The existing EFI variables code only supports variables of up to 1024
bytes. This limitation existed in version 0.99 of the EFI specification,
but was removed before any full releases. Since variables can now be
larger than a single page, sysfs isn't the best interface for this. So,
instead, let's add a filesystem. Variables can be read, written and
created, with the first 4 bytes of each variable representing its UEFI
attributes. The create() method doesn't actually commit to flash since
zero-length variables can't exist per-spec.
Updates from Jeremy Kerr <jeremy.kerr@canonical.com>.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Jeremy Kerr <jeremy.kerr@canonical.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The ACPI BGRT driver accesses the BIOS logo image when it initializes.
However, ACPI 5.0 (which introduces the BGRT) recommends putting the
logo image in EFI boot services memory, so that the OS can reclaim that
memory. Production systems follow this recommendation, breaking the
ACPI BGRT driver.
Move the bulk of the BGRT code to run during a new EFI late
initialization phase, which occurs after switching EFI to virtual mode,
and after initializing ACPI, but before freeing boot services memory.
Copy the BIOS logo image to kernel memory at that point, and make it
accessible to the BGRT driver. Rework the existing ACPI BGRT driver to
act as a simple wrapper exposing that image (and the properties from the
BGRT) via sysfs.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Link: http://lkml.kernel.org/r/93ce9f823f1c1f3bb88bdd662cce08eee7a17f5d.1348876882.git.josh@joshtriplett.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The EFI initialization creates virtual mappings for EFI boot services
memory, so if a driver wants to access EFI boot services memory, it
cannot call ioremap itself; doing so will trip the WARN about mapping
RAM twice. Thus, a driver accessing EFI boot services memory must do so
via the existing mapping already created during EFI intiialization.
Since the EFI code already maintains a memory map for that memory, add a
function efi_lookup_mapped_addr to look up mappings in that memory map.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Link: http://lkml.kernel.org/r/0eb48ae012797912874919110660ad420b90268b.1348876882.git.josh@joshtriplett.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
This reverts commit bacef661ac.
This commit has been found to cause serious regressions on a number of
ASUS machines at the least. We probably need to provide a 1:1 map in
addition to the EFI virtual memory map in order for this to work.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Reported-and-bisected-by: Jérôme Carretero <cJ-ko@zougloub.eu>
Cc: Jan Beulich <jbeulich@suse.com>
Cc: Matt Fleming <matt.fleming@intel.com>
Cc: Matthew Garrett <mjg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120805172903.5f8bb24c@zougloub.eu
Other than ix86, x86-64 on EFI so far didn't set the
{g,s}et_wallclock accessors to the EFI routines, thus
incorrectly using raw RTC accesses instead.
Simply removing the #ifdef around the respective code isn't
enough, however: While so far early get-time calls were done in
physical mode, this doesn't work properly for x86-64, as virtual
addresses would still need to be set up for all runtime regions
(which wasn't the case on the system I have access to), so
instead the patch moves the call to efi_enter_virtual_mode()
ahead (which in turn allows to drop all code related to calling
efi-get-time in physical mode).
Additionally the earlier calling of efi_set_executable()
requires the CPA code to cope, i.e. during early boot it must be
avoided to call cpa_flush_array(), as the first thing this
function does is a BUG_ON(irqs_disabled()).
Also make the two EFI functions in question here static -
they're not being referenced elsewhere.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Tested-by: Matt Fleming <matt.fleming@intel.com>
Acked-by: Matthew Garrett <mjg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/4FBFBF5F020000780008637F@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
More recent versions of the UEFI spec have added new attributes for
variables. Add them.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove all #inclusions of asm/system.h preparatory to splitting and killing
it. Performed with the following command:
perl -p -i -e 's!^#\s*include\s*<asm/system[.]h>.*\n!!' `grep -Irl '^#\s*include\s*<asm/system[.]h>' *`
Signed-off-by: David Howells <dhowells@redhat.com>
Traditionally the kernel has refused to setup EFI at all if there's been
a mismatch in 32/64-bit mode between EFI and the kernel.
On some platforms that boot natively through EFI (Chrome OS being one),
we still need to get at least some of the static data such as memory
configuration out of EFI. Runtime services aren't as critical, and
it's a significant amount of work to implement switching between the
operating modes to call between kernel and firmware for thise cases. So
I'm ignoring it for now.
v5:
* Fixed some printk strings based on feedback
* Renamed 32/64-bit specific types to not have _ prefix
* Fixed bug in printout of efi runtime disablement
v4:
* Some of the earlier cleanup was accidentally reverted by this patch, fixed.
* Reworded some messages to not have to line wrap printk strings
v3:
* Reorganized to a series of patches to make it easier to review, and
do some of the cleanups I had left out before.
v2:
* Added graceful error handling for 32-bit kernel that gets passed
EFI data above 4GB.
* Removed some warnings that were missed in first version.
Signed-off-by: Olof Johansson <olof@lixom.net>
Link: http://lkml.kernel.org/r/1329081869-20779-6-git-send-email-olof@lixom.net
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The x86 EFI stub needs to access files, for example when loading
initrd's. Add the required data types.
Cc: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/1318848017-12301-1-git-send-email-matt@console-pimps.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The x86 EFI boot stub uses the Graphics Output Protocol and Universal
Graphics Adapter (UGA) protocol guids when initialising graphics
during boot.
Cc: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/1318848017-12301-1-git-send-email-matt@console-pimps.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Add the allocation types detailed in section 6.2 - "AllocatePages()"
of the UEFI 2.3 specification. These definitions will be used by the
x86 EFI boot stub which needs to allocate memory during boot.
Cc: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/1318848017-12301-1-git-send-email-matt@console-pimps.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Add the EFI loaded image structure and protocol guid which are
required by the x86 EFI boot stub. The EFI boot stub uses the
structure to figure out where it was loaded in memory and to pass
command line arguments to the kernel.
Cc: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/1318848017-12301-1-git-send-email-matt@console-pimps.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
With the forthcoming efi stub code we're gonna need to access boot
time services so let's define a struct so we can access the functions.
Cc: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Link: http://lkml.kernel.org/r/1318848017-12301-1-git-send-email-matt@console-pimps.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
* 'pstore-efi' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6:
efivars: Introduce PSTORE_EFI_ATTRIBUTES
efivars: Use string functions in pstore_write
efivars: introduce utf16_strncmp
efivars: String functions
efi: Add support for using efivars as a pstore backend
pstore: Allow the user to explicitly choose a backend
pstore: Make "part" unsigned
pstore: Add extra context for writes and erases
pstore: Extend API for more flexibility in new backends
EFI provides an area of nonvolatile storage managed by the firmware. We
can use this as a pstore backend to maintain copies of oopses, aiding
diagnosis.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
We're currently missing support for any of the runtime service calls
introduced with the UEFI 2.0 spec in 2006. Add the infrastructure for
supporting them.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Link: http://lkml.kernel.org/r/1307388985-7852-2-git-send-email-mjg@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
UEFI stands for "Unified Extensible Firmware Interface", where "Firmware"
is an ancient African word meaning "Why do something right when you can
do it so wrong that children will weep and brave adults will cower before
you", and "UEI" is Celtic for "We missed DOS so we burned it into your
ROMs". The UEFI specification provides for runtime services (ie, another
way for the operating system to be forced to depend on the firmware) and
we rely on these for certain trivial tasks such as setting up the
bootloader. But some hardware fails to work if we attempt to use these
runtime services from physical mode, and so we have to switch into virtual
mode. So far so dreadful.
The specification makes it clear that the operating system is free to do
whatever it wants with boot services code after ExitBootServices() has been
called. SetVirtualAddressMap() can't be called until ExitBootServices() has
been. So, obviously, a whole bunch of EFI implementations call into boot
services code when we do that. Since we've been charmingly naive and
trusted that the specification may be somehow relevant to the real world,
we've already stuffed a picture of a penguin or something in that address
space. And just to make things more entertaining, we've also marked it
non-executable.
This patch allocates the boot services regions during EFI init and makes
sure that they're executable. Then, after SetVirtualAddressMap(), it
discards them and everyone lives happily ever after. Except for the ones
who have to work on EFI, who live sad lives haunted by the knowledge that
someone's eventually going to write yet another firmware specification.
[ hpa: adding this to urgent with a stable tag since it fixes currently-broken
hardware. However, I do not know what the dependencies are and so I do
not know which -stable versions this may be a candidate for. ]
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Link: http://lkml.kernel.org/r/1306331593-28715-1-git-send-email-mjg@redhat.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: <stable@kernel.org>
It is generally agreed that it would be beneficial for u64 to be an
unsigned long long on all architectures. ia64 (in common with several
other 64-bit architectures) currently uses unsigned long. Migrating
piecemeal is too painful; this giant patch fixes all compilation warnings
and errors that come as a result of switching to use int-ll64.h.
Note that userspace will still see __u64 defined as unsigned long. This
is important as it affects C++ name mangling.
[Updated by Tony Luck to change efi.h:efi_freemem_callback_t to use
u64 for start/end rather than unsigned long]
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Look for a UV entry in the EFI tables.
Signed-off-by: Russ Anderson <rja@sgi.com>
Signed-off-by: Paul Jackson <pj@sgi.com>
Acked-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove three extern declarations for routines
that don't exist. Fix a typo in a comment.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Make x86 EFI code works when EFI_PAGE_SHIFT != PAGE_SHIFT. The
memrage_efi_to_native() provided in this patch can be used on other
EFI platform such as IA64 too.
This patch has been tested on Intel x86_64 platform with EFI 64/32
firmware.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add the BSS to the resource tree just as kernel text and kernel data are in
the resource tree. The main reason behind this is to avoid crashkernel
reservation in that area.
While it's not strictly necessary to have the BSS in the resource tree (the
actual collision detection is done in the reserve_bootmem() function before),
the usage of the BSS resource should be presented to the user in /proc/iomem
just as Kernel data and Kernel code.
Note: The patch currently is only implemented for x86 and ia64 (because
efi_initialize_iomem_resources() has the same signature on i386 and ia64).
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Bernhard Walle <bwalle@suse.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@in.ibm.com>
Cc: <linux-arch@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We used to warn unless the EFI system table major revision was exactly 1.
But EFI 2.00 firmware is starting to appear, and the 2.00 changes don't
affect anything in Linux.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Cc: Andi Kleen <ak@suse.de>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When using memmap kernel parameter in EFI boot we should also add to memory map
memory regions of runtime services to enable their mapping later.
AK: merged and cleaned up the patch
Signed-off-by: Artiom Myaskouvskey <artiom.myaskouvskey@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Function efi_get_time called not only during init kernel phase but also
during suspend (from get_cmos_time).
When it is called from get_cmos_time the corresponding runtime service
should be called in virtual and not in physical mode.
Signed-off-by: Artiom Myaskouvskey <artiom.myaskouvskey@intel.com>
Signed-off-by: Andi Kleen <ak@suse.de>
Cc: "Narayanan, Chandramouli" <chandramouli.narayanan@intel.com>
Cc: "Jiossy, Rami" <rami.jiossy@intel.com>
Cc: "Satt, Shai" <shai.satt@intel.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Matt Domsch <Matt_Domsch@dell.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
This closes a couple holes in our attribute aliasing avoidance scheme:
- The current kernel fails mmaps of some /dev/mem MMIO regions because
they don't appear in the EFI memory map. This keeps X from working
on the Intel Tiger box.
- The current kernel allows UC mmap of the 0-1MB region of
/sys/.../legacy_mem even when the chipset doesn't support UC
access. This causes an MCA when starting X on HP rx7620 and rx8620
boxes in the default configuration.
There's more detail in the Documentation/ia64/aliasing.txt file this
adds, but the general idea is that if a region might be covered by
a granule-sized kernel identity mapping, any access via /dev/mem or
mmap must use the same attribute as the identity mapping.
Otherwise, we fall back to using an attribute that is supported
according to the EFI memory map, or to using UC if the EFI memory
map doesn't mention the region.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Almost all users of the table addresses from the EFI system table want
physical addresses. So rather than doing the pa->va->pa conversion, just keep
physical addresses in struct efi.
This fixes a DMI bug: the efi structure contained the physical SMBIOS address
on x86 but the virtual address on ia64, so dmi_scan_machine() used ioremap()
on a virtual address on ia64.
This is essentially the same as an earlier patch by Matt Tolentino:
http://marc.theaimsgroup.com/?l=linux-kernel&m=112130292316281&w=2
except that this changes all table addresses, not just ACPI addresses.
Matt's original patch was backed out because it caused MCAs on HP sx1000
systems. That problem is resolved by the ioremap() attribute checking added
for ia64.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Cc: Matt Domsch <Matt_Domsch@dell.com>
Cc: "Tolentino, Matthew E" <matthew.e.tolentino@intel.com>
Cc: "Brown, Len" <len.brown@intel.com>
Cc: Andi Kleen <ak@muc.de>
Acked-by: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Pass the size, not a pointer to the size, to efi_mem_attribute_range().
This function validates memory regions for the /dev/mem read/write/mmap paths.
The pointer allows arches to reduce the size of the range, but I think that's
unnecessary complexity. Simplifying it will let me use
efi_mem_attribute_range() to improve the ia64 ioremap() implementation.
Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com>
Cc: Matt Domsch <Matt_Domsch@dell.com>
Cc: "Tolentino, Matthew E" <matthew.e.tolentino@intel.com>
Cc: "Brown, Len" <len.brown@intel.com>
Cc: Andi Kleen <ak@muc.de>
Acked-by: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The memory descriptors that comprise the EFI memory map are not fixed in
stone such that the size could change in the future. This uses the memory
descriptor size obtained from EFI to iterate over the memory map entries
during boot. This enables the removal of an x86 specific pad (and ifdef)
in the EFI header. I also couldn't stomach the broken up nature of the
function to put EFI runtime calls into virtual mode any longer so I fixed
that up a bit as well.
For reference, this patch only impacts x86.
Signed-off-by: Matt Tolentino <matthew.e.tolentino@intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
warning when building with gcc -W :
include/linux/efi.h: In function `efi_range_is_wc':
include/linux/efi.h:320: warning: comparison between signed and unsigned
It looks to me like a significantly large 'len' passed in could cause the
loop to never end. Isn't it safer to make 'i' an unsigned long as well?
Like this little patch below (which of course also kills the warning) :
Signed-off-by: Jesper Juhl <juhl-lkml@dif.dk>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!