mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 04:56:32 +07:00
0dd5b13315
1810 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
83fa805bcb |
threads-v5.6
-----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXjFo8wAKCRCRxhvAZXjc omaGAQDVwCHQekqxp2eC8EJH4Pkt+Bn1BLrA25stlTo93YBPHgEAsPVUCRNcrZAl VncYmxCfpt3Yu0S/MTVXu5xrRiIXPQk= =uqTN -----END PGP SIGNATURE----- Merge tag 'threads-v5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull thread management updates from Christian Brauner: "Sargun Dhillon over the last cycle has worked on the pidfd_getfd() syscall. This syscall allows for the retrieval of file descriptors of a process based on its pidfd. A task needs to have ptrace_may_access() permissions with PTRACE_MODE_ATTACH_REALCREDS (suggested by Oleg and Andy) on the target. One of the main use-cases is in combination with seccomp's user notification feature. As a reminder, seccomp's user notification feature was made available in v5.0. It allows a task to retrieve a file descriptor for its seccomp filter. The file descriptor is usually handed of to a more privileged supervising process. The supervisor can then listen for syscall events caught by the seccomp filter of the supervisee and perform actions in lieu of the supervisee, usually emulating syscalls. pidfd_getfd() is needed to expand its uses. There are currently two major users that wait on pidfd_getfd() and one future user: - Netflix, Sargun said, is working on a service mesh where users should be able to connect to a dns-based VIP. When a user connects to e.g. 1.2.3.4:80 that runs e.g. service "foo" they will be redirected to an envoy process. This service mesh uses seccomp user notifications and pidfd to intercept all connect calls and instead of connecting them to 1.2.3.4:80 connects them to e.g. 127.0.0.1:8080. - LXD uses the seccomp notifier heavily to intercept and emulate mknod() and mount() syscalls for unprivileged containers/processes. With pidfd_getfd() more uses-cases e.g. bridging socket connections will be possible. - The patchset has also seen some interest from the browser corner. Right now, Firefox is using a SECCOMP_RET_TRAP sandbox managed by a broker process. In the future glibc will start blocking all signals during dlopen() rendering this type of sandbox impossible. Hence, in the future Firefox will switch to a seccomp-user-nofication based sandbox which also makes use of file descriptor retrieval. The thread for this can be found at https://sourceware.org/ml/libc-alpha/2019-12/msg00079.html With pidfd_getfd() it is e.g. possible to bridge socket connections for the supervisee (binding to a privileged port) and taking actions on file descriptors on behalf of the supervisee in general. Sargun's first version was using an ioctl on pidfds but various people pushed for it to be a proper syscall which he duely implemented as well over various review cycles. Selftests are of course included. I've also added instructions how to deal with merge conflicts below. There's also a small fix coming from the kernel mentee project to correctly annotate struct sighand_struct with __rcu to fix various sparse warnings. We've received a few more such fixes and even though they are mostly trivial I've decided to postpone them until after -rc1 since they came in rather late and I don't want to risk introducing build warnings. Finally, there's a new prctl() command PR_{G,S}ET_IO_FLUSHER which is needed to avoid allocation recursions triggerable by storage drivers that have userspace parts that run in the IO path (e.g. dm-multipath, iscsi, etc). These allocation recursions deadlock the device. The new prctl() allows such privileged userspace components to avoid allocation recursions by setting the PF_MEMALLOC_NOIO and PF_LESS_THROTTLE flags. The patch carries the necessary acks from the relevant maintainers and is routed here as part of prctl() thread-management." * tag 'threads-v5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: prctl: PR_{G,S}ET_IO_FLUSHER to support controlling memory reclaim sched.h: Annotate sighand_struct with __rcu test: Add test for pidfd getfd arch: wire up pidfd_getfd syscall pid: Implement pidfd_getfd syscall vfs, fdtable: Add fget_task helper |
||
Madhuparna Bhowmik
|
913292c97d |
sched.h: Annotate sighand_struct with __rcu
This patch fixes the following sparse errors by annotating the sighand_struct with __rcu kernel/fork.c:1511:9: error: incompatible types in comparison expression kernel/exit.c💯19: error: incompatible types in comparison expression kernel/signal.c:1370:27: error: incompatible types in comparison expression This fix introduces the following sparse error in signal.c due to checking the sighand pointer without rcu primitives: kernel/signal.c:1386:21: error: incompatible types in comparison expression This new sparse error is also fixed in this patch. Signed-off-by: Madhuparna Bhowmik <madhuparnabhowmik10@gmail.com> Acked-by: Paul E. McKenney <paulmck@kernel.org> Link: https://lore.kernel.org/r/20200124045908.26389-1-madhuparnabhowmik10@gmail.com Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> |
||
Mathieu Desnoyers
|
463f550fb4 |
rseq: Unregister rseq for clone CLONE_VM
It has been reported by Google that rseq is not behaving properly with respect to clone when CLONE_VM is used without CLONE_THREAD. It keeps the prior thread's rseq TLS registered when the TLS of the thread has moved, so the kernel can corrupt the TLS of the parent. The approach of clearing the per task-struct rseq registration on clone with CLONE_THREAD flag is incomplete. It does not cover the use-case of clone with CLONE_VM set, but without CLONE_THREAD. Here is the rationale for unregistering rseq on clone with CLONE_VM flag set: 1) CLONE_THREAD requires CLONE_SIGHAND, which requires CLONE_VM to be set. Therefore, just checking for CLONE_VM covers all CLONE_THREAD uses. There is no point in checking for both CLONE_THREAD and CLONE_VM, 2) There is the possibility of an unlikely scenario where CLONE_SETTLS is used without CLONE_VM. In order to be an issue, it would require that the rseq TLS is in a shared memory area. I do not plan on adding CLONE_SETTLS to the set of clone flags which unregister RSEQ, because it would require that we also unregister RSEQ on set_thread_area(2) and arch_prctl(2) ARCH_SET_FS for completeness. So rather than doing a partial solution, it appears better to let user-space explicitly perform rseq unregistration across clone if needed in scenarios where CLONE_VM is not set. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191211161713.4490-3-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Andrey Konovalov
|
eec028c938 |
kcov: remote coverage support
Patch series " kcov: collect coverage from usb and vhost", v3. This patchset extends kcov to allow collecting coverage from backgound kernel threads. This extension requires custom annotations for each of the places where coverage collection is desired. This patchset implements this for hub events in the USB subsystem and for vhost workers. See the first patch description for details about the kcov extension. The other two patches apply this kcov extension to USB and vhost. Examples of other subsystems that might potentially benefit from this when custom annotations are added (the list is based on process_one_work() callers for bugs recently reported by syzbot): 1. fs: writeback wb_workfn() worker, 2. net: addrconf_dad_work()/addrconf_verify_work() workers, 3. net: neigh_periodic_work() worker, 4. net/p9: p9_write_work()/p9_read_work() workers, 5. block: blk_mq_run_work_fn() worker. These patches have been used to enable coverage-guided USB fuzzing with syzkaller for the last few years, see the details here: https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md This patchset has been pushed to the public Linux kernel Gerrit instance: https://linux-review.googlesource.com/c/linux/kernel/git/torvalds/linux/+/1524 This patch (of 3): Add background thread coverage collection ability to kcov. With KCOV_ENABLE coverage is collected only for syscalls that are issued from the current process. With KCOV_REMOTE_ENABLE it's possible to collect coverage for arbitrary parts of the kernel code, provided that those parts are annotated with kcov_remote_start()/kcov_remote_stop(). This allows to collect coverage from two types of kernel background threads: the global ones, that are spawned during kernel boot in a limited number of instances (e.g. one USB hub_event() worker thread is spawned per USB HCD); and the local ones, that are spawned when a user interacts with some kernel interface (e.g. vhost workers). To enable collecting coverage from a global background thread, a unique global handle must be assigned and passed to the corresponding kcov_remote_start() call. Then a userspace process can pass a list of such handles to the KCOV_REMOTE_ENABLE ioctl in the handles array field of the kcov_remote_arg struct. This will attach the used kcov device to the code sections, that are referenced by those handles. Since there might be many local background threads spawned from different userspace processes, we can't use a single global handle per annotation. Instead, the userspace process passes a non-zero handle through the common_handle field of the kcov_remote_arg struct. This common handle gets saved to the kcov_handle field in the current task_struct and needs to be passed to the newly spawned threads via custom annotations. Those threads should in turn be annotated with kcov_remote_start()/kcov_remote_stop(). Internally kcov stores handles as u64 integers. The top byte of a handle is used to denote the id of a subsystem that this handle belongs to, and the lower 4 bytes are used to denote the id of a thread instance within that subsystem. A reserved value 0 is used as a subsystem id for common handles as they don't belong to a particular subsystem. The bytes 4-7 are currently reserved and must be zero. In the future the number of bytes used for the subsystem or handle ids might be increased. When a particular userspace process collects coverage by via a common handle, kcov will collect coverage for each code section that is annotated to use the common handle obtained as kcov_handle from the current task_struct. However non common handles allow to collect coverage selectively from different subsystems. Link: http://lkml.kernel.org/r/e90e315426a384207edbec1d6aa89e43008e4caf.1572366574.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: David Windsor <dwindsor@gmail.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Anders Roxell <anders.roxell@linaro.org> Cc: Alexander Potapenko <glider@google.com> Cc: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
043cf46825 |
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Ingo Molnar: "The main changes in the timer code in this cycle were: - Clockevent updates: - timer-of framework cleanups. (Geert Uytterhoeven) - Use timer-of for the renesas-ostm and the device name to prevent name collision in case of multiple timers. (Geert Uytterhoeven) - Check if there is an error after calling of_clk_get in asm9260 (Chuhong Yuan) - ABI fix: Zero out high order bits of nanoseconds on compat syscalls. This got broken a year ago, with apparently no side effects so far. Since the kernel would use random data otherwise I don't think we'd have other options but to fix the bug, even if there was a side effect to applications (Dmitry Safonov) - Optimize ns_to_timespec64() on 32-bit systems: move away from div_s64_rem() which can be slow, to div_u64_rem() which is faster (Arnd Bergmann) - Annotate KCSAN-reported false positive data races in hrtimer_is_queued() users by moving timer->state handling over to the READ_ONCE()/WRITE_ONCE() APIs. This documents these accesses (Eric Dumazet) - Misc cleanups and small fixes" [ I undid the "ABI fix" and updated the comments instead. The reason there were apparently no side effects is that the fix was a no-op. The updated comment is to say _why_ it was a no-op. - Linus ] * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: time: Zero the upper 32-bits in __kernel_timespec on 32-bit time: Rename tsk->real_start_time to ->start_boottime hrtimer: Remove the comment about not used HRTIMER_SOFTIRQ time: Fix spelling mistake in comment time: Optimize ns_to_timespec64() hrtimer: Annotate lockless access to timer->state clocksource/drivers/asm9260: Add a check for of_clk_get clocksource/drivers/renesas-ostm: Use unique device name instead of ostm clocksource/drivers/renesas-ostm: Convert to timer_of clocksource/drivers/timer-of: Use unique device name instead of timer clocksource/drivers/timer-of: Convert last full_name to %pOF |
||
Linus Torvalds
|
168829ad09 |
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar: "The main changes in this cycle were: - A comprehensive rewrite of the robust/PI futex code's exit handling to fix various exit races. (Thomas Gleixner et al) - Rework the generic REFCOUNT_FULL implementation using atomic_fetch_* operations so that the performance impact of the cmpxchg() loops is mitigated for common refcount operations. With these performance improvements the generic implementation of refcount_t should be good enough for everybody - and this got confirmed by performance testing, so remove ARCH_HAS_REFCOUNT and REFCOUNT_FULL entirely, leaving the generic implementation enabled unconditionally. (Will Deacon) - Other misc changes, fixes, cleanups" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits) lkdtm: Remove references to CONFIG_REFCOUNT_FULL locking/refcount: Remove unused 'refcount_error_report()' function locking/refcount: Consolidate implementations of refcount_t locking/refcount: Consolidate REFCOUNT_{MAX,SATURATED} definitions locking/refcount: Move saturation warnings out of line locking/refcount: Improve performance of generic REFCOUNT_FULL code locking/refcount: Move the bulk of the REFCOUNT_FULL implementation into the <linux/refcount.h> header locking/refcount: Remove unused refcount_*_checked() variants locking/refcount: Ensure integer operands are treated as signed locking/refcount: Define constants for saturation and max refcount values futex: Prevent exit livelock futex: Provide distinct return value when owner is exiting futex: Add mutex around futex exit futex: Provide state handling for exec() as well futex: Sanitize exit state handling futex: Mark the begin of futex exit explicitly futex: Set task::futex_state to DEAD right after handling futex exit futex: Split futex_mm_release() for exit/exec exit/exec: Seperate mm_release() futex: Replace PF_EXITPIDONE with a state ... |
||
Linus Torvalds
|
77a05940ee |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: "The biggest changes in this cycle were: - Make kcpustat vtime aware (Frederic Weisbecker) - Rework the CFS load_balance() logic (Vincent Guittot) - Misc cleanups, smaller enhancements, fixes. The load-balancing rework is the most intrusive change: it replaces the old heuristics that have become less meaningful after the introduction of the PELT metrics, with a grounds-up load-balancing algorithm. As such it's not really an iterative series, but replaces the old load-balancing logic with the new one. We hope there are no performance regressions left - but statistically it's highly probable that there *is* going to be some workload that is hurting from these chnages. If so then we'd prefer to have a look at that workload and fix its scheduling, instead of reverting the changes" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (46 commits) rackmeter: Use vtime aware kcpustat accessor leds: Use all-in-one vtime aware kcpustat accessor cpufreq: Use vtime aware kcpustat accessors for user time procfs: Use all-in-one vtime aware kcpustat accessor sched/vtime: Bring up complete kcpustat accessor sched/cputime: Support other fields on kcpustat_field() sched/cpufreq: Move the cfs_rq_util_change() call to cpufreq_update_util() sched/fair: Add comments for group_type and balancing at SD_NUMA level sched/fair: Fix rework of find_idlest_group() sched/uclamp: Fix overzealous type replacement sched/Kconfig: Fix spelling mistake in user-visible help text sched/core: Further clarify sched_class::set_next_task() sched/fair: Use mul_u32_u32() sched/core: Simplify sched_class::pick_next_task() sched/core: Optimize pick_next_task() sched/core: Make pick_next_task_idle() more consistent sched/fair: Better document newidle_balance() leds: Use vtime aware kcpustat accessor to fetch CPUTIME_SYSTEM cpufreq: Use vtime aware kcpustat accessor to fetch CPUTIME_SYSTEM procfs: Use vtime aware kcpustat accessor to fetch CPUTIME_SYSTEM ... |
||
Thomas Gleixner
|
3f186d9748 |
futex: Add mutex around futex exit
The mutex will be used in subsequent changes to replace the busy looping of a waiter when the futex owner is currently executing the exit cleanup to prevent a potential live lock. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20191106224556.845798895@linutronix.de |
||
Thomas Gleixner
|
3d4775df0a |
futex: Replace PF_EXITPIDONE with a state
The futex exit handling relies on PF_ flags. That's suboptimal as it requires a smp_mb() and an ugly lock/unlock of the exiting tasks pi_lock in the middle of do_exit() to enforce the observability of PF_EXITING in the futex code. Add a futex_state member to task_struct and convert the PF_EXITPIDONE logic over to the new state. The PF_EXITING dependency will be cleaned up in a later step. This prepares for handling various futex exit issues later. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20191106224556.149449274@linutronix.de |
||
Peter Zijlstra
|
cf25e24db6 |
time: Rename tsk->real_start_time to ->start_boottime
Since it stores CLOCK_BOOTTIME, not, as the name suggests, CLOCK_REALTIME, let's rename ->real_start_time to ->start_bootime. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Ingo Molnar
|
6d5a763c30 |
Linux 5.4-rc7
-----BEGIN PGP SIGNATURE----- iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl3IqJQeHHRvcnZhbGRz QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGOiUH+gOEDwid5OODaFAd CggXugdFIlBZefKqGVNW5sjgX8pxFWHXuEMC8iNb6QXtQZdFrI6LFf9hhUDmzQtm 6y1LPxxEiTZjObMEsBNylb7tyzgujFHcAlp0Zro3w/HLCqmYTSP3FF46i2u6KZfL XhkpM4X7R7qxlfpdhlfESv/ElRGocZe6SwXfC7pcPo5flFcmkdu9ijqhNd/6CZ/h Nf9rTsD/wEDVUelFbgVN+LJzlaB0tsyc4Zbof07n8OsFZjhdEOop8gfM/kTBLcyY 6bh66SfDScdsNnC/l8csbPjSZRx+i+nQs67DyhGNnsSAFgHBZdC4Tb/2mDCwhCLR dUvuYZc= =1N6F -----END PGP SIGNATURE----- Merge tag 'v5.4-rc7' into sched/core, to pick up fixes Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Jens Axboe
|
771b53d033 |
io-wq: small threadpool implementation for io_uring
This adds support for io-wq, a smaller and specialized thread pool implementation. This is meant to replace workqueues for io_uring. Among the reasons for this addition are: - We can assign memory context smarter and more persistently if we manage the life time of threads. - We can drop various work-arounds we have in io_uring, like the async_list. - We can implement hashed work insertion, to manage concurrency of buffered writes without needing a) an extra workqueue, or b) needlessly making the concurrency of said workqueue very low which hurts performance of multiple buffered file writers. - We can implement cancel through signals, for cancelling interruptible work like read/write (or send/recv) to/from sockets. - We need the above cancel for being able to assign and use file tables from a process. - We can implement a more thorough cancel operation in general. - We need it to move towards a syslet/threadlet model for even faster async execution. For that we need to take ownership of the used threads. This list is just off the top of my head. Performance should be the same, or better, at least that's what I've seen in my testing. io-wq supports basic NUMA functionality, setting up a pool per node. io-wq hooks up to the scheduler schedule in/out just like workqueue and uses that to drive the need for more/less workers. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Frederic Weisbecker
|
e6d5bf3e32 |
sched/cputime: Add vtime guest task state
Record guest as a VTIME state instead of guessing it from VTIME_SYS and PF_VCPU. This is going to simplify the cputime read side especially as its state machine is going to further expand in order to fully support kcpustat on nohz_full. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Jacek Anaszewski <jacek.anaszewski@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavel Machek <pavel@ucw.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rjw@rjwysocki.net> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Wanpeng Li <wanpengli@tencent.com> Cc: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Link: https://lkml.kernel.org/r/20191016025700.31277-4-frederic@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Frederic Weisbecker
|
14faf6fcac |
sched/cputime: Add vtime idle task state
Record idle as a VTIME state instead of guessing it from VTIME_SYS and is_idle_task(). This is going to simplify the cputime read side especially as its state machine is going to further expand in order to fully support kcpustat on nohz_full. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Jacek Anaszewski <jacek.anaszewski@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavel Machek <pavel@ucw.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rjw@rjwysocki.net> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Wanpeng Li <wanpengli@tencent.com> Cc: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Link: https://lkml.kernel.org/r/20191016025700.31277-3-frederic@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Frederic Weisbecker
|
802f4a827f |
sched/vtime: Record CPU under seqcount for kcpustat needs
In order to compute the kcpustat delta on a nohz CPU, we'll need to fetch the task running on that target. Checking that its vtime state snapshot actually refers to the relevant target involves recording that CPU under the seqcount locked on task switch. This is a step toward making kcpustat moving forward on full nohz CPUs. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Jacek Anaszewski <jacek.anaszewski@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavel Machek <pavel@ucw.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J . Wysocki <rjw@rjwysocki.net> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Wanpeng Li <wanpengli@tencent.com> Cc: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Link: https://lkml.kernel.org/r/20191016025700.31277-2-frederic@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Julien Thierry
|
19c95f261c |
arm64: entry.S: Do not preempt from IRQ before all cpufeatures are enabled
Preempting from IRQ-return means that the task has its PSTATE saved on the stack, which will get restored when the task is resumed and does the actual IRQ return. However, enabling some CPU features requires modifying the PSTATE. This means that, if a task was scheduled out during an IRQ-return before all CPU features are enabled, the task might restore a PSTATE that does not include the feature enablement changes once scheduled back in. * Task 1: PAN == 0 ---| |--------------- | |<- return from IRQ, PSTATE.PAN = 0 | <- IRQ | +--------+ <- preempt() +-- ^ | reschedule Task 1, PSTATE.PAN == 1 * Init: --------------------+------------------------ ^ | enable_cpu_features set PSTATE.PAN on all CPUs Worse than this, since PSTATE is untouched when task switching is done, a task missing the new bits in PSTATE might affect another task, if both do direct calls to schedule() (outside of IRQ/exception contexts). Fix this by preventing preemption on IRQ-return until features are enabled on all CPUs. This way the only PSTATE values that are saved on the stack are from synchronous exceptions. These are expected to be fatal this early, the exception is BRK for WARN_ON(), but as this uses do_debug_exception() which keeps IRQs masked, it shouldn't call schedule(). Signed-off-by: Julien Thierry <julien.thierry@arm.com> [james: Replaced a really cool hack, with an even simpler static key in C. expanded commit message with Julien's cover-letter ascii art] Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will@kernel.org> |
||
Linus Torvalds
|
9c5efe9ae7 |
Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar: - Apply a number of membarrier related fixes and cleanups, which fixes a use-after-free race in the membarrier code - Introduce proper RCU protection for tasks on the runqueue - to get rid of the subtle task_rcu_dereference() interface that was easy to get wrong - Misc fixes, but also an EAS speedup * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/fair: Avoid redundant EAS calculation sched/core: Remove double update_max_interval() call on CPU startup sched/core: Fix preempt_schedule() interrupt return comment sched/fair: Fix -Wunused-but-set-variable warnings sched/core: Fix migration to invalid CPU in __set_cpus_allowed_ptr() sched/membarrier: Return -ENOMEM to userspace on memory allocation failure sched/membarrier: Skip IPIs when mm->mm_users == 1 selftests, sched/membarrier: Add multi-threaded test sched/membarrier: Fix p->mm->membarrier_state racy load sched/membarrier: Call sync_core only before usermode for same mm sched/membarrier: Remove redundant check sched/membarrier: Fix private expedited registration check tasks, sched/core: RCUify the assignment of rq->curr tasks, sched/core: With a grace period after finish_task_switch(), remove unnecessary code tasks, sched/core: Ensure tasks are available for a grace period after leaving the runqueue tasks: Add a count of task RCU users sched/core: Convert vcpu_is_preempted() from macro to an inline function sched/fair: Remove unused cfs_rq_clock_task() function |
||
Eric W. Biederman
|
3fbd7ee285 |
tasks: Add a count of task RCU users
Add a count of the number of RCU users (currently 1) of the task struct so that we can later add the scheduler case and get rid of the very subtle task_rcu_dereference(), and just use rcu_dereference(). As suggested by Oleg have the count overlap rcu_head so that no additional space in task_struct is required. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Inspired-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Metcalf <cmetcalf@ezchip.com> Cc: Christoph Lameter <cl@linux.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Kirill Tkhai <tkhai@yandex.ru> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/87woebdplt.fsf_-_@x220.int.ebiederm.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
84da111de0 |
hmm related patches for 5.4
This is more cleanup and consolidation of the hmm APIs and the very strongly related mmu_notifier interfaces. Many places across the tree using these interfaces are touched in the process. Beyond that a cleanup to the page walker API and a few memremap related changes round out the series: - General improvement of hmm_range_fault() and related APIs, more documentation, bug fixes from testing, API simplification & consolidation, and unused API removal - Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE, and make them internal kconfig selects - Hoist a lot of code related to mmu notifier attachment out of drivers by using a refcount get/put attachment idiom and remove the convoluted mmu_notifier_unregister_no_release() and related APIs. - General API improvement for the migrate_vma API and revision of its only user in nouveau - Annotate mmu_notifiers with lockdep and sleeping region debugging Two series unrelated to HMM or mmu_notifiers came along due to dependencies: - Allow pagemap's memremap_pages family of APIs to work without providing a struct device - Make walk_page_range() and related use a constant structure for function pointers -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl1/nnkACgkQOG33FX4g mxqaRg//c6FqowV1pQlLutvAOAgMdpzfZ9eaaDKngy9RVQxz+k/MmJrdRH/p/mMA Pq93A1XfwtraGKErHegFXGEDk4XhOustVAVFwvjyXO41dTUdoFVUkti6ftbrl/rS 6CT+X90jlvrwdRY7QBeuo7lxx7z8Qkqbk1O1kc1IOracjKfNJS+y6LTamy6weM3g tIMHI65PkxpRzN36DV9uCN5dMwFzJ73DWHp1b0acnDIigkl6u5zp6orAJVWRjyQX nmEd3/IOvdxaubAoAvboNS5CyVb4yS9xshWWMbH6AulKJv3Glca1Aa7QuSpBoN8v wy4c9+umzqRgzgUJUe1xwN9P49oBNhJpgBSu8MUlgBA4IOc3rDl/Tw0b5KCFVfkH yHkp8n6MP8VsRrzXTC6Kx0vdjIkAO8SUeylVJczAcVSyHIo6/JUJCVDeFLSTVymh EGWJ7zX2iRhUbssJ6/izQTTQyCH3YIyZ5QtqByWuX2U7ZrfkqS3/EnBW1Q+j+gPF Z2yW8iT6k0iENw6s8psE9czexuywa/Lttz94IyNlOQ8rJTiQqB9wLaAvg9hvUk7a kuspL+JGIZkrL3ouCeO/VA6xnaP+Q7nR8geWBRb8zKGHmtWrb5Gwmt6t+vTnCC2l olIDebrnnxwfBQhEJ5219W+M1pBpjiTpqK/UdBd92A4+sOOhOD0= =FRGg -----END PGP SIGNATURE----- Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma Pull hmm updates from Jason Gunthorpe: "This is more cleanup and consolidation of the hmm APIs and the very strongly related mmu_notifier interfaces. Many places across the tree using these interfaces are touched in the process. Beyond that a cleanup to the page walker API and a few memremap related changes round out the series: - General improvement of hmm_range_fault() and related APIs, more documentation, bug fixes from testing, API simplification & consolidation, and unused API removal - Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE, and make them internal kconfig selects - Hoist a lot of code related to mmu notifier attachment out of drivers by using a refcount get/put attachment idiom and remove the convoluted mmu_notifier_unregister_no_release() and related APIs. - General API improvement for the migrate_vma API and revision of its only user in nouveau - Annotate mmu_notifiers with lockdep and sleeping region debugging Two series unrelated to HMM or mmu_notifiers came along due to dependencies: - Allow pagemap's memremap_pages family of APIs to work without providing a struct device - Make walk_page_range() and related use a constant structure for function pointers" * tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (75 commits) libnvdimm: Enable unit test infrastructure compile checks mm, notifier: Catch sleeping/blocking for !blockable kernel.h: Add non_block_start/end() drm/radeon: guard against calling an unpaired radeon_mn_unregister() csky: add missing brackets in a macro for tlb.h pagewalk: use lockdep_assert_held for locking validation pagewalk: separate function pointers from iterator data mm: split out a new pagewalk.h header from mm.h mm/mmu_notifiers: annotate with might_sleep() mm/mmu_notifiers: prime lockdep mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end mm/mmu_notifiers: remove the __mmu_notifier_invalidate_range_start/end exports mm/hmm: hmm_range_fault() infinite loop mm/hmm: hmm_range_fault() NULL pointer bug mm/hmm: fix hmm_range_fault()'s handling of swapped out pages mm/mmu_notifiers: remove unregister_no_release RDMA/odp: remove ib_ucontext from ib_umem RDMA/odp: use mmu_notifier_get/put for 'struct ib_ucontext_per_mm' RDMA/mlx5: Use odp instead of mr->umem in pagefault_mr RDMA/mlx5: Use ib_umem_start instead of umem.address ... |
||
Qian Cai
|
42fd8baab3 |
sched/core: Convert vcpu_is_preempted() from macro to an inline function
Clang reports this warning: kernel/locking/osq_lock.c:25:19: warning: unused function 'node_cpu' [-Wunused-function] due to osq_lock() calling vcpu_is_preempted(node_cpu(node->prev))), but vcpu_is_preempted() is compiled away. Fix it by converting the dummy vcpu_is_preempted() from a macro to a proper static inline function. Signed-off-by: Qian Cai <cai@lca.pw> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bsegall@google.com Cc: dietmar.eggemann@arm.com Cc: juri.lelli@redhat.com Cc: rostedt@goodmis.org Cc: vincent.guittot@linaro.org Link: https://lkml.kernel.org/r/1568730894-10483-1-git-send-email-cai@lca.pw Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
7f2444d38f |
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core timer updates from Thomas Gleixner: "Timers and timekeeping updates: - A large overhaul of the posix CPU timer code which is a preparation for moving the CPU timer expiry out into task work so it can be properly accounted on the task/process. An update to the bogus permission checks will come later during the merge window as feedback was not complete before heading of for travel. - Switch the timerqueue code to use cached rbtrees and get rid of the homebrewn caching of the leftmost node. - Consolidate hrtimer_init() + hrtimer_init_sleeper() calls into a single function - Implement the separation of hrtimers to be forced to expire in hard interrupt context even when PREEMPT_RT is enabled and mark the affected timers accordingly. - Implement a mechanism for hrtimers and the timer wheel to protect RT against priority inversion and live lock issues when a (hr)timer which should be canceled is currently executing the callback. Instead of infinitely spinning, the task which tries to cancel the timer blocks on a per cpu base expiry lock which is held and released by the (hr)timer expiry code. - Enable the Hyper-V TSC page based sched_clock for Hyper-V guests resulting in faster access to timekeeping functions. - Updates to various clocksource/clockevent drivers and their device tree bindings. - The usual small improvements all over the place" * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits) posix-cpu-timers: Fix permission check regression posix-cpu-timers: Always clear head pointer on dequeue hrtimer: Add a missing bracket and hide `migration_base' on !SMP posix-cpu-timers: Make expiry_active check actually work correctly posix-timers: Unbreak CONFIG_POSIX_TIMERS=n build tick: Mark sched_timer to expire in hard interrupt context hrtimer: Add kernel doc annotation for HRTIMER_MODE_HARD x86/hyperv: Hide pv_ops access for CONFIG_PARAVIRT=n posix-cpu-timers: Utilize timerqueue for storage posix-cpu-timers: Move state tracking to struct posix_cputimers posix-cpu-timers: Deduplicate rlimit handling posix-cpu-timers: Remove pointless comparisons posix-cpu-timers: Get rid of 64bit divisions posix-cpu-timers: Consolidate timer expiry further posix-cpu-timers: Get rid of zero checks rlimit: Rewrite non-sensical RLIMIT_CPU comment posix-cpu-timers: Respect INFINITY for hard RTTIME limit posix-cpu-timers: Switch thread group sampling to array posix-cpu-timers: Restructure expiry array posix-cpu-timers: Remove cputime_expires ... |
||
Ingo Molnar
|
563c4f85f9 |
Merge branch 'sched/rt' into sched/core, to pick up -rt changes
Pick up the first couple of patches working towards PREEMPT_RT. Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Daniel Vetter
|
312364f353 |
kernel.h: Add non_block_start/end()
In some special cases we must not block, but there's not a spinlock, preempt-off, irqs-off or similar critical section already that arms the might_sleep() debug checks. Add a non_block_start/end() pair to annotate these. This will be used in the oom paths of mmu-notifiers, where blocking is not allowed to make sure there's forward progress. Quoting Michal: "The notifier is called from quite a restricted context - oom_reaper - which shouldn't depend on any locks or sleepable conditionals. The code should be swift as well but we mostly do care about it to make a forward progress. Checking for sleepable context is the best thing we could come up with that would describe these demands at least partially." Peter also asked whether we want to catch spinlocks on top, but Michal said those are less of a problem because spinlocks can't have an indirect dependency upon the page allocator and hence close the loop with the oom reaper. Suggested by Michal Hocko. Link: https://lore.kernel.org/r/20190826201425.17547-4-daniel.vetter@ffwll.ch Acked-by: Christian König <christian.koenig@amd.com> (v1) Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Jason Gunthorpe <jgg@mellanox.com> |
||
Thomas Gleixner
|
3a245c0f11 |
posix-cpu-timers: Move expiry cache into struct posix_cputimers
The expiry cache belongs into the posix_cputimers container where the other cpu timers information is. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lkml.kernel.org/r/20190821192921.014444012@linutronix.de |
||
Thomas Gleixner
|
9eacb5c7e6 |
sched: Move struct task_cputime to types.h
For upcoming posix-timer changes to avoid include recursion hell. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190821192920.909530418@linutronix.de |
||
Thomas Gleixner
|
2b69942f90 |
posix-cpu-timers: Create a container struct
Per task/process data of posix CPU timers is all over the place which makes the code hard to follow and requires ifdeffery. Create a container to hold all this information in one place, so data is consolidated and the ifdeffery can be confined to the posix timer header file and removed from places like fork. As a first step, move the cpu_timers list head array into the new struct and clean up the initializers and simplify fork. The remaining #ifdef in fork will be removed later. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lkml.kernel.org/r/20190821192920.819418976@linutronix.de |
||
Thomas Gleixner
|
c1a280b68d |
sched/preempt: Use CONFIG_PREEMPTION where appropriate
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same functionality which today depends on CONFIG_PREEMPT. Switch the preemption code, scheduler and init task over to use CONFIG_PREEMPTION. That's the first step towards RT in that area. The more complex changes are coming separately. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20190726212124.117528401@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Mathieu Poirier
|
f9a25f776d |
cpusets: Rebuild root domain deadline accounting information
When the topology of root domains is modified by CPUset or CPUhotplug operations information about the current deadline bandwidth held in the root domain is lost. This patch addresses the issue by recalculating the lost deadline bandwidth information by circling through the deadline tasks held in CPUsets and adding their current load to the root domain they are associated with. Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Juri Lelli <juri.lelli@redhat.com> [ Various additional modifications. ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bristot@redhat.com Cc: claudio@evidence.eu.com Cc: lizefan@huawei.com Cc: longman@redhat.com Cc: luca.abeni@santannapisa.it Cc: rostedt@goodmis.org Cc: tj@kernel.org Cc: tommaso.cucinotta@santannapisa.it Link: https://lkml.kernel.org/r/20190719140000.31694-4-juri.lelli@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Jann Horn
|
cb361d8cde |
sched/fair: Use RCU accessors consistently for ->numa_group
The old code used RCU annotations and accessors inconsistently for
->numa_group, which can lead to use-after-frees and NULL dereferences.
Let all accesses to ->numa_group use proper RCU helpers to prevent such
issues.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Fixes:
|
||
Linus Torvalds
|
c236b6dd48 |
request_key improvements
-----BEGIN PGP SIGNATURE----- iQIVAwUAXRPObfu3V2unywtrAQJLKA//WENO5pZDHe49T+4GCY0ZmnGHKBUnU7g9 DUjxSNS8a/nwCyEdApZk9uHp2xsOedP6pjQ4VRWMQfrIPx0Yh9o3J+BQxvyP7PDf jEH+5CYC8dZnJJjjteWCcPEGrUoNb1YKfDRBU745YY+rLdHWvhHc27B6SYBg5BGT OwW3qyHvp0WMp7TehMALdnkqGph5gR5QMr45tOrH6DkGAhN8mAIKD699d3MqZG73 +S5KlQOlDlEVrxbD/BgzlzEJQUBQyq8hd61taBFT7LXBNlLJJOnMhd7UJY5IJE7J Vi9NpcLj4Emwv4wvZ2xneV0rMbsCbxRMKZLDRuqQ6Tm17xjpjro4n1ujneTAqmmy d+XlrVQ2ZMciMNmGleezOoBib9QbY5NWdilc2ls5ydFGiBVL73bIOYtEQNai8lWd LBBIIrxOmLO7bnipgqVKRnqeMdMkpWaLISoRfSeJbRt4lGxmka9bDBrSgONnxzJK JG+sB8ahSVZaBbhERW8DKnBz61Yf8ka7ijVvjH3zCXu0rbLTy+LLUz5kbzbBP9Fc LiUapLV/v420gD2ZRCgPQwtQui4TpBkSGJKS1Ippyn7LGBNCZLM4Y8vOoo4nqr7z RhpEKbKeOdVjORaYjO8Zttj8gN9rT6WnPcyCTHdNEnyjotU1ykyVBkzexj+VYvjM C3eIdjG7Jk0= =c2FO -----END PGP SIGNATURE----- Merge tag 'keys-request-20190626' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull request_key improvements from David Howells: "These are all request_key()-related, including a fix and some improvements: - Fix the lack of a Link permission check on a key found by request_key(), thereby enabling request_key() to link keys that don't grant this permission to the target keyring (which must still grant Write permission). Note that the key must be in the caller's keyrings already to be found. - Invalidate used request_key authentication keys rather than revoking them, so that they get cleaned up immediately rather than hanging around till the expiry time is passed. - Move the RCU locks outwards from the keyring search functions so that a request_key_rcu() can be provided. This can be called in RCU mode, so it can't sleep and can't upcall - but it can be called from LOOKUP_RCU pathwalk mode. - Cache the latest positive result of request_key*() temporarily in task_struct so that filesystems that make a lot of request_key() calls during pathwalk can take advantage of it to avoid having to redo the searching. This requires CONFIG_KEYS_REQUEST_CACHE=y. It is assumed that the key just found is likely to be used multiple times in each step in an RCU pathwalk, and is likely to be reused for the next step too. Note that the cleanup of the cache is done on TIF_NOTIFY_RESUME, just before userspace resumes, and on exit" * tag 'keys-request-20190626' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: keys: Kill off request_key_async{,_with_auxdata} keys: Cache result of request_key*() temporarily in task_struct keys: Provide request_key_rcu() keys: Move the RCU locks outwards from the keyring search functions keys: Invalidate used request_key authentication keys keys: Fix request_key() lack of Link perm check on found key |
||
Linus Torvalds
|
dad1c12ed8 |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: - Remove the unused per rq load array and all its infrastructure, by Dietmar Eggemann. - Add utilization clamping support by Patrick Bellasi. This is a refinement of the energy aware scheduling framework with support for boosting of interactive and capping of background workloads: to make sure critical GUI threads get maximum frequency ASAP, and to make sure background processing doesn't unnecessarily move to cpufreq governor to higher frequencies and less energy efficient CPU modes. - Add the bare minimum of tracepoints required for LISA EAS regression testing, by Qais Yousef - which allows automated testing of various power management features, including energy aware scheduling. - Restructure the former tsk_nr_cpus_allowed() facility that the -rt kernel used to modify the scheduler's CPU affinity logic such as migrate_disable() - introduce the task->cpus_ptr value instead of taking the address of &task->cpus_allowed directly - by Sebastian Andrzej Siewior. - Misc optimizations, fixes, cleanups and small enhancements - see the Git log for details. * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) sched/uclamp: Add uclamp support to energy_compute() sched/uclamp: Add uclamp_util_with() sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks sched/uclamp: Set default clamps for RT tasks sched/uclamp: Reset uclamp values on RESET_ON_FORK sched/uclamp: Extend sched_setattr() to support utilization clamping sched/core: Allow sched_setattr() to use the current policy sched/uclamp: Add system default clamps sched/uclamp: Enforce last task's UCLAMP_MAX sched/uclamp: Add bucket local max tracking sched/uclamp: Add CPU's clamp buckets refcounting sched/fair: Rename weighted_cpuload() to cpu_runnable_load() sched/debug: Export the newly added tracepoints sched/debug: Add sched_overutilized tracepoint sched/debug: Add new tracepoint to track PELT at se level sched/debug: Add new tracepoints to track PELT at rq level sched/debug: Add a new sched_trace_*() helper functions sched/autogroup: Make autogroup_path() always available sched/wait: Deduplicate code with do-while sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity() ... |
||
Linus Torvalds
|
46f1ec23a4 |
Merge branch 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar: "The changes in this cycle are: - RCU flavor consolidation cleanups and optmizations - Documentation updates - Miscellaneous fixes - SRCU updates - RCU-sync flavor consolidation - Torture-test updates - Linux-kernel memory-consistency-model updates, most notably the addition of plain C-language accesses" * 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits) tools/memory-model: Improve data-race detection tools/memory-model: Change definition of rcu-fence tools/memory-model: Expand definition of barrier tools/memory-model: Do not use "herd" to refer to "herd7" tools/memory-model: Fix comment in MP+poonceonces.litmus Documentation: atomic_t.txt: Explain ordering provided by smp_mb__{before,after}_atomic() rcu: Don't return a value from rcu_assign_pointer() rcu: Force inlining of rcu_read_lock() rcu: Fix irritating whitespace error in rcu_assign_pointer() rcu: Upgrade sync_exp_work_done() to smp_mb() rcutorture: Upper case solves the case of the vanishing NULL pointer torture: Suppress propagating trace_printk() warning rcutorture: Dump trace buffer for callback pipe drain failures torture: Add --trust-make to suppress "make clean" torture: Make --cpus override idleness calculations torture: Run kernel build in source directory torture: Add function graph-tracing cheat sheet torture: Capture qemu output rcutorture: Tweak kvm options rcutorture: Add trivial RCU implementation ... |
||
Patrick Bellasi
|
a509a7cd79 |
sched/uclamp: Extend sched_setattr() to support utilization clamping
The SCHED_DEADLINE scheduling class provides an advanced and formal model to define tasks requirements that can translate into proper decisions for both task placements and frequencies selections. Other classes have a more simplified model based on the POSIX concept of priorities. Such a simple priority based model however does not allow to exploit most advanced features of the Linux scheduler like, for example, driving frequencies selection via the schedutil cpufreq governor. However, also for non SCHED_DEADLINE tasks, it's still interesting to define tasks properties to support scheduler decisions. Utilization clamping exposes to user-space a new set of per-task attributes the scheduler can use as hints about the expected/required utilization for a task. This allows to implement a "proactive" per-task frequency control policy, a more advanced policy than the current one based just on "passive" measured task utilization. For example, it's possible to boost interactive tasks (e.g. to get better performance) or cap background tasks (e.g. to be more energy/thermal efficient). Introduce a new API to set utilization clamping values for a specified task by extending sched_setattr(), a syscall which already allows to define task specific properties for different scheduling classes. A new pair of attributes allows to specify a minimum and maximum utilization the scheduler can consider for a task. Do that by validating the required clamp values before and then applying the required changes using _the_ same pattern already in use for __setscheduler(). This ensures that the task is re-enqueued with the new clamp values. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-7-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Patrick Bellasi
|
e8f14172c6 |
sched/uclamp: Add system default clamps
Tasks without a user-defined clamp value are considered not clamped and by default their utilization can have any value in the [0..SCHED_CAPACITY_SCALE] range. Tasks with a user-defined clamp value are allowed to request any value in that range, and the required clamp is unconditionally enforced. However, a "System Management Software" could be interested in limiting the range of clamp values allowed for all tasks. Add a privileged interface to define a system default configuration via: /proc/sys/kernel/sched_uclamp_util_{min,max} which works as an unconditional clamp range restriction for all tasks. With the default configuration, the full SCHED_CAPACITY_SCALE range of values is allowed for each clamp index. Otherwise, the task-specific clamp is capped by the corresponding system default value. Do that by tracking, for each task, the "effective" clamp value and bucket the task has been refcounted in at enqueue time. This allows to lazy aggregate "requested" and "system default" values at enqueue time and simplifies refcounting updates at dequeue time. The cached bucket ids are used to avoid (relatively) more expensive integer divisions every time a task is enqueued. An active flag is used to report when the "effective" value is valid and thus the task is actually refcounted in the corresponding rq's bucket. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-5-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Patrick Bellasi
|
69842cba9a |
sched/uclamp: Add CPU's clamp buckets refcounting
Utilization clamping allows to clamp the CPU's utilization within a [util_min, util_max] range, depending on the set of RUNNABLE tasks on that CPU. Each task references two "clamp buckets" defining its minimum and maximum (util_{min,max}) utilization "clamp values". A CPU's clamp bucket is active if there is at least one RUNNABLE tasks enqueued on that CPU and refcounting that bucket. When a task is {en,de}queued {on,from} a rq, the set of active clamp buckets on that CPU can change. If the set of active clamp buckets changes for a CPU a new "aggregated" clamp value is computed for that CPU. This is because each clamp bucket enforces a different utilization clamp value. Clamp values are always MAX aggregated for both util_min and util_max. This ensures that no task can affect the performance of other co-scheduled tasks which are more boosted (i.e. with higher util_min clamp) or less capped (i.e. with higher util_max clamp). A task has: task_struct::uclamp[clamp_id]::bucket_id to track the "bucket index" of the CPU's clamp bucket it refcounts while enqueued, for each clamp index (clamp_id). A runqueue has: rq::uclamp[clamp_id]::bucket[bucket_id].tasks to track how many RUNNABLE tasks on that CPU refcount each clamp bucket (bucket_id) of a clamp index (clamp_id). It also has a: rq::uclamp[clamp_id]::bucket[bucket_id].value to track the clamp value of each clamp bucket (bucket_id) of a clamp index (clamp_id). The rq::uclamp::bucket[clamp_id][] array is scanned every time it's needed to find a new MAX aggregated clamp value for a clamp_id. This operation is required only when it's dequeued the last task of a clamp bucket tracking the current MAX aggregated clamp value. In this case, the CPU is either entering IDLE or going to schedule a less boosted or more clamped task. The expected number of different clamp values configured at build time is small enough to fit the full unordered array into a single cache line, for configurations of up to 7 buckets. Add to struct rq the basic data structures required to refcount the number of RUNNABLE tasks for each clamp bucket. Add also the max aggregation required to update the rq's clamp value at each enqueue/dequeue event. Use a simple linear mapping of clamp values into clamp buckets. Pre-compute and cache bucket_id to avoid integer divisions at enqueue/dequeue time. Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alessio Balsini <balsini@android.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: https://lkml.kernel.org/r/20190621084217.8167-2-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Qais Yousef
|
3c93a0c04d |
sched/debug: Add a new sched_trace_*() helper functions
The new functions allow modules to access internal data structures of unexported struct cfs_rq and struct rq to extract important information from the tracepoints to be introduced in later patches. While at it fix alphabetical order of struct declarations in sched.h Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Pavankumar Kondeti <pkondeti@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Uwe Kleine-Konig <u.kleine-koenig@pengutronix.de> Link: https://lkml.kernel.org/r/20190604111459.2862-3-qais.yousef@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
David Howells
|
7743c48e54 |
keys: Cache result of request_key*() temporarily in task_struct
If a filesystem uses keys to hold authentication tokens, then it needs a token for each VFS operation that might perform an authentication check - either by passing it to the server, or using to perform a check based on authentication data cached locally. For open files this isn't a problem, since the key should be cached in the file struct since it represents the subject performing operations on that file descriptor. During pathwalk, however, there isn't anywhere to cache the key, except perhaps in the nameidata struct - but that isn't exposed to the filesystems. Further, a pathwalk can incur a lot of operations, calling one or more of the following, for instance: ->lookup() ->permission() ->d_revalidate() ->d_automount() ->get_acl() ->getxattr() on each dentry/inode it encounters - and each one may need to call request_key(). And then, at the end of pathwalk, it will call the actual operation: ->mkdir() ->mknod() ->getattr() ->open() ... which may need to go and get the token again. However, it is very likely that all of the operations on a single dentry/inode - and quite possibly a sequence of them - will all want to use the same authentication token, which suggests that caching it would be a good idea. To this end: (1) Make it so that a positive result of request_key() and co. that didn't require upcalling to userspace is cached temporarily in task_struct. (2) The cache is 1 deep, so a new result displaces the old one. (3) The key is released by exit and by notify-resume. (4) The cache is cleared in a newly forked process. Signed-off-by: David Howells <dhowells@redhat.com> |
||
Heiko Carstens
|
4ecf0a43e7 |
processor: get rid of cpu_relax_yield
stop_machine is the only user left of cpu_relax_yield. Given that it now has special semantics which are tied to stop_machine introduce a weak stop_machine_yield function which architectures can override, and get rid of the generic cpu_relax_yield implementation. Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> |
||
Martin Schwidefsky
|
38f2c691a4 |
s390: improve wait logic of stop_machine
The stop_machine loop to advance the state machine and to wait for all affected CPUs to check-in calls cpu_relax_yield in a tight loop until the last missing CPUs acknowledged the state transition. On a virtual system where not all logical CPUs are backed by real CPUs all the time it can take a while for all CPUs to check-in. With the current definition of cpu_relax_yield a diagnose 0x44 is done which tells the hypervisor to schedule *some* other CPU. That can be any CPU and not necessarily one of the CPUs that need to run in order to advance the state machine. This can lead to a pretty bad diagnose 0x44 storm until the last missing CPU finally checked-in. Replace the undirected cpu_relax_yield based on diagnose 0x44 with a directed yield. Each CPU in the wait loop will pick up the next CPU in the cpumask of stop_machine. The diagnose 0x9c is used to tell the hypervisor to run this next CPU instead of the current one. If there is only a limited number of real CPUs backing the virtual CPUs we end up with the real CPUs passed around in a round-robin fashion. [heiko.carstens@de.ibm.com]: Use cpumask_next_wrap as suggested by Peter Zijlstra. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> |
||
Sebastian Andrzej Siewior
|
3bd3706251 |
sched/core: Provide a pointer to the valid CPU mask
In commit:
|
||
Paul E. McKenney
|
23634ebc1d |
rcu: Check for wakeup-safe conditions in rcu_read_unlock_special()
When RCU core processing is offloaded from RCU_SOFTIRQ to the rcuc kthreads, a full and unconditional wakeup is required to initiate RCU core processing. In contrast, when RCU core processing is carried out by RCU_SOFTIRQ, a raise_softirq() suffices. Of course, there are situations where raise_softirq() does a full wakeup, but these do not occur with normal usage of rcu_read_unlock(). The reason that full wakeups can be problematic is that the scheduler sometimes invokes rcu_read_unlock() with its pi or rq locks held, which can of course result in deadlock in CONFIG_PREEMPT=y kernels when rcu_read_unlock() invokes the scheduler. Scheduler invocations can happen in the following situations: (1) The just-ended reader has been subjected to RCU priority boosting, in which case rcu_read_unlock() must deboost, (2) Interrupts were disabled across the call to rcu_read_unlock(), so the quiescent state must be deferred, requiring a wakeup of the rcuc kthread corresponding to the current CPU. Now, the scheduler may hold one of its locks across rcu_read_unlock() only if preemption has been disabled across the entire RCU read-side critical section, which in the days prior to RCU flavor consolidation meant that rcu_read_unlock() never needed to do wakeups. However, this is no longer the case for any but the first rcu_read_unlock() following a condition (e.g., preempted RCU reader) requiring special rcu_read_unlock() attention. For example, an RCU read-side critical section might be preempted, but preemption might be disabled across the rcu_read_unlock(). The rcu_read_unlock() must defer the quiescent state, and therefore leaves the task queued on its leaf rcu_node structure. If a scheduler interrupt occurs, the scheduler might well invoke rcu_read_unlock() with one of its locks held. However, the preempted task is still queued, so rcu_read_unlock() will attempt to defer the quiescent state once more. When RCU core processing is carried out by RCU_SOFTIRQ, this works just fine: The raise_softirq() function simply sets a bit in a per-CPU mask and the RCU core processing will be undertaken upon return from interrupt. Not so when RCU core processing is carried out by the rcuc kthread: In this case, the required wakeup can result in deadlock. The initial solution to this problem was to use set_tsk_need_resched() and set_preempt_need_resched() to force a future context switch, which allows rcu_preempt_note_context_switch() to report the deferred quiescent state to RCU's core processing. Unfortunately for expedited grace periods, there can be a significant delay between the call for a context switch and the actual context switch. This commit therefore introduces a ->deferred_qs flag to the task_struct structure's rcu_special structure. This flag is initially false, and is set to true by the first call to rcu_read_unlock() requiring special attention, then finally reset back to false when the quiescent state is finally reported. Then rcu_read_unlock() attempts full wakeups only when ->deferred_qs is false, that is, on the first rcu_read_unlock() requiring special attention. Note that a chain of RCU readers linked by some other sort of reader may find that a later rcu_read_unlock() is once again able to do a full wakeup, courtesy of an intervening preemption: rcu_read_lock(); /* preempted */ local_irq_disable(); rcu_read_unlock(); /* Can do full wakeup, sets ->deferred_qs. */ rcu_read_lock(); local_irq_enable(); preempt_disable() rcu_read_unlock(); /* Cannot do full wakeup, ->deferred_qs set. */ rcu_read_lock(); preempt_enable(); /* preempted, >deferred_qs reset. */ local_irq_disable(); rcu_read_unlock(); /* Can again do full wakeup, sets ->deferred_qs. */ Such linked RCU readers do not yet seem to appear in the Linux kernel, and it is probably best if they don't. However, RCU needs to handle them, and some variations on this theme could make even raise_softirq() unsafe due to the possibility of its doing a full wakeup. This commit therefore also avoids invoking raise_softirq() when the ->deferred_qs set flag is set. Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> |
||
Suren Baghdasaryan
|
8af0c18af1 |
include/: refactor headers to allow kthread.h inclusion in psi_types.h
kthread.h can't be included in psi_types.h because it creates a circular inclusion with kthread.h eventually including psi_types.h and complaining on kthread structures not being defined because they are defined further in the kthread.h. Resolve this by removing psi_types.h inclusion from the headers included from kthread.h. Link: http://lkml.kernel.org/r/20190319235619.260832-7-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Dennis Zhou <dennis@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
abde77eb5c |
Merge branch 'for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo: "This includes Roman's cgroup2 freezer implementation. It's a separate machanism from cgroup1 freezer. Instead of blocking user tasks in arbitrary uninterruptible sleeps, the new implementation extends jobctl stop - frozen tasks are trapped in jobctl stop until thawed and can be killed and ptraced. Lots of thanks to Oleg for sheperding the effort. Other than that, there are a few trivial changes" * 'for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: never call do_group_exit() with task->frozen bit set kernel: cgroup: fix misuse of %x cgroup: get rid of cgroup_freezer_frozen_exit() cgroup: prevent spurious transition into non-frozen state cgroup: Remove unused cgrp variable cgroup: document cgroup v2 freezer interface cgroup: add tracing points for cgroup v2 freezer cgroup: make TRACE_CGROUP_PATH irq-safe kselftests: cgroup: add freezer controller self-tests kselftests: cgroup: don't fail on cg_kill_all() error in cg_destroy() cgroup: cgroup v2 freezer cgroup: protect cgroup->nr_(dying_)descendants by css_set_lock cgroup: implement __cgroup_task_count() helper cgroup: rename freezer.c into legacy_freezer.c cgroup: remove extra cgroup_migrate_finish() call |
||
Roman Gushchin
|
76f969e894 |
cgroup: cgroup v2 freezer
Cgroup v1 implements the freezer controller, which provides an ability to stop the workload in a cgroup and temporarily free up some resources (cpu, io, network bandwidth and, potentially, memory) for some other tasks. Cgroup v2 lacks this functionality. This patch implements freezer for cgroup v2. Cgroup v2 freezer tries to put tasks into a state similar to jobctl stop. This means that tasks can be killed, ptraced (using PTRACE_SEIZE*), and interrupted. It is possible to attach to a frozen task, get some information (e.g. read registers) and detach. It's also possible to migrate a frozen tasks to another cgroup. This differs cgroup v2 freezer from cgroup v1 freezer, which mostly tried to imitate the system-wide freezer. However uninterruptible sleep is fine when all tasks are going to be frozen (hibernation case), it's not the acceptable state for some subset of the system. Cgroup v2 freezer is not supporting freezing kthreads. If a non-root cgroup contains kthread, the cgroup still can be frozen, but the kthread will remain running, the cgroup will be shown as non-frozen, and the notification will not be delivered. * PTRACE_ATTACH is not working because non-fatal signal delivery is blocked in frozen state. There are some interface differences between cgroup v1 and cgroup v2 freezer too, which are required to conform the cgroup v2 interface design principles: 1) There is no separate controller, which has to be turned on: the functionality is always available and is represented by cgroup.freeze and cgroup.events cgroup control files. 2) The desired state is defined by the cgroup.freeze control file. Any hierarchical configuration is allowed. 3) The interface is asynchronous. The actual state is available using cgroup.events control file ("frozen" field). There are no dedicated transitional states. 4) It's allowed to make any changes with the cgroup hierarchy (create new cgroups, remove old cgroups, move tasks between cgroups) no matter if some cgroups are frozen. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Tejun Heo <tj@kernel.org> No-objection-from-me-by: Oleg Nesterov <oleg@redhat.com> Cc: kernel-team@fb.com |
||
Mathieu Desnoyers
|
83b0b15bcb |
rseq: Remove superfluous rseq_len from task_struct
The rseq system call, when invoked with flags of "0" or "RSEQ_FLAG_UNREGISTER" values, expects the rseq_len parameter to be equal to sizeof(struct rseq), which is fixed-size and fixed-layout, specified in uapi linux/rseq.h. Expecting a fixed size for rseq_len is a design choice that ensures multiple libraries and application defining __rseq_abi in the same process agree on its exact size. Considering that this size is and will always be the same value, there is no point in saving this value within task_struct rseq_len. Remove this field from task_struct. No change in functionality intended. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ben Maurer <bmaurer@fb.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Lameter <cl@linux.com> Cc: Dave Watson <davejwatson@fb.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Turner <pjt@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20190305194755.2602-3-mathieu.desnoyers@efficios.com Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Linus Torvalds
|
be37f21a08 |
audit/stable-5.1 PR 20190305
-----BEGIN PGP SIGNATURE----- iQJIBAABCAAyFiEES0KozwfymdVUl37v6iDy2pc3iXMFAlx+8ZgUHHBhdWxAcGF1 bC1tb29yZS5jb20ACgkQ6iDy2pc3iXOlDhAAiGlirQ9syyG2fYzaARZZ2QoU/GGD PSAeiNmP3jvJzXArCvugRCw+YSNDdQOBM3SrLQC+cM0MAIDRYXN0NdcrsbTchlMA 51Fx1egZ9Fyj+Ehgida3muh2lRUy7DQwMCL6tAVqwz7vYkSTGDUf+MlYqOqXDka5 74pEExOS3Jdi7560BsE8b6QoW9JIJqEJnirXGkG9o2qC0oFHCR6PKxIyQ7TJrLR1 F23aFTqLTH1nbPUQjnox2PTf13iQVh4j2gwzd+9c9KBfxoGSge3dmxId7BJHy2aG M27fPdCYTNZAGWpPVujsCPAh1WPQ9NQqg3mA9+g14PEbiLqPcqU+kWmnDU7T7bEw Qx0kt6Y8GiknwCqq8pDbKYclgRmOjSGdfutzd0z8uDpbaeunS4/NqnDb/FUaDVcr jA4d6ep7qEgHpYbL8KgOeZCexfaTfz6mcwRWNq3Uu9cLZbZqSSQ7PXolMADHvoRs LS7VH2jcP7q4p4GWmdfjv67xyUUo9HG5HHX74h5pLfQSYXiBWo4ht0UOAzX/6EcE CJNHAFHv+OanI5Rg/6JQ8b3/bJYxzAJVyLZpCuMtlKk6lYBGNeADk9BezEDIYsm8 tSe4/GqqyR9+Qz8rSdpAZ0KKkfqS535IcHUPUJau7Bzg1xqSEP5gzZN6QsjdXg0+ 5wFFfdFICTfJFXo= =57/1 -----END PGP SIGNATURE----- Merge tag 'audit-pr-20190305' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit Pull audit updates from Paul Moore: "A lucky 13 audit patches for v5.1. Despite the rather large diffstat, most of the changes are from two bug fix patches that move code from one Kconfig option to another. Beyond that bit of churn, the remaining changes are largely cleanups and bug-fixes as we slowly march towards container auditing. It isn't all boring though, we do have a couple of new things: file capabilities v3 support, and expanded support for filtering on filesystems to solve problems with remote filesystems. All changes pass the audit-testsuite. Please merge for v5.1" * tag 'audit-pr-20190305' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit: audit: mark expected switch fall-through audit: hide auditsc_get_stamp and audit_serial prototypes audit: join tty records to their syscall audit: remove audit_context when CONFIG_ AUDIT and not AUDITSYSCALL audit: remove unused actx param from audit_rule_match audit: ignore fcaps on umount audit: clean up AUDITSYSCALL prototypes and stubs audit: more filter PATH records keyed on filesystem magic audit: add support for fcaps v3 audit: move loginuid and sessionid from CONFIG_AUDITSYSCALL to CONFIG_AUDIT audit: add syscall information to CONFIG_CHANGE records audit: hand taken context to audit_kill_trees for syscall logging audit: give a clue what CONFIG_CHANGE op was involved |
||
Linus Torvalds
|
8dcd175bc3 |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: - a few misc things - ocfs2 updates - most of MM * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (159 commits) tools/testing/selftests/proc/proc-self-syscall.c: remove duplicate include proc: more robust bulk read test proc: test /proc/*/maps, smaps, smaps_rollup, statm proc: use seq_puts() everywhere proc: read kernel cpu stat pointer once proc: remove unused argument in proc_pid_lookup() fs/proc/thread_self.c: code cleanup for proc_setup_thread_self() fs/proc/self.c: code cleanup for proc_setup_self() proc: return exit code 4 for skipped tests mm,mremap: bail out earlier in mremap_to under map pressure mm/sparse: fix a bad comparison mm/memory.c: do_fault: avoid usage of stale vm_area_struct writeback: fix inode cgroup switching comment mm/huge_memory.c: fix "orig_pud" set but not used mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC mm/memcontrol.c: fix bad line in comment mm/cma.c: cma_declare_contiguous: correct err handling mm/page_ext.c: fix an imbalance with kmemleak mm/compaction: pass pgdat to too_many_isolated() instead of zone mm: remove zone_lru_lock() function, access ->lru_lock directly ... |
||
Linus Torvalds
|
45802da05e |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: "The main changes in this cycle were: - refcount conversions - Solve the rq->leaf_cfs_rq_list can of worms for real. - improve power-aware scheduling - add sysctl knob for Energy Aware Scheduling - documentation updates - misc other changes" * 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits) kthread: Do not use TIMER_IRQSAFE kthread: Convert worker lock to raw spinlock sched/fair: Use non-atomic cpumask_{set,clear}_cpu() sched/fair: Remove unused 'sd' parameter from select_idle_smt() sched/wait: Use freezable_schedule() when possible sched/fair: Prune, fix and simplify the nohz_balancer_kick() comment block sched/fair: Explain LLC nohz kick condition sched/fair: Simplify nohz_balancer_kick() sched/topology: Fix percpu data types in struct sd_data & struct s_data sched/fair: Simplify post_init_entity_util_avg() by calling it with a task_struct pointer argument sched/fair: Fix O(nr_cgroups) in the load balancing path sched/fair: Optimize update_blocked_averages() sched/fair: Fix insertion in rq->leaf_cfs_rq_list sched/fair: Add tmp_alone_branch assertion sched/core: Use READ_ONCE()/WRITE_ONCE() in move_queued_task()/task_rq_lock() sched/debug: Initialize sd_sysctl_cpus if !CONFIG_CPUMASK_OFFSTACK sched/pelt: Skip updating util_est when utilization is higher than CPU's capacity sched/fair: Update scale invariance of PELT sched/fair: Move the rq_of() helper function sched/core: Convert task_struct.stack_refcount to refcount_t ... |
||
Aneesh Kumar K.V
|
d7fefcc8de |
mm/cma: add PF flag to force non cma alloc
Patch series "mm/kvm/vfio/ppc64: Migrate compound pages out of CMA region", v8. ppc64 uses the CMA area for the allocation of guest page table (hash page table). We won't be able to start guest if we fail to allocate hash page table. We have observed hash table allocation failure because we failed to migrate pages out of CMA region because they were pinned. This happen when we are using VFIO. VFIO on ppc64 pins the entire guest RAM. If the guest RAM pages get allocated out of CMA region, we won't be able to migrate those pages. The pages are also pinned for the lifetime of the guest. Currently we support migration of non-compound pages. With THP and with the addition of hugetlb migration we can end up allocating compound pages from CMA region. This patch series add support for migrating compound pages. This patch (of 4): Add PF_MEMALLOC_NOCMA which make sure any allocation in that context is marked non-movable and hence cannot be satisfied by CMA region. This is useful with get_user_pages_longterm where we want to take a page pin by migrating pages from CMA region. Marking the section PF_MEMALLOC_NOCMA ensures that we avoid unnecessary page migration later. Link: http://lkml.kernel.org/r/20190114095438.32470-2-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Alexey Kardashevskiy <aik@ozlabs.ru> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Mel Gorman
|
5e1f0f098b |
mm, compaction: capture a page under direct compaction
Compaction is inherently race-prone as a suitable page freed during compaction can be allocated by any parallel task. This patch uses a capture_control structure to isolate a page immediately when it is freed by a direct compactor in the slow path of the page allocator. The intent is to avoid redundant scanning. 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 2582.11 ( 0.00%) 2563.68 ( 0.71%) Amean fault-both-5 4500.26 ( 0.00%) 4233.52 ( 5.93%) Amean fault-both-7 5819.53 ( 0.00%) 6333.65 ( -8.83%) Amean fault-both-12 9321.18 ( 0.00%) 9759.38 ( -4.70%) Amean fault-both-18 9782.76 ( 0.00%) 10338.76 ( -5.68%) Amean fault-both-24 15272.81 ( 0.00%) 13379.55 * 12.40%* Amean fault-both-30 15121.34 ( 0.00%) 16158.25 ( -6.86%) Amean fault-both-32 18466.67 ( 0.00%) 18971.21 ( -2.73%) Latency is only moderately affected but the devil is in the details. A closer examination indicates that base page fault latency is reduced but latency of huge pages is increased as it takes creater care to succeed. Part of the "problem" is that allocation success rates are close to 100% even when under pressure and compaction gets harder 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Percentage huge-3 96.70 ( 0.00%) 98.23 ( 1.58%) Percentage huge-5 96.99 ( 0.00%) 95.30 ( -1.75%) Percentage huge-7 94.19 ( 0.00%) 97.24 ( 3.24%) Percentage huge-12 94.95 ( 0.00%) 97.35 ( 2.53%) Percentage huge-18 96.74 ( 0.00%) 97.30 ( 0.58%) Percentage huge-24 97.07 ( 0.00%) 97.55 ( 0.50%) Percentage huge-30 95.69 ( 0.00%) 98.50 ( 2.95%) Percentage huge-32 96.70 ( 0.00%) 99.27 ( 2.65%) And scan rates are reduced as expected by 6% for the migration scanner and 29% for the free scanner indicating that there is less redundant work. Compaction migrate scanned 20815362 19573286 Compaction free scanned 16352612 11510663 [mgorman@techsingularity.net: remove redundant check] Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |