Commit Graph

108 Commits

Author SHA1 Message Date
hawkes@sgi.com
ddf6d0a00c [IA64] another place to use for_each_cpu_mask() in arch/ia64
In arch/ia64 change the explicit use of a for-loop using NR_CPUS into the
general for_each_online_cpu() construct.  This widens the scope of potential
future optimizations of the general constructs, as well as takes advantage
of the existing optimizations of first_cpu() and next_cpu(), which is
advantageous when the true CPU count is much smaller than NR_CPUS.

Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-10-25 15:12:05 -07:00
Bryan Sutula
76e677e25d [IA64] Avoid kernel hang during CMC interrupt storm
I've noticed a kernel hang during a storm of CMC interrupts, which was
tracked down to the continual execution of the interrupt handler.

There's code in the CMC handler that's supposed to disable CMC
interrupts and switch to polling mode when it sees a bunch of CMCs.
Because disabling CMCs across all CPUs isn't safe in interrupt context,
the disable is done with a schedule_work().  But with continual CMC
interrupts, the schedule_work() never gets executed.

The following patch immediately disables CMC interrupts for the current
CPU.  This then allows (at least) one CPU to ignore CMC interrupts,
execute the schedule_work() code, and disable CMC interrupts on the rest
of the CPUs.

Acked-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Bryan Sutula <Bryan.Sutula@hp.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-10-06 15:04:11 -07:00
Keith Owens
7f613c7d22 [PATCH] MCA/INIT: use per cpu stacks
The bulk of the change.  Use per cpu MCA/INIT stacks.  Change the SAL
to OS state (sos) to be per process.  Do all the assembler work on the
MCA/INIT stacks, leaving the original stack alone.  Pass per cpu state
data to the C handlers for MCA and INIT, which also means changing the
mca_drv interfaces slightly.  Lots of verification on whether the
original stack is usable before converting it to a sleeping process.

Signed-off-by: Keith Owens <kaos@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-09-11 14:08:41 -07:00
Ingo Molnar
fb1c8f93d8 [PATCH] spinlock consolidation
This patch (written by me and also containing many suggestions of Arjan van
de Ven) does a major cleanup of the spinlock code.  It does the following
things:

 - consolidates and enhances the spinlock/rwlock debugging code

 - simplifies the asm/spinlock.h files

 - encapsulates the raw spinlock type and moves generic spinlock
   features (such as ->break_lock) into the generic code.

 - cleans up the spinlock code hierarchy to get rid of the spaghetti.

Most notably there's now only a single variant of the debugging code,
located in lib/spinlock_debug.c.  (previously we had one SMP debugging
variant per architecture, plus a separate generic one for UP builds)

Also, i've enhanced the rwlock debugging facility, it will now track
write-owners.  There is new spinlock-owner/CPU-tracking on SMP builds too.
All locks have lockup detection now, which will work for both soft and hard
spin/rwlock lockups.

The arch-level include files now only contain the minimally necessary
subset of the spinlock code - all the rest that can be generalized now
lives in the generic headers:

 include/asm-i386/spinlock_types.h       |   16
 include/asm-x86_64/spinlock_types.h     |   16

I have also split up the various spinlock variants into separate files,
making it easier to see which does what. The new layout is:

   SMP                         |  UP
   ----------------------------|-----------------------------------
   asm/spinlock_types_smp.h    |  linux/spinlock_types_up.h
   linux/spinlock_types.h      |  linux/spinlock_types.h
   asm/spinlock_smp.h          |  linux/spinlock_up.h
   linux/spinlock_api_smp.h    |  linux/spinlock_api_up.h
   linux/spinlock.h            |  linux/spinlock.h

/*
 * here's the role of the various spinlock/rwlock related include files:
 *
 * on SMP builds:
 *
 *  asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the
 *                        initializers
 *
 *  linux/spinlock_types.h:
 *                        defines the generic type and initializers
 *
 *  asm/spinlock.h:       contains the __raw_spin_*()/etc. lowlevel
 *                        implementations, mostly inline assembly code
 *
 *   (also included on UP-debug builds:)
 *
 *  linux/spinlock_api_smp.h:
 *                        contains the prototypes for the _spin_*() APIs.
 *
 *  linux/spinlock.h:     builds the final spin_*() APIs.
 *
 * on UP builds:
 *
 *  linux/spinlock_type_up.h:
 *                        contains the generic, simplified UP spinlock type.
 *                        (which is an empty structure on non-debug builds)
 *
 *  linux/spinlock_types.h:
 *                        defines the generic type and initializers
 *
 *  linux/spinlock_up.h:
 *                        contains the __raw_spin_*()/etc. version of UP
 *                        builds. (which are NOPs on non-debug, non-preempt
 *                        builds)
 *
 *   (included on UP-non-debug builds:)
 *
 *  linux/spinlock_api_up.h:
 *                        builds the _spin_*() APIs.
 *
 *  linux/spinlock.h:     builds the final spin_*() APIs.
 */

All SMP and UP architectures are converted by this patch.

arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via
crosscompilers.  m32r, mips, sh, sparc, have not been tested yet, but should
be mostly fine.

From: Grant Grundler <grundler@parisc-linux.org>

  Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU).
  Builds 32-bit SMP kernel (not booted or tested).  I did not try to build
  non-SMP kernels.  That should be trivial to fix up later if necessary.

  I converted bit ops atomic_hash lock to raw_spinlock_t.  Doing so avoids
  some ugly nesting of linux/*.h and asm/*.h files.  Those particular locks
  are well tested and contained entirely inside arch specific code.  I do NOT
  expect any new issues to arise with them.

 If someone does ever need to use debug/metrics with them, then they will
  need to unravel this hairball between spinlocks, atomic ops, and bit ops
  that exist only because parisc has exactly one atomic instruction: LDCW
  (load and clear word).

From: "Luck, Tony" <tony.luck@intel.com>

   ia64 fix

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjanv@infradead.org>
Signed-off-by: Grant Grundler <grundler@parisc-linux.org>
Cc: Matthew Wilcox <willy@debian.org>
Signed-off-by: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Mikael Pettersson <mikpe@csd.uu.se>
Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 10:06:21 -07:00
Ashok Raj
55e59c511c [ACPI] Evaluate CPEI Processor Override flag
ACPI 3.0 added a Correctable Platform Error Interrupt (CPEI)
Processor Overide flag to MADT.Platform_Interrupt_Source.
Record the processor that was provided as hint from ACPI.

Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
2005-07-12 00:01:41 -04:00
Peter Chubb
b655913bf3 [IA64] Cleanup compile warnings for ski config
The attached patch cleans up a compilation warning when ACPI
is turned off (i.e., when compiling for the Ski simulator).

Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-06-01 15:20:17 -07:00
Russ Anderson
bb68c12b40 [IA64-SGI] cpe interrupts are not being enabled.
acpi_request_vector() is called in ia64_mca_init() to get the cpe_vector.
The problem is that acpi_request_vector() looks in platform_intr_list[] to 
get the vector, but platform_intr_list[] is not initialized with a valid
vector until later (in sn_setup()).  Without a valid vector the code
defaults to polling mode.

This patch moves the call to acpi_request_vector() from ia64_mca_init()
to ia64_mca_late_init(), which is after platform_intr_list[] is initialized.

Signed-off-by: Russ Anderson (rja@sgi.com)
Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-05-17 12:52:43 -07:00
Linus Torvalds
1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00