarks of the target node to decide whether it's a suitable balancing target. Whether the node is reclaimable or not is irrelevant when we don't intend to reclaim. Link: http://lkml.kernel.org/r/20170228214007.5621-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jia He <hejianet@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Rabin Vincent
|
fc280fe871 |
mm: prevent NR_ISOLATE_* stats from going negative
Commit |
||
Naoya Horiguchi
|
4b0ece6fa0 |
mm: migrate: fix remove_migration_pte() for ksm pages
I found that calling page migration for ksm pages causes the following
bug:
page:ffffea0004d51180 count:2 mapcount:2 mapping:ffff88013c785141 index:0x913
flags: 0x57ffffc0040068(uptodate|lru|active|swapbacked)
raw: 0057ffffc0040068 ffff88013c785141 0000000000000913 0000000200000001
raw: ffffea0004d5f9e0 ffffea0004d53f60 0000000000000000 ffff88007d81b800
page dumped because: VM_BUG_ON_PAGE(!PageLocked(page))
page->mem_cgroup:ffff88007d81b800
------------[ cut here ]------------
kernel BUG at /src/linux-dev/mm/rmap.c:1086!
invalid opcode: 0000 [#1] SMP
Modules linked in: ppdev parport_pc virtio_balloon i2c_piix4 pcspkr parport i2c_core acpi_cpufreq ip_tables xfs libcrc32c ata_generic pata_acpi ata_piix 8139too libata virtio_blk 8139cp crc32c_intel mii virtio_pci virtio_ring serio_raw virtio floppy dm_mirror dm_region_hash dm_log dm_mod
CPU: 0 PID: 3162 Comm: bash Not tainted 4.11.0-rc2-mm1+ #1
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
RIP: 0010:do_page_add_anon_rmap+0x1ba/0x260
RSP: 0018:ffffc90002473b30 EFLAGS: 00010282
RAX: 0000000000000021 RBX: ffffea0004d51180 RCX: 0000000000000006
RDX: 0000000000000000 RSI: 0000000000000082 RDI: ffff88007dc0dfe0
RBP: ffffc90002473b58 R08: 00000000fffffffe R09: 00000000000001c1
R10: 0000000000000005 R11: 00000000000001c0 R12: ffff880139ab3d80
R13: 0000000000000000 R14: 0000700000000200 R15: 0000160000000000
FS: 00007f5195f50740(0000) GS:ffff88007dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fd450287000 CR3: 000000007a08e000 CR4: 00000000001406f0
Call Trace:
page_add_anon_rmap+0x18/0x20
remove_migration_pte+0x220/0x2c0
rmap_walk_ksm+0x143/0x220
rmap_walk+0x55/0x60
remove_migration_ptes+0x53/0x80
migrate_pages+0x8ed/0xb60
soft_offline_page+0x309/0x8d0
store_soft_offline_page+0xaf/0xf0
dev_attr_store+0x18/0x30
sysfs_kf_write+0x3a/0x50
kernfs_fop_write+0xff/0x180
__vfs_write+0x37/0x160
vfs_write+0xb2/0x1b0
SyS_write+0x55/0xc0
do_syscall_64+0x67/0x180
entry_SYSCALL64_slow_path+0x25/0x25
RIP: 0033:0x7f51956339e0
RSP: 002b:00007ffcfa0dffc8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 000000000000000c RCX: 00007f51956339e0
RDX: 000000000000000c RSI: 00007f5195f53000 RDI: 0000000000000001
RBP: 00007f5195f53000 R08: 000000000000000a R09: 00007f5195f50740
R10: 000000000000000b R11: 0000000000000246 R12: 00007f5195907400
R13: 000000000000000c R14: 0000000000000001 R15: 0000000000000000
Code: fe ff ff 48 81 c2 00 02 00 00 48 89 55 d8 e8 2e c3 fd ff 48 8b 55 d8 e9 42 ff ff ff 48 c7 c6 e0 52 a1 81 48 89 df e8 46 ad fe ff <0f> 0b 48 83 e8 01 e9 7f fe ff ff 48 83 e8 01 e9 96 fe ff ff 48
RIP: do_page_add_anon_rmap+0x1ba/0x260 RSP: ffffc90002473b30
---[ end trace a679d00f4af2df48 ]---
Kernel panic - not syncing: Fatal exception
Kernel Offset: disabled
---[ end Kernel panic - not syncing: Fatal exception
The problem is in the following lines:
new = page - pvmw.page->index +
linear_page_index(vma, pvmw.address);
The 'new' is calculated with 'page' which is given by the caller as a
destination page and some offset adjustment for thp. But this doesn't
properly work for ksm pages because pvmw.page->index doesn't change for
each address but linear_page_index() changes, which means that 'new'
points to different pages for each addresses backed by the ksm page. As
a result, we try to set totally unrelated pages as destination pages,
and that causes kernel crash.
This patch fixes the miscalculation and makes ksm page migration work
fine.
Fixes:
|
||
Ingo Molnar
|
6e84f31522 |
sched/headers: Prepare for new header dependencies before moving code to <linux/sched/mm.h>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/mm.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. The APIs that are going to be moved first are: mm_alloc() __mmdrop() mmdrop() mmdrop_async_fn() mmdrop_async() mmget_not_zero() mmput() mmput_async() get_task_mm() mm_access() mm_release() Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Kirill A. Shutemov
|
3fe87967c5 |
mm: convert remove_migration_pte() to use page_vma_mapped_walk()
remove_migration_pte() also can easily be converted to page_vma_mapped_walk(). [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170129173858.45174-13-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Yisheng Xie
|
9e5bcd610f |
mm/migration: make isolate_movable_page() return int type
Patch series "HWPOISON: soft offlining for non-lru movable page", v6.
After Minchan's commit
|
||
Nicholas Piggin
|
6326fec112 |
mm: Use owner_priv bit for PageSwapCache, valid when PageSwapBacked
A page is not added to the swap cache without being swap backed, so PageSwapBacked mappings can use PG_owner_priv_1 for PageSwapCache. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Andrew Lutomirski <luto@kernel.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
6d75f366b9 |
lib: radix-tree: check accounting of existing slot replacement users
The bug in khugepaged fixed earlier in this series shows that radix tree slot replacement is fragile; and it will become more so when not only NULL<->!NULL transitions need to be caught but transitions from and to exceptional entries as well. We need checks. Re-implement radix_tree_replace_slot() on top of the sanity-checked __radix_tree_replace(). This requires existing callers to also pass the radix tree root, but it'll warn us when somebody replaces slots with contents that need proper accounting (transitions between NULL entries, real entries, exceptional entries) and where a replacement through the slot pointer would corrupt the radix tree node counts. Link: http://lkml.kernel.org/r/20161117193021.GB23430@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Jan Kara <jack@suse.cz> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ming Ling
|
6afcf8ef0c |
mm, compaction: fix NR_ISOLATED_* stats for pfn based migration
Since commit |
||
Andrea Arcangeli
|
6d2329f887 |
mm: vm_page_prot: update with WRITE_ONCE/READ_ONCE
vma->vm_page_prot is read lockless from the rmap_walk, it may be updated concurrently and this prevents the risk of reading intermediate values. Link: http://lkml.kernel.org/r/1474660305-19222-1-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Jan Vorlicek <janvorli@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
2516035499 |
mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations
After the previous patch, we can distinguish costly allocations that should be really lightweight, such as THP page faults, with __GFP_NORETRY. This means we don't need to recognize khugepaged allocations via PF_KTHREAD anymore. We can also change THP page faults in areas where madvise(MADV_HUGEPAGE) was used to try as hard as khugepaged, as the process has indicated that it benefits from THP's and is willing to pay some initial latency costs. We can also make the flags handling less cryptic by distinguishing GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from GFP_TRANSHUGE (only direct reclaim, khugepaged default). Adding __GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed. The patch effectively changes the current GFP_TRANSHUGE users as follows: * get_huge_zero_page() - the zero page lifetime should be relatively long and it's shared by multiple users, so it's worth spending some effort on it. We use GFP_TRANSHUGE, and __GFP_NORETRY is not added. This also restores direct reclaim to this allocation, which was unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag by default to madvise and add a stall-free defrag option") * alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency is not an issue. So if khugepaged "defrag" is enabled (the default), do reclaim via GFP_TRANSHUGE without __GFP_NORETRY. We can remove the PF_KTHREAD check from page alloc. As a side-effect, khugepaged will now no longer check if the initial compaction was deferred or contended. This is OK, as khugepaged sleep times between collapsion attempts are long enough to prevent noticeable disruption, so we should allow it to spend some effort. * migrate_misplaced_transhuge_page() - already was masking out __GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is equivalent. * alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise) are now allocating without __GFP_NORETRY. Other vma's keep using __GFP_NORETRY if direct reclaim/compaction is at all allowed (by default it's allowed only for madvised vma's). The rest is conversion to GFP_TRANSHUGE(_LIGHT). [mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT] Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
5a1c84b404 |
mm: remove reclaim and compaction retry approximations
If per-zone LRU accounting is available then there is no point approximating whether reclaim and compaction should retry based on pgdat statistics. This is effectively a revert of "mm, vmstat: remove zone and node double accounting by approximating retries" with the difference that inactive/active stats are still available. This preserves the history of why the approximation was retried and why it had to be reverted to handle OOM kills on 32-bit systems. Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
bca6759258 |
mm, vmstat: remove zone and node double accounting by approximating retries
The number of LRU pages, dirty pages and writeback pages must be
accounted for on both zones and nodes because of the reclaim retry
logic, compaction retry logic and highmem calculations all depending on
per-zone stats.
Many lowmem allocations are immune from OOM kill due to a check in
__alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit
|
||
Mel Gorman
|
11fb998986 |
mm: move most file-based accounting to the node
There are now a number of accounting oddities such as mapped file pages being accounted for on the node while the total number of file pages are accounted on the zone. This can be coped with to some extent but it's confusing so this patch moves the relevant file-based accounted. Due to throttling logic in the page allocator for reliable OOM detection, it is still necessary to track dirty and writeback pages on a per-zone basis. [mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting] Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
4b9d0fab71 |
mm: rename NR_ANON_PAGES to NR_ANON_MAPPED
NR_FILE_PAGES is the number of file pages. NR_FILE_MAPPED is the number of mapped file pages. NR_ANON_PAGES is the number of mapped anon pages. This is unhelpful naming as it's easy to confuse NR_FILE_MAPPED and NR_ANON_PAGES for mapped pages. This patch renames NR_ANON_PAGES so we have NR_FILE_PAGES is the number of file pages. NR_FILE_MAPPED is the number of mapped file pages. NR_ANON_MAPPED is the number of mapped anon pages. Link: http://lkml.kernel.org/r/1467970510-21195-19-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
599d0c954f |
mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
1010245964 |
mm: introduce do_set_pmd()
With postponed page table allocation we have chance to setup huge pages. do_set_pte() calls do_set_pmd() if following criteria met: - page is compound; - pmd entry in pmd_none(); - vma has suitable size and alignment; Link: http://lkml.kernel.org/r/1466021202-61880-12-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
dd78fedde4 |
rmap: support file thp
Naive approach: on mapping/unmapping the page as compound we update ->_mapcount on each 4k page. That's not efficient, but it's not obvious how we can optimize this. We can look into optimization later. PG_double_map optimization doesn't work for file pages since lifecycle of file pages is different comparing to anon pages: file page can be mapped again at any time. Link: http://lkml.kernel.org/r/1466021202-61880-11-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
b1123ea6d3 |
mm: balloon: use general non-lru movable page feature
Now, VM has a feature to migrate non-lru movable pages so balloon doesn't need custom migration hooks in migrate.c and compaction.c. Instead, this patch implements the page->mapping->a_ops-> {isolate|migrate|putback} functions. With that, we could remove hooks for ballooning in general migration functions and make balloon compaction simple. [akpm@linux-foundation.org: compaction.h requires that the includer first include node.h] Link: http://lkml.kernel.org/r/1464736881-24886-4-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rafael Aquini <aquini@redhat.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
bda807d444 |
mm: migrate: support non-lru movable page migration
We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Minchan Kim
|
c6c919eb90 |
mm: use put_page() to free page instead of putback_lru_page()
Recently, I got many reports about perfermance degradation in embedded system(Android mobile phone, webOS TV and so on) and easy fork fail. The problem was fragmentation caused by zram and GPU driver mainly. With memory pressure, their pages were spread out all of pageblock and it cannot be migrated with current compaction algorithm which supports only LRU pages. In the end, compaction cannot work well so reclaimer shrinks all of working set pages. It made system very slow and even to fail to fork easily which requires order-[2 or 3] allocations. Other pain point is that they cannot use CMA memory space so when OOM kill happens, I can see many free pages in CMA area, which is not memory efficient. In our product which has big CMA memory, it reclaims zones too exccessively to allocate GPU and zram page although there are lots of free space in CMA so system becomes very slow easily. To solve these problem, this patch tries to add facility to migrate non-lru pages via introducing new functions and page flags to help migration. struct address_space_operations { .. .. bool (*isolate_page)(struct page *, isolate_mode_t); void (*putback_page)(struct page *); .. } new page flags PG_movable PG_isolated For details, please read description in "mm: migrate: support non-lru movable page migration". Originally, Gioh Kim had tried to support this feature but he moved so I took over the work. I took many code from his work and changed a little bit and Konstantin Khlebnikov helped Gioh a lot so he should deserve to have many credit, too. And I should mention Chulmin who have tested this patchset heavily so I can find many bugs from him. :) Thanks, Gioh, Konstantin and Chulmin! This patchset consists of five parts. 1. clean up migration mm: use put_page to free page instead of putback_lru_page 2. add non-lru page migration feature mm: migrate: support non-lru movable page migration 3. rework KVM memory-ballooning mm: balloon: use general non-lru movable page feature 4. zsmalloc refactoring for preparing page migration zsmalloc: keep max_object in size_class zsmalloc: use bit_spin_lock zsmalloc: use accessor zsmalloc: factor page chain functionality out zsmalloc: introduce zspage structure zsmalloc: separate free_zspage from putback_zspage zsmalloc: use freeobj for index 5. zsmalloc page migration zsmalloc: page migration support zram: use __GFP_MOVABLE for memory allocation This patch (of 12): Procedure of page migration is as follows: First of all, it should isolate a page from LRU and try to migrate the page. If it is successful, it releases the page for freeing. Otherwise, it should put the page back to LRU list. For LRU pages, we have used putback_lru_page for both freeing and putback to LRU list. It's okay because put_page is aware of LRU list so if it releases last refcount of the page, it removes the page from LRU list. However, It makes unnecessary operations (e.g., lru_cache_add, pagevec and flags operations. It would be not significant but no worth to do) and harder to support new non-lru page migration because put_page isn't aware of non-lru page's data structure. To solve the problem, we can add new hook in put_page with PageMovable flags check but it can increase overhead in hot path and needs new locking scheme to stabilize the flag check with put_page. So, this patch cleans it up to divide two semantic(ie, put and putback). If migration is successful, use put_page instead of putback_lru_page and use putback_lru_page only on failure. That makes code more readable and doesn't add overhead in put_page. Comment from Vlastimil "Yeah, and compaction (perhaps also other migration users) has to drain the lru pvec... Getting rid of this stuff is worth even by itself." Link: http://lkml.kernel.org/r/1464736881-24886-2-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Richard Weinberger
|
1118dce773 |
mm: Export migrate_page_move_mapping and migrate_page_copy
Export these symbols such that UBIFS can implement ->migratepage. Cc: stable@vger.kernel.org Signed-off-by: Richard Weinberger <richard@nod.at> Acked-by: Christoph Hellwig <hch@lst.de> |
||
David Rientjes
|
dfef2ef402 |
mm, migrate: increment fail count on ENOMEM
If page migration fails due to -ENOMEM, nr_failed should still be incremented for proper statistics. This was encountered recently when all page migration vmstats showed 0, and inferred that migrate_pages() was never called, although in reality the first page migration failed because compaction_alloc() failed to find a migration target. This patch increments nr_failed so the vmstat is properly accounted on ENOMEM. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1605191510230.32658@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
fa9949da59 |
mm: use __SetPageSwapBacked and dont ClearPageSwapBacked
v3.16 commit
|
||
Minchan Kim
|
d7e69488bd |
mm/hwpoison: fix wrong num_poisoned_pages accounting
Currently, migration code increses num_poisoned_pages on *failed* migration page as well as successfully migrated one at the trial of memory-failure. It will make the stat wrong. As well, it marks the page as PG_HWPoison even if the migration trial failed. It would mean we cannot recover the corrupted page using memory-failure facility. This patches fixes it. Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
e388466de4 |
mm: make remove_migration_ptes() beyond mm/migration.c
Make remove_migration_ptes() available to be used in split_huge_page(). New parameter 'locked' added: as with try_to_umap() we need a way to indicate that caller holds rmap lock. We also shouldn't try to mlock() pte-mapped huge pages: pte-mapeed THP pages are never mlocked. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joonsoo Kim
|
fe896d1878 |
mm: introduce page reference manipulation functions
The success of CMA allocation largely depends on the success of migration and key factor of it is page reference count. Until now, page reference is manipulated by direct calling atomic functions so we cannot follow up who and where manipulate it. Then, it is hard to find actual reason of CMA allocation failure. CMA allocation should be guaranteed to succeed so finding offending place is really important. In this patch, call sites where page reference is manipulated are converted to introduced wrapper function. This is preparation step to add tracepoint to each page reference manipulation function. With this facility, we can easily find reason of CMA allocation failure. There is no functional change in this patch. In addition, this patch also converts reference read sites. It will help a second step that renames page._count to something else and prevents later attempt to direct access to it (Suggested by Andrew). Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Aneesh Kumar K.V
|
458aa76d13 |
mm/thp/migration: switch from flush_tlb_range to flush_pmd_tlb_range
We remove one instace of flush_tlb_range here. That was added by commit
|
||
Johannes Weiner
|
74485cf2bc |
mm: migrate: consolidate mem_cgroup_migrate() calls
Rather than scattering mem_cgroup_migrate() calls all over the place, have a single call from a safe place where every migration operation eventually ends up in - migrate_page_copy(). Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Hugh Dickins <hughd@google.com> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mateusz Guzik <mguzik@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
6a93ca8fde |
mm: migrate: do not touch page->mem_cgroup of live pages
Changing a page's memcg association complicates dealing with the page, so we want to limit this as much as possible. Page migration e.g. does not have to do that. Just like page cache replacement, it can forcibly charge a replacement page, and then uncharge the old page when it gets freed. Temporarily overcharging the cgroup by a single page is not an issue in practice, and charging is so cheap nowadays that this is much preferrable to the headache of messing with live pages. The only place that still changes the page->mem_cgroup binding of live pages is when pages move along with a task to another cgroup. But that path isolates the page from the LRU, takes the page lock, and the move lock (lock_page_memcg()). That means page->mem_cgroup is always stable in callers that have the page isolated from the LRU or locked. Lighter unlocked paths, like writeback accounting, can use lock_page_memcg(). [akpm@linux-foundation.org: fix build] [vdavydov@virtuozzo.com: fix lockdep splat] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
7cd12b4abf |
mm, page_owner: track and print last migrate reason
During migration, page_owner info is now copied with the rest of the page, so the stacktrace leading to free page allocation during migration is overwritten. For debugging purposes, it might be however useful to know that the page has been migrated since its initial allocation. This might happen many times during the lifetime for different reasons and fully tracking this, especially with stacktraces would incur extra memory costs. As a compromise, store and print the migrate_reason of the last migration that occurred to the page. This is enough to distinguish compaction, numa balancing etc. Example page_owner entry after the patch: Page allocated via order 0, mask 0x24200ca(GFP_HIGHUSER_MOVABLE) PFN 628753 type Movable Block 1228 type Movable Flags 0x1fffff80040030(dirty|lru|swapbacked) [<ffffffff811682c4>] __alloc_pages_nodemask+0x134/0x230 [<ffffffff811b6325>] alloc_pages_vma+0xb5/0x250 [<ffffffff81177491>] shmem_alloc_page+0x61/0x90 [<ffffffff8117a438>] shmem_getpage_gfp+0x678/0x960 [<ffffffff8117c2b9>] shmem_fallocate+0x329/0x440 [<ffffffff811de600>] vfs_fallocate+0x140/0x230 [<ffffffff811df434>] SyS_fallocate+0x44/0x70 [<ffffffff8158cc2e>] entry_SYSCALL_64_fastpath+0x12/0x71 Page has been migrated, last migrate reason: compaction Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
d435edca92 |
mm, page_owner: copy page owner info during migration
The page_owner mechanism stores gfp_flags of an allocation and stack
trace that lead to it. During page migration, the original information
is practically replaced by the allocation of free page as the migration
target. Arguably this is less useful and might lead to all the
page_owner info for migratable pages gradually converge towards
compaction or numa balancing migrations. It has also lead to
inaccuracies such as one fixed by commit
|
||
Mel Gorman
|
8479eba778 |
mm: numa: quickly fail allocations for NUMA balancing on full nodes
Commit |
||
Kirill A. Shutemov
|
9a982250f7 |
thp: introduce deferred_split_huge_page()
Currently we don't split huge page on partial unmap. It's not an ideal situation. It can lead to memory overhead. Furtunately, we can detect partial unmap on page_remove_rmap(). But we cannot call split_huge_page() from there due to locking context. It's also counterproductive to do directly from munmap() codepath: in many cases we will hit this from exit(2) and splitting the huge page just to free it up in small pages is not what we really want. The patch introduce deferred_split_huge_page() which put the huge page into queue for splitting. The splitting itself will happen when we get memory pressure via shrinker interface. The page will be dropped from list on freeing through compound page destructor. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
4d2fa96548 |
thp, mm: split_huge_page(): caller need to lock page
We're going to use migration entries instead of compound_lock() to stabilize page refcounts. Setup and remove migration entries require page to be locked. Some of split_huge_page() callers already have the page locked. Let's require everybody to lock the page before calling split_huge_page(). Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
53f9263bab |
mm: rework mapcount accounting to enable 4k mapping of THPs
We're going to allow mapping of individual 4k pages of THP compound. It means we need to track mapcount on per small page basis. Straight-forward approach is to use ->_mapcount in all subpages to track how many time this subpage is mapped with PMDs or PTEs combined. But this is rather expensive: mapping or unmapping of a THP page with PMD would require HPAGE_PMD_NR atomic operations instead of single we have now. The idea is to store separately how many times the page was mapped as whole -- compound_mapcount. This frees up ->_mapcount in subpages to track PTE mapcount. We use the same approach as with compound page destructor and compound order to store compound_mapcount: use space in first tail page, ->mapping this time. Any time we map/unmap whole compound page (THP or hugetlb) -- we increment/decrement compound_mapcount. When we map part of compound page with PTE we operate on ->_mapcount of the subpage. page_mapcount() counts both: PTE and PMD mappings of the page. Basically, we have mapcount for a subpage spread over two counters. It makes tricky to detect when last mapcount for a page goes away. We introduced PageDoubleMap() for this. When we split THP PMD for the first time and there's other PMD mapping left we offset up ->_mapcount in all subpages by one and set PG_double_map on the compound page. These additional references go away with last compound_mapcount. This approach provides a way to detect when last mapcount goes away on per small page basis without introducing new overhead for most common cases. [akpm@linux-foundation.org: fix typo in comment] [mhocko@suse.com: ignore partial THP when moving task] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
d281ee6145 |
rmap: add argument to charge compound page
We're going to allow mapping of individual 4k pages of THP compound page. It means we cannot rely on PageTransHuge() check to decide if map/unmap small page or THP. The patch adds new argument to rmap functions to indicate whether we want to operate on whole compound page or only the small page. [n-horiguchi@ah.jp.nec.com: fix mapcount mismatch in hugepage migration] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Kirill A. Shutemov
|
48c935ad88 |
page-flags: define PG_locked behavior on compound pages
lock_page() must operate on the whole compound page. It doesn't make much sense to lock part of compound page. Change code to use head page's PG_locked, if tail page is passed. This patch also gets rid of custom helper functions -- __set_page_locked() and __clear_page_locked(). They are replaced with helpers generated by __SETPAGEFLAG/__CLEARPAGEFLAG. Tail pages to these helper would trigger VM_BUG_ON(). SLUB uses PG_locked as a bit spin locked. IIUC, tail pages should never appear there. VM_BUG_ON() is added to make sure that this assumption is correct. [akpm@linux-foundation.org: fix fs/cifs/file.c] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
71baba4b92 |
mm, page_alloc: rename __GFP_WAIT to __GFP_RECLAIM
__GFP_WAIT was used to signal that the caller was in atomic context and could not sleep. Now it is possible to distinguish between true atomic context and callers that are not willing to sleep. The latter should clear __GFP_DIRECT_RECLAIM so kswapd will still wake. As clearing __GFP_WAIT behaves differently, there is a risk that people will clear the wrong flags. This patch renames __GFP_WAIT to __GFP_RECLAIM to clearly indicate what it does -- setting it allows all reclaim activity, clearing them prevents it. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
d0164adc89 |
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
42cb14b110 |
mm: migrate dirty page without clear_page_dirty_for_io etc
clear_page_dirty_for_io() has accumulated writeback and memcg subtleties since v2.6.16 first introduced page migration; and the set_page_dirty() which completed its migration of PageDirty, later had to be moderated to __set_page_dirty_nobuffers(); then PageSwapBacked had to skip that too. No actual problems seen with this procedure recently, but if you look into what the clear_page_dirty_for_io(page)+set_page_dirty(newpage) is actually achieving, it turns out to be nothing more than moving the PageDirty flag, and its NR_FILE_DIRTY stat from one zone to another. It would be good to avoid a pile of irrelevant decrementations and incrementations, and improper event counting, and unnecessary descent of the radix_tree under tree_lock (to set the PAGECACHE_TAG_DIRTY which radix_tree_replace_slot() left in place anyway). Do the NR_FILE_DIRTY movement, like the other stats movements, while interrupts still disabled in migrate_page_move_mapping(); and don't even bother if the zone is the same. Do the PageDirty movement there under tree_lock too, where old page is frozen and newpage not yet visible: bearing in mind that as soon as newpage becomes visible in radix_tree, an un-page-locked set_page_dirty() might interfere (or perhaps that's just not possible: anything doing so should already hold an additional reference to the old page, preventing its migration; but play safe). But we do still need to transfer PageDirty in migrate_page_copy(), for those who don't go the mapping route through migrate_page_move_mapping(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
cf4b769abb |
mm: page migration avoid touching newpage until no going back
We have had trouble in the past from the way in which page migration's
newpage is initialized in dribs and drabs - see commit
|
||
Hugh Dickins
|
03f15c86c8 |
mm: simplify page migration's anon_vma comment and flow
__unmap_and_move() contains a long stale comment on page_get_anon_vma() and PageSwapCache(), with an odd control flow that's hard to follow. Mostly this reflects our confusion about the lifetime of an anon_vma, in the early days of page migration, before we could take a reference to one. Nowadays this seems quite straightforward: cut it all down to essentials. I cannot see the relevance of swapcache here at all, so don't treat it any differently: I believe the old comment reflects in part our anon_vma confusions, and in part the original v2.6.16 page migration technique, which used actual swap to migrate anon instead of swap-like migration entries. Why should a swapcache page not be migrated with the aid of migration entry ptes like everything else? So lose that comment now, and enable migration entries for swapcache in the next patch. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
5c3f9a6737 |
mm: page migration remove_migration_ptes at lock+unlock level
Clean up page migration a little more by calling remove_migration_ptes() from the same level, on success or on failure, from __unmap_and_move() or from unmap_and_move_huge_page(). Don't reset page->mapping of a PageAnon old page in move_to_new_page(), leave that to when the page is freed. Except for here in page migration, it has been an invariant that a PageAnon (bit set in page->mapping) page stays PageAnon until it is freed, and I think we're safer to keep to that. And with the above rearrangement, it's necessary because zap_pte_range() wants to identify whether a migration entry represents a file or an anon page, to update the appropriate rss stats without waiting on it. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
7db7671f83 |
mm: page migration trylock newpage at same level as oldpage
Clean up page migration a little by moving the trylock of newpage from move_to_new_page() into __unmap_and_move(), where the old page has been locked. Adjust unmap_and_move_huge_page() and balloon_page_migrate() accordingly. But make one kind-of-functional change on the way: whereas trylock of newpage used to BUG() if it failed, now simply return -EAGAIN if so. Cutting out BUG()s is good, right? But, to be honest, this is really to extend the usefulness of the custom put_new_page feature, allowing a pool of new pages to be shared perhaps with racing uses. Use an "else" instead of that "skip_unmap" label. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
2def7424c9 |
mm: page migration use the put_new_page whenever necessary
I don't know of any problem from the way it's used in our current tree, but there is one defect in page migration's custom put_new_page feature. An unused newpage is expected to be released with the put_new_page(), but there was one MIGRATEPAGE_SUCCESS (0) path which released it with putback_lru_page(): which can be very wrong for a custom pool. Fixed more easily by resetting put_new_page once it won't be needed, than by adding a further flag to modify the rc test. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
14e0f9bcc9 |
mm: correct a couple of page migration comments
It's migrate.c not migration,c, and nowadays putback_movable_pages() not putback_lru_pages(). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
45637bab30 |
mm: rename mem_cgroup_migrate to mem_cgroup_replace_page
After v4.3's commit
|
||
Hugh Dickins
|
51afb12ba8 |
mm: page migration fix PageMlocked on migrated pages
Commit
|
||
Vlastimil Babka
|
f2f81fb2b7 |
mm, migrate: count pages failing all retries in vmstat and tracepoint
Migration tries up to 10 times to migrate pages that return -EAGAIN until it gives up. If some pages fail all retries, they are counted towards the number of failed pages that migrate_pages() returns. They should also be counted in the /proc/vmstat pgmigrate_fail and in the mm_migrate_pages tracepoint. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Greg Thelen
|
0610c25daa |
memcg: fix dirty page migration
The problem starts with a file backed dirty page which is charged to a
memcg. Then page migration is used to move oldpage to newpage.
Migration:
- copies the oldpage's data to newpage
- clears oldpage.PG_dirty
- sets newpage.PG_dirty
- uncharges oldpage from memcg
- charges newpage to memcg
Clearing oldpage.PG_dirty decrements the charged memcg's dirty page
count.
However, because newpage is not yet charged, setting newpage.PG_dirty
does not increment the memcg's dirty page count. After migration
completes newpage.PG_dirty is eventually cleared, often in
account_page_cleaned(). At this time newpage is charged to a memcg so
the memcg's dirty page count is decremented which causes underflow
because the count was not previously incremented by migration. This
underflow causes balance_dirty_pages() to see a very large unsigned
number of dirty memcg pages which leads to aggressive throttling of
buffered writes by processes in non root memcg.
This issue:
- can harm performance of non root memcg buffered writes.
- can report too small (even negative) values in
memory.stat[(total_)dirty] counters of all memcg, including the root.
To avoid polluting migrate.c with #ifdef CONFIG_MEMCG checks, introduce
page_memcg() and set_page_memcg() helpers.
Test:
0) setup and enter limited memcg
mkdir /sys/fs/cgroup/test
echo 1G > /sys/fs/cgroup/test/memory.limit_in_bytes
echo $$ > /sys/fs/cgroup/test/cgroup.procs
1) buffered writes baseline
dd if=/dev/zero of=/data/tmp/foo bs=1M count=1k
sync
grep ^dirty /sys/fs/cgroup/test/memory.stat
2) buffered writes with compaction antagonist to induce migration
yes 1 > /proc/sys/vm/compact_memory &
rm -rf /data/tmp/foo
dd if=/dev/zero of=/data/tmp/foo bs=1M count=1k
kill %
sync
grep ^dirty /sys/fs/cgroup/test/memory.stat
3) buffered writes without antagonist, should match baseline
rm -rf /data/tmp/foo
dd if=/dev/zero of=/data/tmp/foo bs=1M count=1k
sync
grep ^dirty /sys/fs/cgroup/test/memory.stat
(speed, dirty residue)
unpatched patched
1) 841 MB/s 0 dirty pages 886 MB/s 0 dirty pages
2) 611 MB/s -33427456 dirty pages 793 MB/s 0 dirty pages
3) 114 MB/s -33427456 dirty pages 891 MB/s 0 dirty pages
Notice that unpatched baseline performance (1) fell after
migration (3): 841 -> 114 MB/s. In the patched kernel, post
migration performance matches baseline.
Fixes:
|
||
Naoya Horiguchi
|
3aaa76e125 |
mm: migrate: hugetlb: putback destination hugepage to active list
Since commit |
||
Vladimir Davydov
|
33c3fc71c8 |
mm: introduce idle page tracking
Knowing the portion of memory that is not used by a certain application or memory cgroup (idle memory) can be useful for partitioning the system efficiently, e.g. by setting memory cgroup limits appropriately. Currently, the only means to estimate the amount of idle memory provided by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the access bit for all pages mapped to a particular process by writing 1 to clear_refs, wait for some time, and then count smaps:Referenced. However, this method has two serious shortcomings: - it does not count unmapped file pages - it affects the reclaimer logic To overcome these drawbacks, this patch introduces two new page flags, Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap. A page's Idle flag can only be set from userspace by setting bit in /sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page, and it is cleared whenever the page is accessed either through page tables (it is cleared in page_referenced() in this case) or using the read(2) system call (mark_page_accessed()). Thus by setting the Idle flag for pages of a particular workload, which can be found e.g. by reading /proc/PID/pagemap, waiting for some time to let the workload access its working set, and then reading the bitmap file, one can estimate the amount of pages that are not used by the workload. The Young page flag is used to avoid interference with the memory reclaimer. A page's Young flag is set whenever the Access bit of a page table entry pointing to the page is cleared by writing to the bitmap file. If page_referenced() is called on a Young page, it will add 1 to its return value, therefore concealing the fact that the Access bit was cleared. Note, since there is no room for extra page flags on 32 bit, this feature uses extended page flags when compiled on 32 bit. [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: kpageidle requires an MMU] [akpm@linux-foundation.org: decouple from page-flags rework] Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Vlastimil Babka
|
96db800f5d |
mm: rename alloc_pages_exact_node() to __alloc_pages_node()
alloc_pages_exact_node() was introduced in commit |
||
Wanpeng Li
|
da1b13ccfb |
mm/hwpoison: fix race between soft_offline_page and unpoison_memory
Wanpeng Li reported a race between soft_offline_page() and unpoison_memory(), which causes the following kernel panic: BUG: Bad page state in process bash pfn:97000 page:ffffea00025c0000 count:0 mapcount:1 mapping: (null) index:0x7f4fdbe00 flags: 0x1fffff80080048(uptodate|active|swapbacked) page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set bad because of flags: flags: 0x40(active) Modules linked in: snd_hda_codec_hdmi i915 rpcsec_gss_krb5 nfsv4 dns_resolver bnep rfcomm nfsd bluetooth auth_rpcgss nfs_acl nfs rfkill lockd grace sunrpc i2c_algo_bit drm_kms_helper snd_hda_codec_realtek snd_hda_codec_generic drm snd_hda_intel fscache snd_hda_codec x86_pkg_temp_thermal coretemp kvm_intel snd_hda_core snd_hwdep kvm snd_pcm snd_seq_dummy snd_seq_oss crct10dif_pclmul snd_seq_midi crc32_pclmul snd_seq_midi_event ghash_clmulni_intel snd_rawmidi aesni_intel lrw gf128mul snd_seq glue_helper ablk_helper snd_seq_device cryptd fuse snd_timer dcdbas serio_raw mei_me parport_pc snd mei ppdev i2c_core video lp soundcore parport lpc_ich shpchp mfd_core ext4 mbcache jbd2 sd_mod e1000e ahci ptp libahci crc32c_intel libata pps_core CPU: 3 PID: 2211 Comm: bash Not tainted 4.2.0-rc5-mm1+ #45 Hardware name: Dell Inc. OptiPlex 7020/0F5C5X, BIOS A03 01/08/2015 Call Trace: dump_stack+0x48/0x5c bad_page+0xe6/0x140 free_pages_prepare+0x2f9/0x320 ? uncharge_list+0xdd/0x100 free_hot_cold_page+0x40/0x170 __put_single_page+0x20/0x30 put_page+0x25/0x40 unmap_and_move+0x1a6/0x1f0 migrate_pages+0x100/0x1d0 ? kill_procs+0x100/0x100 ? unlock_page+0x6f/0x90 __soft_offline_page+0x127/0x2a0 soft_offline_page+0xa6/0x200 This race is explained like below: CPU0 CPU1 soft_offline_page __soft_offline_page TestSetPageHWPoison unpoison_memory PageHWPoison check (true) TestClearPageHWPoison put_page -> release refcount held by get_hwpoison_page in unpoison_memory put_page -> release refcount held by isolate_lru_page in __soft_offline_page migrate_pages The second put_page() releases refcount held by isolate_lru_page() which will lead to unmap_and_move() releases the last refcount of page and w/ mapcount still 1 since try_to_unmap() is not called if there is only one user map the page. Anyway, the page refcount and mapcount will still mess if the page is mapped by multiple users. This race was introduced by commit |
||
Kirill A. Shutemov
|
d899844e9c |
mm: fix status code which move_pages() returns for zero page
The manpage for move_pages(2) specifies that status code for zero page is supposed to be -EFAULT. Currently kernel return -ENOENT in this case. follow_page() can do it for us, if we would ask for FOLL_DUMP. The use of FOLL_DUMP also means that the upper layer page tables pages are no longer allocated. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
4491f71260 |
mm/memory-failure: set PageHWPoison before migrate_pages()
Now page freeing code doesn't consider PageHWPoison as a bad page, so by setting it before completing the page containment, we can prevent the error page from being reused just after successful page migration. I added TTU_IGNORE_HWPOISON for try_to_unmap() to make sure that the page table entry is transformed into migration entry, not to hwpoison entry. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Dean Nelson <dnelson@redhat.com> Cc: Tony Luck <tony.luck@intel.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
f4c18e6f7b |
mm: check __PG_HWPOISON separately from PAGE_FLAGS_CHECK_AT_*
The race condition addressed in commit |
||
Aneesh Kumar K.V
|
8809aa2d28 |
mm: clarify that the function operates on hugepage pte
We have confusing functions to clear pmd, pmd_clear_* and pmd_clear. Add _huge_ to pmdp_clear functions so that we are clear that they operate on hugepage pte. We don't bother about other functions like pmdp_set_wrprotect, pmdp_clear_flush_young, because they operate on PTE bits and hence indicate they are operating on hugepage ptes Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
add05cecef |
mm: soft-offline: don't free target page in successful page migration
Stress testing showed that soft offline events for a process iterating
"mmap-pagefault-munmap" loop can trigger
VM_BUG_ON(PAGE_FLAGS_CHECK_AT_PREP) in __free_one_page():
Soft offlining page 0x70fe1 at 0x70100008d000
Soft offlining page 0x705fb at 0x70300008d000
page:ffffea0001c3f840 count:0 mapcount:0 mapping: (null) index:0x2
flags: 0x1fffff80800000(hwpoison)
page dumped because: VM_BUG_ON_PAGE(page->flags & ((1 << 25) - 1))
------------[ cut here ]------------
kernel BUG at /src/linux-dev/mm/page_alloc.c:585!
invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC
Modules linked in: cfg80211 rfkill crc32c_intel microcode ppdev parport_pc pcspkr serio_raw virtio_balloon parport i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy
CPU: 3 PID: 1779 Comm: test_base_madv_ Not tainted 4.0.0-v4.0-150511-1451-00009-g82360a3730e6 #139
RIP: free_pcppages_bulk+0x52a/0x6f0
Call Trace:
drain_pages_zone+0x3d/0x50
drain_local_pages+0x1d/0x30
on_each_cpu_mask+0x46/0x80
drain_all_pages+0x14b/0x1e0
soft_offline_page+0x432/0x6e0
SyS_madvise+0x73c/0x780
system_call_fastpath+0x12/0x17
Code: ff 89 45 b4 48 8b 45 c0 48 83 b8 a8 00 00 00 00 0f 85 e3 fb ff ff 0f 1f 00 0f 0b 48 8b 7d 90 48 c7 c6 e8 95 a6 81 e8 e6 32 02 00 <0f> 0b 8b 45 cc 49 89 47 30 41 8b 47 18 83 f8 ff 0f 85 10 ff ff
RIP [<ffffffff811a806a>] free_pcppages_bulk+0x52a/0x6f0
RSP <ffff88007a117d28>
---[ end trace 53926436e76d1f35 ]---
When soft offline successfully migrates page, the source page is supposed
to be freed. But there is a race condition where a source page looks
isolated (i.e. the refcount is 0 and the PageHWPoison is set) but
somewhat linked to pcplist. Then another soft offline event calls
drain_all_pages() and tries to free such hwpoisoned page, which is
forbidden.
This odd page state seems to happen due to the race between put_page() in
putback_lru_page() and __pagevec_lru_add_fn(). But I don't want to play
with tweaking drain code as done in commit
|
||
Naoya Horiguchi
|
b3b3a99c53 |
mm/migrate: check-before-clear PageSwapCache
With the page flag sanitization patchset, an invalid usage of ClearPageSwapCache() is detected in migration_page_copy(). migrate_page_copy() is shared by both normal and hugepage (both thp and hugetlb) code path, so let's check PageSwapCache() and clear it if it's set to avoid misuse of the invalid clear operation. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
2a8e700264 |
mm: numa: remove migrate_ratelimited
This code is dead since commit
|
||
Geert Uytterhoeven
|
ef2a5153b4 |
mm/migrate: mark unmap_and_move() "noinline" to avoid ICE in gcc 4.7.3
With gcc version 4.7.3 (Ubuntu/Linaro 4.7.3-12ubuntu1) : mm/migrate.c: In function `migrate_pages': mm/migrate.c:1148:1: internal compiler error: in push_minipool_fix, at config/arm/arm.c:13500 Please submit a full bug report, with preprocessed source if appropriate. See <file:///usr/share/doc/gcc-4.7/README.Bugs> for instructions. Preprocessed source stored into /tmp/ccPoM1tr.out file, please attach this to your bugreport. make[1]: *** [mm/migrate.o] Error 1 make: *** [mm/migrate.o] Error 2 Mark unmap_and_move() (which is used in a single place only) "noinline" to work around this compiler bug. [akpm@linux-foundation.org: make it conditional on gcc-4.7.3 and arm] [khilman@kernel.org: fine-tune compiler versions] [akpm@linux-foundation.org: fix comment] Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be> Reported-by: Kevin Hilman <khilman@kernel.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Tested-by: Kevin Hilman <khilman@linaro.org> Tested-by: Lina Iyer <lina.iyer@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
4d94246699 |
mm: convert p[te|md]_mknonnuma and remaining page table manipulations
With PROT_NONE, the traditional page table manipulation functions are sufficient. [andre.przywara@arm.com: fix compiler warning in pmdp_invalidate()] [akpm@linux-foundation.org: fix build with STRICT_MM_TYPECHECKS] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Jones <davej@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
5d83306213 |
mm: numa: do not dereference pmd outside of the lock during NUMA hinting fault
Automatic NUMA balancing depends on being able to protect PTEs to trap a fault and gather reference locality information. Very broadly speaking it would mark PTEs as not present and use another bit to distinguish between NUMA hinting faults and other types of faults. It was universally loved by everybody and caused no problems whatsoever. That last sentence might be a lie. This series is very heavily based on patches from Linus and Aneesh to replace the existing PTE/PMD NUMA helper functions with normal change protections. I did alter and add parts of it but I consider them relatively minor contributions. At their suggestion, acked-bys are in there but I've no problem converting them to Signed-off-by if requested. AFAIK, this has received no testing on ppc64 and I'm depending on Aneesh for that. I tested trinity under kvm-tool and passed and ran a few other basic tests. At the time of writing, only the short-lived tests have completed but testing of V2 indicated that long-term testing had no surprises. In most cases I'm leaving out detail as it's not that interesting. specjbb single JVM: There was negligible performance difference in the benchmark itself for short runs. However, system activity is higher and interrupts are much higher over time -- possibly TLB flushes. Migrations are also higher. Overall, this is more overhead but considering the problems faced with the old approach I think we just have to suck it up and find another way of reducing the overhead. specjbb multi JVM: Negligible performance difference to the actual benchmark but like the single JVM case, the system overhead is noticeably higher. Again, interrupts are a major factor. autonumabench: This was all over the place and about all that can be reasonably concluded is that it's different but not necessarily better or worse. autonumabench 3.18.0-rc5 3.18.0-rc5 mmotm-20141119 protnone-v3r3 User NUMA01 32380.24 ( 0.00%) 21642.92 ( 33.16%) User NUMA01_THEADLOCAL 22481.02 ( 0.00%) 22283.22 ( 0.88%) User NUMA02 3137.00 ( 0.00%) 3116.54 ( 0.65%) User NUMA02_SMT 1614.03 ( 0.00%) 1543.53 ( 4.37%) System NUMA01 322.97 ( 0.00%) 1465.89 (-353.88%) System NUMA01_THEADLOCAL 91.87 ( 0.00%) 49.32 ( 46.32%) System NUMA02 37.83 ( 0.00%) 14.61 ( 61.38%) System NUMA02_SMT 7.36 ( 0.00%) 7.45 ( -1.22%) Elapsed NUMA01 716.63 ( 0.00%) 599.29 ( 16.37%) Elapsed NUMA01_THEADLOCAL 553.98 ( 0.00%) 539.94 ( 2.53%) Elapsed NUMA02 83.85 ( 0.00%) 83.04 ( 0.97%) Elapsed NUMA02_SMT 86.57 ( 0.00%) 79.15 ( 8.57%) CPU NUMA01 4563.00 ( 0.00%) 3855.00 ( 15.52%) CPU NUMA01_THEADLOCAL 4074.00 ( 0.00%) 4136.00 ( -1.52%) CPU NUMA02 3785.00 ( 0.00%) 3770.00 ( 0.40%) CPU NUMA02_SMT 1872.00 ( 0.00%) 1959.00 ( -4.65%) System CPU usage of NUMA01 is worse but it's an adverse workload on this machine so I'm reluctant to conclude that it's a problem that matters. On the other workloads that are sensible on this machine, system CPU usage is great. Overall time to complete the benchmark is comparable 3.18.0-rc5 3.18.0-rc5 mmotm-20141119protnone-v3r3 User 59612.50 48586.44 System 460.22 1537.45 Elapsed 1442.20 1304.29 NUMA alloc hit 5075182 5743353 NUMA alloc miss 0 0 NUMA interleave hit 0 0 NUMA alloc local 5075174 5743339 NUMA base PTE updates 637061448 443106883 NUMA huge PMD updates 1243434 864747 NUMA page range updates 1273699656 885857347 NUMA hint faults 1658116 1214277 NUMA hint local faults 959487 754113 NUMA hint local percent 57 62 NUMA pages migrated 5467056 61676398 The NUMA pages migrated look terrible but when I looked at a graph of the activity over time I see that the massive spike in migration activity was during NUMA01. This correlates with high system CPU usage and could be simply down to bad luck but any modifications that affect that workload would be related to scan rates and migrations, not the protection mechanism. For all other workloads, migration activity was comparable. Overall, headline performance figures are comparable but the overhead is higher, mostly in interrupts. To some extent, higher overhead from this approach was anticipated but not to this degree. It's going to be necessary to reduce this again with a separate series in the future. It's still worth going ahead with this series though as it's likely to avoid constant headaches with Xen and is probably easier to maintain. This patch (of 10): A transhuge NUMA hinting fault may find the page is migrating and should wait until migration completes. The check is race-prone because the pmd is deferenced outside of the page lock and while the race is tiny, it'll be larger if the PMD is cleared while marking PMDs for hinting fault. This patch closes the race. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Jones <davej@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Rik van Riel <riel@redhat.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
e66f17ff71 |
mm/hugetlb: take page table lock in follow_huge_pmd()
We have a race condition between move_pages() and freeing hugepages, where
move_pages() calls follow_page(FOLL_GET) for hugepages internally and
tries to get its refcount without preventing concurrent freeing. This
race crashes the kernel, so this patch fixes it by moving FOLL_GET code
for hugepages into follow_huge_pmd() with taking the page table lock.
This patch intentionally removes page==NULL check after pte_page.
This is justified because pte_page() never returns NULL for any
architectures or configurations.
This patch changes the behavior of follow_huge_pmd() for tail pages and
then tail pages can be pinned/returned. So the caller must be changed to
properly handle the returned tail pages.
We could have a choice to add the similar locking to
follow_huge_(addr|pud) for consistency, but it's not necessary because
currently these functions don't support FOLL_GET flag, so let's leave it
for future development.
Here is the reproducer:
$ cat movepages.c
#include <stdio.h>
#include <stdlib.h>
#include <numaif.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
#define PS 0x1000
int main(int argc, char *argv[]) {
int i;
int nr_hp = strtol(argv[1], NULL, 0);
int nr_p = nr_hp * HPS / PS;
int ret;
void **addrs;
int *status;
int *nodes;
pid_t pid;
pid = strtol(argv[2], NULL, 0);
addrs = malloc(sizeof(char *) * nr_p + 1);
status = malloc(sizeof(char *) * nr_p + 1);
nodes = malloc(sizeof(char *) * nr_p + 1);
while (1) {
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 1;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 0;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
}
return 0;
}
$ cat hugepage.c
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
int main(int argc, char *argv[]) {
int nr_hp = strtol(argv[1], NULL, 0);
char *p;
while (1) {
p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (p != (void *)ADDR_INPUT) {
perror("mmap");
break;
}
memset(p, 0, nr_hp * HPS);
munmap(p, nr_hp * HPS);
}
}
$ sysctl vm.nr_hugepages=40
$ ./hugepage 10 &
$ ./movepages 10 $(pgrep -f hugepage)
Fixes:
|
||
Kirill A. Shutemov
|
27ba0644ea |
rmap: drop support of non-linear mappings
We don't create non-linear mappings anymore. Let's drop code which handles them in rmap. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Al Viro
|
50062175ff |
vm_area_operations: kill ->migrate()
the only instance this method has ever grown was one in kernfs - one that call ->migrate() of another vm_ops if it exists. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> |
||
Linus Torvalds
|
988adfdffd |
Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
Pull drm updates from Dave Airlie: "Highlights: - AMD KFD driver merge This is the AMD HSA interface for exposing a lowlevel interface for GPGPU use. They have an open source userspace built on top of this interface, and the code looks as good as it was going to get out of tree. - Initial atomic modesetting work The need for an atomic modesetting interface to allow userspace to try and send a complete set of modesetting state to the driver has arisen, and been suffering from neglect this past year. No more, the start of the common code and changes for msm driver to use it are in this tree. Ongoing work to get the userspace ioctl finished and the code clean will probably wait until next kernel. - DisplayID 1.3 and tiled monitor exposed to userspace. Tiled monitor property is now exposed for userspace to make use of. - Rockchip drm driver merged. - imx gpu driver moved out of staging Other stuff: - core: panel - MIPI DSI + new panels. expose suggested x/y properties for virtual GPUs - i915: Initial Skylake (SKL) support gen3/4 reset work start of dri1/ums removal infoframe tracking fixes for lots of things. - nouveau: tegra k1 voltage support GM204 modesetting support GT21x memory reclocking work - radeon: CI dpm fixes GPUVM improvements Initial DPM fan control - rcar-du: HDMI support added removed some support for old boards slave encoder driver for Analog Devices adv7511 - exynos: Exynos4415 SoC support - msm: a4xx gpu support atomic helper conversion - tegra: iommu support universal plane support ganged-mode DSI support - sti: HDMI i2c improvements - vmwgfx: some late fixes. - qxl: use suggested x/y properties" * 'drm-next' of git://people.freedesktop.org/~airlied/linux: (969 commits) drm: sti: fix module compilation issue drm/i915: save/restore GMBUS freq across suspend/resume on gen4 drm: sti: correctly cleanup CRTC and planes drm: sti: add HQVDP plane drm: sti: add cursor plane drm: sti: enable auxiliary CRTC drm: sti: fix delay in VTG programming drm: sti: prepare sti_tvout to support auxiliary crtc drm: sti: use drm_crtc_vblank_{on/off} instead of drm_vblank_{on/off} drm: sti: fix hdmi avi infoframe drm: sti: remove event lock while disabling vblank drm: sti: simplify gdp code drm: sti: clear all mixer control drm: sti: remove gpio for HDMI hot plug detection drm: sti: allow to change hdmi ddc i2c adapter drm/doc: Document drm_add_modes_noedid() usage drm/i915: Remove '& 0xffff' from the mask given to WA_REG() drm/i915: Invert the mask and val arguments in wa_add() and WA_REG() drm: Zero out DRM object memory upon cleanup drm/i915/bdw: Fix the write setting up the WIZ hashing mode ... |
||
Hugh Dickins
|
2ebba6b7e1 |
mm: unmapped page migration avoid unmap+remap overhead
Page migration's __unmap_and_move(), and rmap's try_to_unmap(), were created for use on pages almost certainly mapped into userspace. But nowadays compaction often applies them to unmapped page cache pages: which may exacerbate contention on i_mmap_rwsem quite unnecessarily, since try_to_unmap_file() makes no preliminary page_mapped() check. Now check page_mapped() in __unmap_and_move(); and avoid repeating the same overhead in rmap_walk_file() - don't remove_migration_ptes() when we never inserted any. (The PageAnon(page) comment blocks now look even sillier than before, but clean that up on some other occasion. And note in passing that try_to_unmap_one() does not use a migration entry when PageSwapCache, so remove_migration_ptes() will then not update that swap entry to newpage pte: not a big deal, but something else to clean up later.) Davidlohr remarked in "mm,fs: introduce helpers around the i_mmap_mutex" conversion to i_mmap_rwsem, that "The biggest winner of these changes is migration": a part of the reason might be all of that unnecessary taking of i_mmap_mutex in page migration; and it's rather a shame that I didn't get around to sending this patch in before his - this one is much less useful after Davidlohr's conversion to rwsem, but still good. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Konstantin Khlebnikov
|
d6d86c0a7f |
mm/balloon_compaction: redesign ballooned pages management
Sasha Levin reported KASAN splash inside isolate_migratepages_range(). Problem is in the function __is_movable_balloon_page() which tests AS_BALLOON_MAP in page->mapping->flags. This function has no protection against anonymous pages. As result it tried to check address space flags inside struct anon_vma. Further investigation shows more problems in current implementation: * Special branch in __unmap_and_move() never works: balloon_page_movable() checks page flags and page_count. In __unmap_and_move() page is locked, reference counter is elevated, thus balloon_page_movable() always fails. As a result execution goes to the normal migration path. virtballoon_migratepage() returns MIGRATEPAGE_BALLOON_SUCCESS instead of MIGRATEPAGE_SUCCESS, move_to_new_page() thinks this is an error code and assigns newpage->mapping to NULL. Newly migrated page lose connectivity with balloon an all ability for further migration. * lru_lock erroneously required in isolate_migratepages_range() for isolation ballooned page. This function releases lru_lock periodically, this makes migration mostly impossible for some pages. * balloon_page_dequeue have a tight race with balloon_page_isolate: balloon_page_isolate could be executed in parallel with dequeue between picking page from list and locking page_lock. Race is rare because they use trylock_page() for locking. This patch fixes all of them. Instead of fake mapping with special flag this patch uses special state of page->_mapcount: PAGE_BALLOON_MAPCOUNT_VALUE = -256. Buddy allocator uses PAGE_BUDDY_MAPCOUNT_VALUE = -128 for similar purpose. Storing mark directly in struct page makes everything safer and easier. PagePrivate is used to mark pages present in page list (i.e. not isolated, like PageLRU for normal pages). It replaces special rules for reference counter and makes balloon migration similar to migration of normal pages. This flag is protected by page_lock together with link to the balloon device. Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Link: http://lkml.kernel.org/p/53E6CEAA.9020105@oracle.com Cc: Rafael Aquini <aquini@redhat.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: <stable@vger.kernel.org> [3.8+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
d3cb8bf608 |
mm: migrate: Close race between migration completion and mprotect
A migration entry is marked as write if pte_write was true at the time the entry was created. The VMA protections are not double checked when migration entries are being removed as mprotect marks write-migration-entries as read. It means that potentially we take a spurious fault to mark PTEs write again but it's straight-forward. However, there is a race between write migrations being marked read and migrations finishing. This potentially allows a PTE to be write that should have been read. Close this race by double checking the VMA permissions using maybe_mkwrite when migration completes. [torvalds@linux-foundation.org: use maybe_mkwrite] Cc: stable@vger.kernel.org Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Johannes Weiner
|
0a31bc97c8 |
mm: memcontrol: rewrite uncharge API
The memcg uncharging code that is involved towards the end of a page's lifetime - truncation, reclaim, swapout, migration - is impressively complicated and fragile. Because anonymous and file pages were always charged before they had their page->mapping established, uncharges had to happen when the page type could still be known from the context; as in unmap for anonymous, page cache removal for file and shmem pages, and swap cache truncation for swap pages. However, these operations happen well before the page is actually freed, and so a lot of synchronization is necessary: - Charging, uncharging, page migration, and charge migration all need to take a per-page bit spinlock as they could race with uncharging. - Swap cache truncation happens during both swap-in and swap-out, and possibly repeatedly before the page is actually freed. This means that the memcg swapout code is called from many contexts that make no sense and it has to figure out the direction from page state to make sure memory and memory+swap are always correctly charged. - On page migration, the old page might be unmapped but then reused, so memcg code has to prevent untimely uncharging in that case. Because this code - which should be a simple charge transfer - is so special-cased, it is not reusable for replace_page_cache(). But now that charged pages always have a page->mapping, introduce mem_cgroup_uncharge(), which is called after the final put_page(), when we know for sure that nobody is looking at the page anymore. For page migration, introduce mem_cgroup_migrate(), which is called after the migration is successful and the new page is fully rmapped. Because the old page is no longer uncharged after migration, prevent double charges by decoupling the page's memcg association (PCG_USED and pc->mem_cgroup) from the page holding an actual charge. The new bits PCG_MEM and PCG_MEMSW represent the respective charges and are transferred to the new page during migration. mem_cgroup_migrate() is suitable for replace_page_cache() as well, which gets rid of mem_cgroup_replace_page_cache(). However, care needs to be taken because both the source and the target page can already be charged and on the LRU when fuse is splicing: grab the page lock on the charge moving side to prevent changing pc->mem_cgroup of a page under migration. Also, the lruvecs of both pages change as we uncharge the old and charge the new during migration, and putback may race with us, so grab the lru lock and isolate the pages iff on LRU to prevent races and ensure the pages are on the right lruvec afterward. Swap accounting is massively simplified: because the page is no longer uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry before the final put_page() in page reclaim. Finally, page_cgroup changes are now protected by whatever protection the page itself offers: anonymous pages are charged under the page table lock, whereas page cache insertions, swapin, and migration hold the page lock. Uncharging happens under full exclusion with no outstanding references. Charging and uncharging also ensure that the page is off-LRU, which serializes against charge migration. Remove the very costly page_cgroup lock and set pc->flags non-atomically. [mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable] [vdavydov@parallels.com: fix flags definition] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vladimir Davydov <vdavydov@parallels.com> Tested-by: Jet Chen <jet.chen@intel.com> Acked-by: Michal Hocko <mhocko@suse.cz> Tested-by: Felipe Balbi <balbi@ti.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Hugh Dickins
|
8bdd638091 |
mm: fix direct reclaim writeback regression
Shortly before 3.16-rc1, Dave Jones reported:
WARNING: CPU: 3 PID: 19721 at fs/xfs/xfs_aops.c:971
xfs_vm_writepage+0x5ce/0x630 [xfs]()
CPU: 3 PID: 19721 Comm: trinity-c61 Not tainted 3.15.0+ #3
Call Trace:
xfs_vm_writepage+0x5ce/0x630 [xfs]
shrink_page_list+0x8f9/0xb90
shrink_inactive_list+0x253/0x510
shrink_lruvec+0x563/0x6c0
shrink_zone+0x3b/0x100
shrink_zones+0x1f1/0x3c0
try_to_free_pages+0x164/0x380
__alloc_pages_nodemask+0x822/0xc90
alloc_pages_vma+0xaf/0x1c0
handle_mm_fault+0xa31/0xc50
etc.
970 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
971 PF_MEMALLOC))
I did not respond at the time, because a glance at the PageDirty block
in shrink_page_list() quickly shows that this is impossible: we don't do
writeback on file pages (other than tmpfs) from direct reclaim nowadays.
Dave was hallucinating, but it would have been disrespectful to say so.
However, my own /var/log/messages now shows similar complaints
WARNING: CPU: 1 PID: 28814 at fs/ext4/inode.c:1881 ext4_writepage+0xa7/0x38b()
WARNING: CPU: 0 PID: 27347 at fs/ext4/inode.c:1764 ext4_writepage+0xa7/0x38b()
from stressing some mmotm trees during July.
Could a dirty xfs or ext4 file page somehow get marked PageSwapBacked,
so fail shrink_page_list()'s page_is_file_cache() test, and so proceed
to mapping->a_ops->writepage()?
Yes, 3.16-rc1's commit
|
||
Hugh Dickins
|
f72e7dcdd2 |
mm: let mm_find_pmd fix buggy race with THP fault
Trinity has reported: BUG: unable to handle kernel NULL pointer dereference at 0000000000000018 IP: __lock_acquire (kernel/locking/lockdep.c:3070 (discriminator 1)) CPU: 6 PID: 16173 Comm: trinity-c364 Tainted: G W 3.15.0-rc1-next-20140415-sasha-00020-gaa90d09 #398 lock_acquire (arch/x86/include/asm/current.h:14 kernel/locking/lockdep.c:3602) _raw_spin_lock (include/linux/spinlock_api_smp.h:143 kernel/locking/spinlock.c:151) remove_migration_pte (mm/migrate.c:137) rmap_walk (mm/rmap.c:1628 mm/rmap.c:1699) remove_migration_ptes (mm/migrate.c:224) migrate_pages (mm/migrate.c:922 mm/migrate.c:960 mm/migrate.c:1126) migrate_misplaced_page (mm/migrate.c:1733) __handle_mm_fault (mm/memory.c:3762 mm/memory.c:3812 mm/memory.c:3925) handle_mm_fault (mm/memory.c:3948) __get_user_pages (mm/memory.c:1851) __mlock_vma_pages_range (mm/mlock.c:255) __mm_populate (mm/mlock.c:711) SyS_mlockall (include/linux/mm.h:1799 mm/mlock.c:817 mm/mlock.c:791) I believe this comes about because, whereas collapsing and splitting THP functions take anon_vma lock in write mode (which excludes concurrent rmap walks), faulting THP functions (write protection and misplaced NUMA) do not - and mostly they do not need to. But they do use a pmdp_clear_flush(), set_pmd_at() sequence which, for an instant (indeed, for a long instant, given the inter-CPU TLB flush in there), leaves *pmd neither present not trans_huge. Which can confuse a concurrent rmap walk, as when removing migration ptes, seen in the dumped trace. Although that rmap walk has a 4k page to insert, anon_vmas containing THPs are in no way segregated from 4k-page anon_vmas, so the 4k-intent mm_find_pmd() does need to cope with that instant when a trans_huge pmd is temporarily absent. I don't think we need strengthen the locking at the THP end: it's easily handled with an ACCESS_ONCE() before testing both conditions. And since mm_find_pmd() had only one caller who wanted a THP rather than a pmd, let's slightly repurpose it to fail when it hits a THP or non-present pmd, and open code split_huge_page_address() again. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Lameter <cl@gentwo.org> Cc: Dave Jones <davej@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Naoya Horiguchi
|
100873d7a7 |
hugetlb: rename hugepage_migration_support() to ..._supported()
We already have a function named hugepages_supported(), and the similar name hugepage_migration_support() is a bit unconfortable, so let's rename it hugepage_migration_supported(). Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |