The strtonum awk function is a GNU extension and is not available with
all versions of awk. The link of bzImage fails with this error message:
>> awk: line 2: function or never defined
>> awk: line 2: function strtonum never defined
objcopy: --pad-to: bad number: arch/s390/boot/compressed/vmlinux
Drop the awk script and the --pad-to objcopy parameter it generated and
use a FILL pattern with an appropriate alignment in the linker script
for the arch/s390/boot/compressed/vmlinux file.
Fixes: f678068652 ("s390/boot: pad bzImage to 4K")
Reported-by: kbuild test robot <lkp@intel.com>
Suggested-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
llvm does does not understand -march=z9-109 and older target
specifiers, so disable the respective Kconfig settings and
the logic to make the boot code work on old systems when
building with clang.
Part of the early boot code is normally compiled with -march=z900
for maximum compatibility. This also has to get changed with
clang to the oldest supported ISA, which is -march=z10 here.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This patch adds support for relocating the kernel to a random address.
The random kernel offset is obtained from cpacf, using either TRNG, PRNO,
or KMC_PRNG, depending on supported MSA level.
KERNELOFFSET is added to vmcoreinfo, for crash --kaslr support.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Philipp Rudo <prudo@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
With a relocatable kernel that could reside at any place in memory, code
and data that has to stay below 2 GB needs special handling.
This patch introduces .dma sections for such text, data and ex_table.
The sections will be part of the decompressor kernel, so they will not
be relocated and stay below 2 GB. Their location is passed over to the
decompressed / relocated kernel via the .boot.preserved.data section.
The duald and aste for control register setup also need to stay below
2 GB, so move the setup code from arch/s390/kernel/head64.S to
arch/s390/boot/head.S. The duct and linkage_stack could reside above
2 GB, but their content has to be preserved for the decompresed kernel,
so they are also moved into the .dma section.
The start and end address of the .dma sections is added to vmcoreinfo,
for crash support, to help debugging in case the kernel crashed there.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Philipp Rudo <prudo@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This patch adds support for building a relocatable kernel with -fPIE.
The kernel will be relocated to 0 early in the boot process.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Philipp Rudo <prudo@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
In order to be able to sign the bzImage independent of the block size
of the IPL device, align the bzImage to 4096 bytes.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Read the IPL Report block provided by secure-boot, add the entries
of the certificate list to the system key ring and print the list
of components.
PR: Adjust to Vasilys bootdata_preserved patch set. Preserve ipl_cert_list
for later use in kexec_file.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Philipp Rudo <prudo@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The Ultravisor Call Facility (stfle bit 158) defines an API to the
Ultravisor (UV calls), a mini hypervisor located at machine
level. With help of the Ultravisor, KVM will be able to run
"protected" VMs, special VMs whose memory and management data are
unavailable to KVM.
The protected VMs can also request services from the Ultravisor.
The guest api consists of UV calls to share and unshare memory with the
kvm hypervisor.
To enable this feature support PROTECTED_VIRTUALIZATION_GUEST kconfig
option has been introduced.
Co-developed-by: Janosch Frank <frankja@de.ibm.com>
Signed-off-by: Janosch Frank <frankja@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Same as for .boot.data section make sure that .boot.preserved.data
sections of vmlinux and arch/s390/compressed/vmlinux match before
producing the compressed kernel image. Symbols presence, order and sizes
are cross-checked.
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
scripts/Makefile.build and arch/s390/boot/Makefile use the same
command (thin archiving with symbol table creation).
Avoid the code duplication, and move it to scripts/Makefile.lib.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
In Kbuild, if_changed and friends must have FORCE as a prerequisite.
Hence, $(filter-out FORCE,$^) or $(filter-out $(PHONY),$^) is a common
idiom to get the names of all the prerequisites except phony targets.
Add real-prereqs as a shorthand.
Note:
We cannot replace $(filter %.o,$^) in cmd_link_multi-m because $^ may
include auto-generated dependencies from the .*.cmd file when a single
object module is changed into a multi object module. Refer to commit
69ea912fda ("kbuild: remove unneeded link_multi_deps"). I added some
comment to avoid accidental breakage.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Rob Herring <robh@kernel.org>
When I was refactoring cmd_ar_builtin in scripts/Makefile.build,
I noticed the build breakage of s390.
Some Makefiles of s390 add extra dependencies to built-in.a;
built-in.a depends on timestamp files *.o.chkbss, but $(AR) does
not want to include them into built-in.a.
Insert a phony target 'chkbss' in between so that $(AR) can take
$(filter-out $(PHONY), $^) as input.
While I was here, I refactored Makefile.chkbss a little bit.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Instrumented C code cannot run without the kasan shadow area. Exempt
source code files from kasan which are running before / used during
kasan initialization.
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
To distinguish zfcpdump case and to be able to parse some of the kernel
command line arguments early (e.g. mem=) ipl block retrieval and command
line construction code is moved to the early boot phase.
"memory_end" is set up correctly respecting "mem=" and hsa_size in case
of the zfcpdump.
arch/s390/boot/string.c is introduced to provide string handling and
command line parsing functions to early boot phase code for the compressed
kernel image case.
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Make sure that .boot.data sections of vmlinux and
arch/s390/compressed/vmlinux match before producing the compressed kernel
image. Symbols presence, order and sizes are cross-checked.
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Move memory detection to early boot phase. To store online memory
regions "struct mem_detect_info" has been introduced together with
for_each_mem_detect_block iterator. mem_detect_info is later converted
to memblock.
Also introduces sclp_early_get_meminfo function to get maximum physical
memory and maximum increment number.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Decompressor's head.S provided "data mover" sole purpose of which has
been to safely move uncompressed kernel at 0x100000 and jump to it.
With current bzImage layout entire decompressor's code guaranteed to be
in a safe location under 0x100000, and hence could not be overwritten
during kernel move. For that reason head.S could be replaced with simple
memmove function. To do so introduce early boot code phase which is
executed from arch/s390/boot/head.S after "verify_facilities" and takes
care of optional kernel image decompression and transition to it.
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
startup.a build rule packs a list of prerequisites into archive. That
didn't take into account extra prerequisites added by chkbss, so that
zero length *.o.chkbss files were also packed into the archive.
To avoid that filter only real object from prerequisites list.
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Correct merging error which replaced startup.a in targets list with
non-existing setup.a. Due to missing startup.a in targets list if_changed
triggered startup.a rebuild unconditionally.
Fixes: 3e200c54438d ("s390/decompressor: avoid reusing uncompressed image objects")
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cover the decompressor code with no .bss usage compile time check.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Reusing arch/s390/lib/mem.S file solves a problem that sclp_early_core.c
and its dependencies have to be compiled with -march=z900 (no need to
compile compressed/misc.c with -march=z900). This also allows to avoid
mem functions duplicates, makes code a bit smaller and optimized mem
functions are utilized.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Re-compile ebcdic.c and sclp_early_core.c for the decompressor,
using proper decompressor CFLAGS. This also allows to potentially use
instrumentation for those files when built for the main kernel image.
With kbuild there is no easy way to re-compile a source file from
another directory. Bypass ugly rules and Makefile meta-programming
with relative path includes of original files.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Since uncompressed kernel image does not have to be bootable anymore,
move head.S, head_kdump.S and als.c to boot/ folder and compile them
in just in the decompressor.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Dropping support for uncompressed kernel "image" build. Having
both image and bzImage makes it complicated to add new code to an
early boot phase (which is part of vmlinux for uncompressed kernel and
a separate arch/s390/boot/compressed/vmlinux for bzImage).
e.g. sclp_early_core.o is used for both, the decompressor phase and the
main kernel. The fact of having uncompressed kernel "image" forces us
to have a single object file and sacrifice instrumentation flags on such
files (so that we could use them early). The story gets much more
complicated with the need to utilize some of the string functions.
With bzImage only support, we have 2 separate boot stages each built
and linked separately, which allows to reuse some shared code, but
recompile with appropriate flags.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
ccflags-y has no effect (no code is built in that directory,
arch/s390/boot/compressed/Makefile defines its own KBUILD_CFLAGS).
Removing ccflags-y together with COMPILE_VERSION.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The compressed kernel image is built since commit "[S390] add support for
compressed kernels" (1844c9bc0b).
Now install the compressed kernel image (bzImage) as default.
Signed-off-by: Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Remove last traces of our kerntypes patch which was always an addon
patch which never got upstream. Somehow a few bits got upstream
anyway.
Since kerntypes aren't used anymore and lcrash isn't maintained (for
s390 at least) remove the last traces of kerntypes that somehow went
upstream. Also remove the documentation that mentions lcrash.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Replace EXTRA_CFLAGS with ccflags-y.
Signed-off-by: matt mooney <mfm@muteddisk.com>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Michal Marek <mmarek@suse.cz>
Add the "bzImage" compile target and the necessary code to generate
compressed kernel images. The old style uncompressed "image" target
is preserved, a simple make will build them both.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!