Pull Devicetree updates from Rob Herring:
"The biggest highlight here is the start of using json-schema for DT
bindings. Being able to validate bindings has been discussed for years
with little progress.
- Initial support for DT bindings using json-schema language. This is
the start of converting DT bindings from free-form text to a
structured format.
- Reworking of initrd address initialization. This moves to using the
phys address instead of virt addr in the DT parsing code. This
rework was motivated by CONFIG_DEV_BLK_INITRD causing unnecessary
rebuilding of lots of files.
- Fix stale phandle entries in phandle cache
- DT overlay validation improvements. This exposed several memory
leak bugs which have been fixed.
- Use node name and device_type helper functions in DT code
- Last remaining conversions to using %pOFn printk specifier instead
of device_node.name directly
- Create new common RTC binding doc and move all trivial RTC devices
out of trivial-devices.txt.
- New bindings for Freescale MAG3110 magnetometer, Cadence Sierra
PHY, and Xen shared memory
- Update dtc to upstream version v1.4.7-57-gf267e674d145"
* tag 'devicetree-for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux: (68 commits)
of: __of_detach_node() - remove node from phandle cache
of: of_node_get()/of_node_put() nodes held in phandle cache
gpio-omap.txt: add reg and interrupts properties
dt-bindings: mrvl,intc: fix a trivial typo
dt-bindings: iio: magnetometer: add dt-bindings for freescale mag3110
dt-bindings: Convert trivial-devices.txt to json-schema
dt-bindings: arm: mrvl: amend Browstone compatible string
dt-bindings: arm: Convert Tegra board/soc bindings to json-schema
dt-bindings: arm: Convert ZTE board/soc bindings to json-schema
dt-bindings: arm: Add missing Xilinx boards
dt-bindings: arm: Convert Xilinx board/soc bindings to json-schema
dt-bindings: arm: Convert VIA board/soc bindings to json-schema
dt-bindings: arm: Convert ST STi board/soc bindings to json-schema
dt-bindings: arm: Convert SPEAr board/soc bindings to json-schema
dt-bindings: arm: Convert CSR SiRF board/soc bindings to json-schema
dt-bindings: arm: Convert QCom board/soc bindings to json-schema
dt-bindings: arm: Convert TI nspire board/soc bindings to json-schema
dt-bindings: arm: Convert TI davinci board/soc bindings to json-schema
dt-bindings: arm: Convert Calxeda board/soc bindings to json-schema
dt-bindings: arm: Convert Altera board/soc bindings to json-schema
...
Tag-based KASAN doesn't check memory accesses through pointers tagged with
0xff. When page_address is used to get pointer to memory that corresponds
to some page, the tag of the resulting pointer gets set to 0xff, even
though the allocated memory might have been tagged differently.
For slab pages it's impossible to recover the correct tag to return from
page_address, since the page might contain multiple slab objects tagged
with different values, and we can't know in advance which one of them is
going to get accessed. For non slab pages however, we can recover the tag
in page_address, since the whole page was marked with the same tag.
This patch adds tagging to non slab memory allocated with pagealloc. To
set the tag of the pointer returned from page_address, the tag gets stored
to page->flags when the memory gets allocated.
Link: http://lkml.kernel.org/r/d758ddcef46a5abc9970182b9137e2fbee202a2c.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
virt_addr_is_linear (which is used by virt_addr_valid) assumes that the
top byte of the address is 0xff, which isn't always the case with
tag-based KASAN.
This patch resets the tag in this macro.
Link: http://lkml.kernel.org/r/df73a37dd5ed37f4deaf77bc718e9f2e590e69b1.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit adds a few helper functions, that are meant to be used to work
with tags embedded in the top byte of kernel pointers: to set, to get or
to reset the top byte.
Link: http://lkml.kernel.org/r/f6c6437bb8e143bc44f42c3c259c62e734be7935.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the untagged_addr() macro from arch/arm64/include/asm/uaccess.h
to arch/arm64/include/asm/memory.h to be later reused by KASAN.
Also make the untagged_addr() macro accept all kinds of address types
(void *, unsigned long, etc.). This allows not to specify type casts in
each place where the macro is used. This is done by using __typeof__.
Link: http://lkml.kernel.org/r/2e9ef8d2ed594106eca514b268365b5419113f6a.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tag-based KASAN uses 1 shadow byte for 16 bytes of kernel memory, so it
requires 1/16th of the kernel virtual address space for the shadow memory.
This commit sets KASAN_SHADOW_SCALE_SHIFT to 4 when the tag-based KASAN
mode is enabled.
Link: http://lkml.kernel.org/r/308b6bd49f756bb5e533be93c6f085ba99b30339.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull networking updates from David Miller:
1) New ipset extensions for matching on destination MAC addresses, from
Stefano Brivio.
2) Add ipv4 ttl and tos, plus ipv6 flow label and hop limit offloads to
nfp driver. From Stefano Brivio.
3) Implement GRO for plain UDP sockets, from Paolo Abeni.
4) Lots of work from Michał Mirosław to eliminate the VLAN_TAG_PRESENT
bit so that we could support the entire vlan_tci value.
5) Rework the IPSEC policy lookups to better optimize more usecases,
from Florian Westphal.
6) Infrastructure changes eliminating direct manipulation of SKB lists
wherever possible, and to always use the appropriate SKB list
helpers. This work is still ongoing...
7) Lots of PHY driver and state machine improvements and
simplifications, from Heiner Kallweit.
8) Various TSO deferral refinements, from Eric Dumazet.
9) Add ntuple filter support to aquantia driver, from Dmitry Bogdanov.
10) Batch dropping of XDP packets in tuntap, from Jason Wang.
11) Lots of cleanups and improvements to the r8169 driver from Heiner
Kallweit, including support for ->xmit_more. This driver has been
getting some much needed love since he started working on it.
12) Lots of new forwarding selftests from Petr Machata.
13) Enable VXLAN learning in mlxsw driver, from Ido Schimmel.
14) Packed ring support for virtio, from Tiwei Bie.
15) Add new Aquantia AQtion USB driver, from Dmitry Bezrukov.
16) Add XDP support to dpaa2-eth driver, from Ioana Ciocoi Radulescu.
17) Implement coalescing on TCP backlog queue, from Eric Dumazet.
18) Implement carrier change in tun driver, from Nicolas Dichtel.
19) Support msg_zerocopy in UDP, from Willem de Bruijn.
20) Significantly improve garbage collection of neighbor objects when
the table has many PERMANENT entries, from David Ahern.
21) Remove egdev usage from nfp and mlx5, and remove the facility
completely from the tree as it no longer has any users. From Oz
Shlomo and others.
22) Add a NETDEV_PRE_CHANGEADDR so that drivers can veto the change and
therefore abort the operation before the commit phase (which is the
NETDEV_CHANGEADDR event). From Petr Machata.
23) Add indirect call wrappers to avoid retpoline overhead, and use them
in the GRO code paths. From Paolo Abeni.
24) Add support for netlink FDB get operations, from Roopa Prabhu.
25) Support bloom filter in mlxsw driver, from Nir Dotan.
26) Add SKB extension infrastructure. This consolidates the handling of
the auxiliary SKB data used by IPSEC and bridge netfilter, and is
designed to support the needs to MPTCP which could be integrated in
the future.
27) Lots of XDP TX optimizations in mlx5 from Tariq Toukan.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1845 commits)
net: dccp: fix kernel crash on module load
drivers/net: appletalk/cops: remove redundant if statement and mask
bnx2x: Fix NULL pointer dereference in bnx2x_del_all_vlans() on some hw
net/net_namespace: Check the return value of register_pernet_subsys()
net/netlink_compat: Fix a missing check of nla_parse_nested
ieee802154: lowpan_header_create check must check daddr
net/mlx4_core: drop useless LIST_HEAD
mlxsw: spectrum: drop useless LIST_HEAD
net/mlx5e: drop useless LIST_HEAD
iptunnel: Set tun_flags in the iptunnel_metadata_reply from src
net/mlx5e: fix semicolon.cocci warnings
staging: octeon: fix build failure with XFRM enabled
net: Revert recent Spectre-v1 patches.
can: af_can: Fix Spectre v1 vulnerability
packet: validate address length if non-zero
nfc: af_nfc: Fix Spectre v1 vulnerability
phonet: af_phonet: Fix Spectre v1 vulnerability
net: core: Fix Spectre v1 vulnerability
net: minor cleanup in skb_ext_add()
net: drop the unused helper skb_ext_get()
...
In the end, we ended up with quite a lot more than I expected:
- Support for ARMv8.3 Pointer Authentication in userspace (CRIU and
kernel-side support to come later)
- Support for per-thread stack canaries, pending an update to GCC that
is currently undergoing review
- Support for kexec_file_load(), which permits secure boot of a kexec
payload but also happens to improve the performance of kexec
dramatically because we can avoid the sucky purgatory code from
userspace. Kdump will come later (requires updates to libfdt).
- Optimisation of our dynamic CPU feature framework, so that all
detected features are enabled via a single stop_machine() invocation
- KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that
they can benefit from global TLB entries when KASLR is not in use
- 52-bit virtual addressing for userspace (kernel remains 48-bit)
- Patch in LSE atomics for per-cpu atomic operations
- Custom preempt.h implementation to avoid unconditional calls to
preempt_schedule() from preempt_enable()
- Support for the new 'SB' Speculation Barrier instruction
- Vectorised implementation of XOR checksumming and CRC32 optimisations
- Workaround for Cortex-A76 erratum #1165522
- Improved compatibility with Clang/LLD
- Support for TX2 system PMUS for profiling the L3 cache and DMC
- Reflect read-only permissions in the linear map by default
- Ensure MMIO reads are ordered with subsequent calls to Xdelay()
- Initial support for memory hotplug
- Tweak the threshold when we invalidate the TLB by-ASID, so that
mremap() performance is improved for ranges spanning multiple PMDs.
- Minor refactoring and cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJcE4TmAAoJELescNyEwWM0Nr0H/iaU7/wQSzHyNXtZoImyKTul
Blu2ga4/EqUrTU7AVVfmkl/3NBILWlgQVpY6tH6EfXQuvnxqD7CizbHyLdyO+z0S
B5PsFUH2GLMNAi48AUNqGqkgb2knFbg+T+9IimijDBkKg1G/KhQnRg6bXX32mLJv
Une8oshUPBVJMsHN1AcQknzKariuoE3u0SgJ+eOZ9yA2ZwKxP4yy1SkDt3xQrtI0
lojeRjxcyjTP1oGRNZC+BWUtGOT35p7y6cGTnBd/4TlqBGz5wVAJUcdoxnZ6JYVR
O8+ob9zU+4I0+SKt80s7pTLqQiL9rxkKZ5joWK1pr1g9e0s5N5yoETXKFHgJYP8=
=sYdt
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 festive updates from Will Deacon:
"In the end, we ended up with quite a lot more than I expected:
- Support for ARMv8.3 Pointer Authentication in userspace (CRIU and
kernel-side support to come later)
- Support for per-thread stack canaries, pending an update to GCC
that is currently undergoing review
- Support for kexec_file_load(), which permits secure boot of a kexec
payload but also happens to improve the performance of kexec
dramatically because we can avoid the sucky purgatory code from
userspace. Kdump will come later (requires updates to libfdt).
- Optimisation of our dynamic CPU feature framework, so that all
detected features are enabled via a single stop_machine()
invocation
- KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that
they can benefit from global TLB entries when KASLR is not in use
- 52-bit virtual addressing for userspace (kernel remains 48-bit)
- Patch in LSE atomics for per-cpu atomic operations
- Custom preempt.h implementation to avoid unconditional calls to
preempt_schedule() from preempt_enable()
- Support for the new 'SB' Speculation Barrier instruction
- Vectorised implementation of XOR checksumming and CRC32
optimisations
- Workaround for Cortex-A76 erratum #1165522
- Improved compatibility with Clang/LLD
- Support for TX2 system PMUS for profiling the L3 cache and DMC
- Reflect read-only permissions in the linear map by default
- Ensure MMIO reads are ordered with subsequent calls to Xdelay()
- Initial support for memory hotplug
- Tweak the threshold when we invalidate the TLB by-ASID, so that
mremap() performance is improved for ranges spanning multiple PMDs.
- Minor refactoring and cleanups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (125 commits)
arm64: kaslr: print PHYS_OFFSET in dump_kernel_offset()
arm64: sysreg: Use _BITUL() when defining register bits
arm64: cpufeature: Rework ptr auth hwcaps using multi_entry_cap_matches
arm64: cpufeature: Reduce number of pointer auth CPU caps from 6 to 4
arm64: docs: document pointer authentication
arm64: ptr auth: Move per-thread keys from thread_info to thread_struct
arm64: enable pointer authentication
arm64: add prctl control for resetting ptrauth keys
arm64: perf: strip PAC when unwinding userspace
arm64: expose user PAC bit positions via ptrace
arm64: add basic pointer authentication support
arm64/cpufeature: detect pointer authentication
arm64: Don't trap host pointer auth use to EL2
arm64/kvm: hide ptrauth from guests
arm64/kvm: consistently handle host HCR_EL2 flags
arm64: add pointer authentication register bits
arm64: add comments about EC exception levels
arm64: perf: Treat EXCLUDE_EL* bit definitions as unsigned
arm64: kpti: Whitelist Cortex-A CPUs that don't implement the CSV3 field
arm64: enable per-task stack canaries
...
Lots of conflicts, by happily all cases of overlapping
changes, parallel adds, things of that nature.
Thanks to Stephen Rothwell, Saeed Mahameed, and others
for their guidance in these resolutions.
Signed-off-by: David S. Miller <davem@davemloft.net>
This define is used by arm64 to calculate the size of the vmemmap
region. It is defined as the log2 of the upper bound on the size of a
struct page.
We move it into mm_types.h so it can be defined properly instead of set
and checked with a build bug. This also allows us to use the same
define for riscv.
Link: http://lkml.kernel.org/r/20181107205433.3875-2-logang@deltatee.com
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When pointer authentication is in use, data/instruction pointers have a
number of PAC bits inserted into them. The number and position of these
bits depends on the configured TCR_ELx.TxSZ and whether tagging is
enabled. ARMv8.3 allows tagging to differ for instruction and data
pointers.
For userspace debuggers to unwind the stack and/or to follow pointer
chains, they need to be able to remove the PAC bits before attempting to
use a pointer.
This patch adds a new structure with masks describing the location of
the PAC bits in userspace instruction and data pointers (i.e. those
addressable via TTBR0), which userspace can query via PTRACE_GETREGSET.
By clearing these bits from pointers (and replacing them with the value
of bit 55), userspace can acquire the PAC-less versions.
This new regset is exposed when the kernel is built with (user) pointer
authentication support, and the address authentication feature is
enabled. Otherwise, the regset is hidden.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ramana Radhakrishnan <ramana.radhakrishnan@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[will: Fix to use vabits_user instead of VA_BITS and rename macro]
Signed-off-by: Will Deacon <will.deacon@arm.com>
With the introduction of 52-bit virtual addressing for userspace, we are
now in a position where the virtual addressing capability of userspace
may exceed that of the kernel. Consequently, the VA_BITS definition
cannot be used blindly, since it reflects only the size of kernel
virtual addresses.
This patch introduces MAX_USER_VA_BITS which is either VA_BITS or 52
depending on whether 52-bit virtual addressing has been configured at
build time, removing a few places where the 52 is open-coded based on
explicit CONFIG_ guards.
Signed-off-by: Will Deacon <will.deacon@arm.com>
If the kernel is configured with KASAN_EXTRA, the stack size is
increased significantly due to setting the GCC -fstack-reuse option to
"none" [1]. As a result, it can trigger a stack overrun quite often with
32k stack size compiled using GCC 8. For example, this reproducer
https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/madvise/madvise06.c
can trigger a "corrupted stack end detected inside scheduler" very
reliably with CONFIG_SCHED_STACK_END_CHECK enabled. There are other
reports at:
https://lore.kernel.org/lkml/1542144497.12945.29.camel@gmx.us/https://lore.kernel.org/lkml/721E7B42-2D55-4866-9C1A-3E8D64F33F9C@gmx.us/
There are just too many functions that could have a large stack with
KASAN_EXTRA due to large local variables that have been called over and
over again without being able to reuse the stacks. Some noticiable ones
are,
size
7536 shrink_inactive_list
7440 shrink_page_list
6560 fscache_stats_show
3920 jbd2_journal_commit_transaction
3216 try_to_unmap_one
3072 migrate_page_move_mapping
3584 migrate_misplaced_transhuge_page
3920 ip_vs_lblcr_schedule
4304 lpfc_nvme_info_show
3888 lpfc_debugfs_nvmestat_data.constprop
There are other 49 functions over 2k in size while compiling kernel with
"-Wframe-larger-than=" on this machine. Hence, it is too much work to
change Makefiles for each object to compile without
-fsanitize-address-use-after-scope individually.
[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81715#c23
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The arm64 module region is a 128 MB region that is kept close to
the core kernel, in order to ensure that relative branches are
always in range. So using the same region for programs that do
not have this restriction is wasteful, and preferably avoided.
Now that the core BPF JIT code permits the alloc/free routines to
be overridden, implement them by vmalloc()/vfree() calls from a
dedicated 128 MB region set aside for BPF programs. This ensures
that BPF programs are still in branching range of each other, which
is something the JIT currently depends upon (and is not guaranteed
when using module_alloc() on KASLR kernels like we do currently).
It also ensures that placement of BPF programs does not correlate
with the placement of the core kernel or modules, making it less
likely that leaking the former will reveal the latter.
This also solves an issue under KASAN, where shadow memory is
needlessly allocated for all BPF programs (which don't require KASAN
shadow pages since they are not KASAN instrumented)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Now that ARM64 uses phys_initrd_start/phys_initrd_size, we can get rid
of its custom __early_init_dt_declare_initrd() which causes a fair
amount of objects rebuild when changing CONFIG_BLK_DEV_INITRD. In order
to make sure ARM64 does not produce a BUG() when VM debugging is turned
on though, we must avoid early calls to __va() which is what
__early_init_dt_declare_initrd() does and wrap this around to avoid
running that code on ARM64.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Rob Herring <robh@kernel.org>
Up to ARMv8.3, the combinaison of Stage-1 and Stage-2 attributes
results in the strongest attribute of the two stages. This means
that the hypervisor has to perform quite a lot of cache maintenance
just in case the guest has some non-cacheable mappings around.
ARMv8.4 solves this problem by offering a different mode (FWB) where
Stage-2 has total control over the memory attribute (this is limited
to systems where both I/O and instruction fetches are coherent with
the dcache). This is achieved by having a different set of memory
attributes in the page tables, and a new bit set in HCR_EL2.
On such a system, we can then safely sidestep any form of dcache
management.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
ARM, ARM64 and UniCore32 duplicate the definition of UL():
#define UL(x) _AC(x, UL)
This is not actually arch-specific, so it will be useful to move it to a
common header. Currently, we only have the uapi variant for
linux/const.h, so I am creating include/linux/const.h.
I also added _UL(), _ULL() and ULL() because _AC() is mostly used in
the form either _AC(..., UL) or _AC(..., ULL). I expect they will be
replaced in follow-up cleanups. The underscore-prefixed ones should
be used for exported headers.
Link: http://lkml.kernel.org/r/1519301715-31798-4-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now the fact that KASAN uses a single shadow byte for 8 bytes of
memory is scattered all over the code.
This change defines KASAN_SHADOW_SCALE_SHIFT early in asm include files
and makes use of this constant where necessary.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/34937ca3b90736eaad91b568edf5684091f662e3.1515775666.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Plenty of acronym soup here:
- Initial support for the Scalable Vector Extension (SVE)
- Improved handling for SError interrupts (required to handle RAS events)
- Enable GCC support for 128-bit integer types
- Remove kernel text addresses from backtraces and register dumps
- Use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- Perf PMU driver for the Statistical Profiling Extension (SPE)
- Perf PMU driver for Hisilicon's system PMUs
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJaCcLqAAoJELescNyEwWM0JREH/2FbmD/khGzEtP8LW+o9D8iV
TBM02uWQxS1bbO1pV2vb+512YQO+iWfeQwJH9Jv2FZcrMvFv7uGRnYgAnJuXNGrl
W+LL6OhN22A24LSawC437RU3Xe7GqrtONIY/yLeJBPablfcDGzPK1eHRA0pUzcyX
VlyDruSHWX44VGBPV6JRd3x0vxpV8syeKOjbRvopRfn3Nwkbd76V3YSfEgwoTG5W
ET1sOnXLmHHdeifn/l1Am5FX1FYstpcd7usUTJ4Oto8y7e09tw3bGJCD0aMJ3vow
v1pCUWohEw7fHqoPc9rTrc1QEnkdML4vjJvMPUzwyTfPrN+7uEuMIEeJierW+qE=
=0qrg
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"The big highlight is support for the Scalable Vector Extension (SVE)
which required extensive ABI work to ensure we don't break existing
applications by blowing away their signal stack with the rather large
new vector context (<= 2 kbit per vector register). There's further
work to be done optimising things like exception return, but the ABI
is solid now.
Much of the line count comes from some new PMU drivers we have, but
they're pretty self-contained and I suspect we'll have more of them in
future.
Plenty of acronym soup here:
- initial support for the Scalable Vector Extension (SVE)
- improved handling for SError interrupts (required to handle RAS
events)
- enable GCC support for 128-bit integer types
- remove kernel text addresses from backtraces and register dumps
- use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- perf PMU driver for the Statistical Profiling Extension (SPE)
- perf PMU driver for Hisilicon's system PMUs
- misc cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits)
arm64: Make ARMV8_DEPRECATED depend on SYSCTL
arm64: Implement __lshrti3 library function
arm64: support __int128 on gcc 5+
arm64/sve: Add documentation
arm64/sve: Detect SVE and activate runtime support
arm64/sve: KVM: Hide SVE from CPU features exposed to guests
arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
arm64/sve: KVM: Prevent guests from using SVE
arm64/sve: Add sysctl to set the default vector length for new processes
arm64/sve: Add prctl controls for userspace vector length management
arm64/sve: ptrace and ELF coredump support
arm64/sve: Preserve SVE registers around EFI runtime service calls
arm64/sve: Preserve SVE registers around kernel-mode NEON use
arm64/sve: Probe SVE capabilities and usable vector lengths
arm64: cpufeature: Move sys_caps_initialised declarations
arm64/sve: Backend logic for setting the vector length
arm64/sve: Signal handling support
arm64/sve: Support vector length resetting for new processes
arm64/sve: Core task context handling
arm64/sve: Low-level CPU setup
...
AddressSanitizer instrumentation can significantly bloat the stack, and
with GCC 7 this can result in stack overflows at boot time in some
configurations.
We can avoid this by doubling our stack size when KASAN is in use, as is
already done on x86 (and has been since KASAN was introduced).
Regardless of other patches to decrease KASAN's stack utilization,
kernels built with KASAN will always require more stack space than those
built without, and we should take this into account.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ILP32 series [1] introduces the dependency on <asm/is_compat.h> for
TASK_SIZE macro. Which in turn requires <asm/thread_info.h>, and
<asm/thread_info.h> include <asm/memory.h>, giving a circular dependency,
because TASK_SIZE is currently located in <asm/memory.h>.
In other architectures, TASK_SIZE is defined in <asm/processor.h>, and
moving TASK_SIZE there fixes the problem.
Discussion: https://patchwork.kernel.org/patch/9929107/
[1] https://github.com/norov/linux/tree/ilp32-next
CC: Will Deacon <will.deacon@arm.com>
CC: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch enables arm64 to be built with vmap'd task and IRQ stacks.
As vmap'd stacks are mapped at page granularity, stacks must be a multiple of
PAGE_SIZE. This means that a 64K page kernel must use stacks of at least 64K in
size.
To minimize the increase in Image size, IRQ stacks are dynamically allocated at
boot time, rather than embedding the boot CPU's IRQ stack in the kernel image.
This patch was co-authored by Ard Biesheuvel and Mark Rutland.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Currently we define SEGMENT_ALIGN directly in our vmlinux.lds.S.
This is unfortunate, as the EFI stub currently open-codes the same
number, and in future we'll want to fiddle with this.
This patch moves the definition to our <asm/memory.h>, where it can be
used by both vmlinux.lds.S and the EFI stub code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Before we add yet another stack to the kernel, it would be nice to
ensure that we consistently organise stack definitions and related
helper functions.
This patch moves the basic IRQ stack defintions to <asm/memory.h> to
live with their task stack counterparts. Helpers used for unwinding are
moved into <asm/stacktrace.h>, where subsequent patches will add helpers
for other stacks. Includes are fixed up accordingly.
This patch is a pure refactoring -- there should be no functional
changes as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Currently we define THREAD_SIZE and THREAD_SIZE_ORDER separately, with
the latter dependent on particular CONFIG_ARM64_*K_PAGES definitions.
This is somewhat opaque, and will get in the way of future modifications
to THREAD_SIZE.
This patch cleans this up, defining both in terms of a common
THREAD_SHIFT, and using PAGE_SHIFT to calculate THREAD_SIZE_ORDER,
rather than using a number of definitions dependent on config symbols.
Subsequent patches will make use of this to alter the stack size used in
some configurations.
At the same time, these are moved into <asm/memory.h>, which will avoid
circular include issues in subsequent patches. To ensure that existing
code isn't adversely affected, <asm/thread_info.h> is updated to
transitively include these definitions.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Some headers rely on PAGE_* definitions from <asm/page.h>, but cannot
include this due to potential circular includes. For example, a number
of definitions in <asm/memory.h> rely on PAGE_SHIFT, and <asm/page.h>
includes <asm/memory.h>.
This requires users of these definitions to include both headers, which
is fragile and error-prone.
This patch ameliorates matters by moving the basic definitions out to a
new header, <asm/page-def.h>. Both <asm/page.h> and <asm/memory.h> are
updated to include this, avoiding this fragility, and avoiding the
possibility of circular include dependencies.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
The bitmask used to define these values produces overflow, as seen by
this compiler warning:
arch/arm64/kernel/head.S:47:8: warning:
integer overflow in preprocessor expression
#elif (PAGE_OFFSET & 0x1fffff) != 0
^~~~~~~~~~~
arch/arm64/include/asm/memory.h:52:46: note:
expanded from macro 'PAGE_OFFSET'
#define PAGE_OFFSET (UL(0xffffffffffffffff) << (VA_BITS -
1))
~~~~~~~~~~~~~~~~~~ ^
It would be preferrable to use GENMASK_ULL() instead, but it's not set
up to be used from assembly (the UL() macro token pastes UL suffixes
when not included in assembly sources).
Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Suggested-by: Yury Norov <ynorov@caviumnetworks.com>
Suggested-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- Errata workarounds for Qualcomm's Falkor CPU
- Qualcomm L2 Cache PMU driver
- Qualcomm SMCCC firmware quirk
- Support for DEBUG_VIRTUAL
- CPU feature detection for userspace via MRS emulation
- Preliminary work for the Statistical Profiling Extension
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJYpIxqAAoJELescNyEwWM0xdwH/AsTYAXPZDMdRnrQUyV0Fd2H
/9pMzww6dHXEmCMKkImf++otUD6S+gTCJTsj7kEAXT5sZzLk27std5lsW7R9oPjc
bGQMalZy+ovLR1gJ6v072seM3In4xph/qAYOpD8Q0AfYCLHjfMMArQfoLa8Esgru
eSsrAgzVAkrK7XHi3sYycUjr9Hac9tvOOuQ3SaZkDz4MfFIbI4b43+c1SCF7wgT9
tQUHLhhxzGmgxjViI2lLYZuBWsIWsE+algvOe1qocvA9JEIXF+W8NeOuCjdL8WwX
3aoqYClC+qD/9+/skShFv5gM5fo0/IweLTUNIHADXpB6OkCYDyg+sxNM+xnEWQU=
=YrPg
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
- Errata workarounds for Qualcomm's Falkor CPU
- Qualcomm L2 Cache PMU driver
- Qualcomm SMCCC firmware quirk
- Support for DEBUG_VIRTUAL
- CPU feature detection for userspace via MRS emulation
- Preliminary work for the Statistical Profiling Extension
- Misc cleanups and non-critical fixes
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (74 commits)
arm64/kprobes: consistently handle MRS/MSR with XZR
arm64: cpufeature: correctly handle MRS to XZR
arm64: traps: correctly handle MRS/MSR with XZR
arm64: ptrace: add XZR-safe regs accessors
arm64: include asm/assembler.h in entry-ftrace.S
arm64: fix warning about swapper_pg_dir overflow
arm64: Work around Falkor erratum 1003
arm64: head.S: Enable EL1 (host) access to SPE when entered at EL2
arm64: arch_timer: document Hisilicon erratum 161010101
arm64: use is_vmalloc_addr
arm64: use linux/sizes.h for constants
arm64: uaccess: consistently check object sizes
perf: add qcom l2 cache perf events driver
arm64: remove wrong CONFIG_PROC_SYSCTL ifdef
ARM: smccc: Update HVC comment to describe new quirk parameter
arm64: do not trace atomic operations
ACPI/IORT: Fix the error return code in iort_add_smmu_platform_device()
ACPI/IORT: Fix iort_node_get_id() mapping entries indexing
arm64: mm: enable CONFIG_HOLES_IN_ZONE for NUMA
perf: xgene: Include module.h
...
The arm64 __page_to_voff() macro takes a parameter called 'page', and
also refers to 'struct page'. Thus, if the value passed in is not
called 'page', we'll refer to the wrong struct name (which might not
exist).
Fixes: 3fa72fe9c6 ("arm64: mm: fix __page_to_voff definition")
Acked-by: Mark Rutland <mark.rutland@arm.com>
Suggested-by: Volodymyr Babchuk <Volodymyr_Babchuk@epam.com>
Signed-off-by: Oleksandr Andrushchenko <Oleksandr_Andrushchenko@epam.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
x86 has an option CONFIG_DEBUG_VIRTUAL to do additional checks
on virt_to_phys calls. The goal is to catch users who are calling
virt_to_phys on non-linear addresses immediately. This inclues callers
using virt_to_phys on image addresses instead of __pa_symbol. As features
such as CONFIG_VMAP_STACK get enabled for arm64, this becomes increasingly
important. Add checks to catch bad virt_to_phys usage.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
__pa_symbol is technically the marcro that should be used for kernel
symbols. Switch to this as a pre-requisite for DEBUG_VIRTUAL which
will do bounds checking.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
virt_to_pfn lacks a cast at the top level. Don't rely on __virt_to_phys
and explicitly cast to unsigned long.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Several macros for various x_to_y exist outside the bounds of an
__ASSEMBLY__ guard. Move them in preparation for support for
CONFIG_DEBUG_VIRTUAL.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Fix parameter name for __page_to_voff, to match its definition.
At present, we don't see any issue, as page_to_virt's caller
declares 'page'.
Fixes: 9f2875912d ("arm64: mm: restrict virt_to_page() to the linear mapping")
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
virt_addr_valid is supposed to return true if and only if virt_to_page
returns a valid page structure. The current macro does math on whatever
address is given and passes that to pfn_valid to verify. vmalloc and
module addresses can happen to generate a pfn that 'happens' to be
valid. Fix this by only performing the pfn_valid check on addresses that
have the potential to be valid.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit ab893fb9f1 ("arm64: introduce KIMAGE_VADDR as the virtual
base of the kernel region") logically split KIMAGE_VADDR from
PAGE_OFFSET, and since commit f9040773b7 ("arm64: move kernel
image to base of vmalloc area") the two have been distinct values.
Unfortunately, neither commit updated the comment above these
definitions, which now erroneously states that PAGE_OFFSET is the start
of the kernel image rather than the start of the linear mapping.
This patch fixes said comment, and introduces an explanation of
KIMAGE_VADDR.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
KERNEL_START and KERNEL_END are useful outside head.S, move them to a
header file.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that the vmemmap region has been redefined to cover the linear region
rather than the entire physical address space, we no longer need to
perform a virtual-to-physical translation in the implementaion of
virt_to_page(). This restricts virt_to_page() translations to the linear
region, so redefine virt_addr_valid() as well.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This moves the vmemmap region right below PAGE_OFFSET, aka the start
of the linear region, and redefines its size to be a power of two.
Due to the placement of PAGE_OFFSET in the middle of the address space,
whose size is a power of two as well, this guarantees that virt to
page conversions and vice versa can be implemented efficiently, by
masking and shifting rather than ordinary arithmetic.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit c031a4213c ("arm64: kaslr: randomize the linear region")
implements randomization of the linear region, by subtracting a random
multiple of PUD_SIZE from memstart_addr. This causes the virtual mapping
of system RAM to move upwards in the linear region, and at the same time
causes memstart_addr to assume a value which may be negative if the offset
of system RAM in the physical space is smaller than its offset relative to
PAGE_OFFSET in the virtual space.
Since memstart_addr is effectively an offset now, redefine its type as s64
so that expressions involving shifting or division preserve its sign.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This adds support for KASLR is implemented, based on entropy provided by
the bootloader in the /chosen/kaslr-seed DT property. Depending on the size
of the address space (VA_BITS) and the page size, the entropy in the
virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all
4 levels), with the sidenote that displacements that result in the kernel
image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB
granule kernels, respectively) are not allowed, and will be rounded up to
an acceptable value.
If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is
randomized independently from the core kernel. This makes it less likely
that the location of core kernel data structures can be determined by an
adversary, but causes all function calls from modules into the core kernel
to be resolved via entries in the module PLTs.
If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is
randomized by choosing a page aligned 128 MB region inside the interval
[_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of
entropy (depending on page size), independently of the kernel randomization,
but still guarantees that modules are within the range of relative branch
and jump instructions (with the caveat that, since the module region is
shared with other uses of the vmalloc area, modules may need to be loaded
further away if the module region is exhausted)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since PAGE_OFFSET is chosen such that it cuts the kernel VA space right
in half, and since the size of the kernel VA space itself is always a
power of 2, we can treat PAGE_OFFSET as a bitmask and replace the
additions/subtractions with 'or' and 'and-not' operations.
For the comparison against PAGE_OFFSET, a mov/cmp/branch sequence ends
up getting replaced with a single tbz instruction. For the additions and
subtractions, we save a mov instruction since the mask is folded into the
instruction's immediate field.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Checking whether memstart_addr has been assigned every time it is
referenced adds a branch instruction that may hurt performance if
the reference in question occurs on a hot path. So only perform the
check if CONFIG_DEBUG_VM=y.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[catalin.marinas@arm.com: replaced #ifdef with VM_BUG_ON]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This relaxes the kernel Image placement requirements, so that it
may be placed at any 2 MB aligned offset in physical memory.
This is accomplished by ignoring PHYS_OFFSET when installing
memblocks, and accounting for the apparent virtual offset of
the kernel Image. As a result, virtual address references
below PAGE_OFFSET are correctly mapped onto physical references
into the kernel Image regardless of where it sits in memory.
Special care needs to be taken for dealing with memory limits passed
via mem=, since the generic implementation clips memory top down, which
may clip the kernel image itself if it is loaded high up in memory. To
deal with this case, we simply add back the memory covering the kernel
image, which may result in more memory to be retained than was passed
as a mem= parameter.
Since mem= should not be considered a production feature, a panic notifier
handler is installed that dumps the memory limit at panic time if one was
set.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Before deferring the assignment of memstart_addr in a subsequent patch, to
the moment where all memory has been discovered and possibly clipped based
on the size of the linear region and the presence of a mem= command line
parameter, we need to ensure that memstart_addr is not used to perform __va
translations before it is assigned.
One such use is in the generic early DT discovery of the initrd location,
which is recorded as a virtual address in the globals initrd_start and
initrd_end. So wire up the generic support to declare the initrd addresses,
and implement it without __va() translations, and perform the translation
after memstart_addr has been assigned.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This moves the module area to right before the vmalloc area, and moves
the kernel image to the base of the vmalloc area. This is an intermediate
step towards implementing KASLR, which allows the kernel image to be
located anywhere in the vmalloc area.
Since other subsystems such as hibernate may still need to refer to the
kernel text or data segments via their linears addresses, both are mapped
in the linear region as well. The linear alias of the text region is
mapped read-only/non-executable to prevent inadvertent modification or
execution.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This introduces the preprocessor symbol KIMAGE_VADDR which will serve as
the symbolic virtual base of the kernel region, i.e., the kernel's virtual
offset will be KIMAGE_VADDR + TEXT_OFFSET. For now, we define it as being
equal to PAGE_OFFSET, but in the future, it will be moved below it once
we move the kernel virtual mapping out of the linear mapping.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>