When using a relocatable kernel we need to make sure that the trampline code
and the interrupt handlers are both copied to low memory. The only way to do
this reliably is to put them in the copied section.
This patch should make relocated kernels work with KVM.
KVM-Stable-Tag
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
In f761622e59 we changed
early_setup_secondary so it's called using the proper kernel stack
rather than the emergency one.
Unfortunately, this stack pointer can't be used when translation is off
on PHYP as this stack pointer might be outside the RMO. This results in
the following on all non zero cpus:
cpu 0x1: Vector: 300 (Data Access) at [c00000001639fd10]
pc: 000000000001c50c
lr: 000000000000821c
sp: c00000001639ff90
msr: 8000000000001000
dar: c00000001639ffa0
dsisr: 42000000
current = 0xc000000016393540
paca = 0xc000000006e00200
pid = 0, comm = swapper
The original patch was only tested on bare metal system, so it never
caught this problem.
This changes __secondary_start so that we calculate the new stack
pointer but only start using it after we've called early_setup_secondary.
With this patch, the above problem goes away.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
As early setup calls down to slb_initialize(), we must have kstack
initialised before checking "should we add a bolted SLB entry for our kstack?"
Failing to do so means stack access requires an SLB miss exception to refill
an entry dynamically, if the stack isn't accessible via SLB(0) (kernel text
& static data). It's not always allowable to take such a miss, and
intermittent crashes will result.
Primary CPUs don't have this issue; an SLB entry is not bolted for their
stack anyway (as that lives within SLB(0)). This patch therefore only
affects the init of secondaries.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Cc: stable <stable@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We have quite some code that can be used by Book3S_32 and Book3S_64 alike,
so let's call it "Book3S" instead of "Book3S_64", so we can later on
use it from the 32 bit port too.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
Cpu hotplug (offline) without dlpar operation will place cpu
in cede state and the extended_cede_processor() function will
return when resumed.
Kernel stack pointer needs to be reset before
start_secondary() is called to continue the online operation.
Added new function start_secondary_resume() to do the above
steps.
Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
On 64-bit kernels we currently have a 512 byte struct paca_struct for
each cpu (usually just called "the paca"). Currently they are statically
allocated, which means a kernel built for a large number of cpus will
waste a lot of space if it's booted on a machine with few cpus.
We can avoid that by only allocating the number of pacas we need at
boot. However this is complicated by the fact that we need to access
the paca before we know how many cpus there are in the system.
The solution is to dynamically allocate enough space for NR_CPUS pacas,
but then later in boot when we know how many cpus we have, we free any
unused pacas.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We need to run some KVM trampoline code in real mode. Unfortunately, real mode
only covers 8MB on Cell so we need to squeeze ourselves as low as possible.
Also, we need to trap interrupts to get us back from guest state to host state
without telling Linux about it.
This patch adds interrupt traps and includes the KVM code that requires real
mode in the real mode parts of Linux.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This contains all the bits that didn't fit in previous patches :-) This
includes the actual exception handlers assembly, the changes to the
kernel entry, other misc bits and wiring it all up in Kconfig.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The kernel uses SPRG registers for various purposes, typically in
low level assembly code as scratch registers or to hold per-cpu
global infos such as the PACA or the current thread_info pointer.
We want to be able to easily shuffle the usage of those registers
as some implementations have specific constraints realted to some
of them, for example, some have userspace readable aliases, etc..
and the current choice isn't always the best.
This patch should not change any code generation, and replaces the
usage of SPRN_SPRGn everywhere in the kernel with a named replacement
and adds documentation next to the definition of the names as to
what those are used for on each processor family.
The only parts that still use the original numbers are bits of KVM
or suspend/resume code that just blindly needs to save/restore all
the SPRGs.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The file include/asm/exception.h contains definitions
that are specific to exception handling on 64-bit server
type processors.
This renames the file to exception-64s.h to reflect that
fact and avoid confusion.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
To prepare for future support of Book3E 64-bit PowerPC processors,
which use a completely different exception handling, we move that
code to a new exceptions-64s.S file.
This file is #included from head_64.S due to some of the absolute
address requirements which can currently only be fulfilled from
within that file.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Currently, load_up_altivec and give_up_altivec are duplicated
in 32-bit and 64-bit. This creates a common implementation that
is moved away from head_32.S, head_64.S and misc_64.S and into
vector.S, using the same macros we already use for our common
implementation of load_up_fpu.
I also moved the VSX code over to vector.S though in that case
I didn't make it build on 32-bit (yet).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CONFIG_PPC_MULTIPLATFORM is a remain of the pre-powerpc days and isn't
really meaningful anymore. It was basically equivalent to PPC64 || 6xx.
This removes it along with the following changes:
- 32-bit platforms that relied on PPC32 && PPC_MULTIPLATFORM now rely
on 6xx which is what they want anyway.
- A new symbol, PPC_BOOK3S, is defined that represent compliance with
the "Server" variant of the architecture. This is set when either 6xx
or PPC64 is set and open the door for future BOOK3E 64-bit.
- 64-bit platforms that relied on PPC64 && PPC_MULTIPLATFORM now use
PPC64 && PPC_BOOK3S
- A separate and selectable CONFIG_PPC_OF_BOOT_TRAMPOLINE option is now
used to control the use of prom_init.c
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The PowerMac kernel occasionally fails to bring up the secondary CPUs on
SMP, the trigger factor seem to be fairly random and related to location
of code and data.
This appears to be due to the initial loading of the TOC value by the
secondary processor which now happens before we clear HID4:RM_CI (Real
Mode Cache Invalidate). This bit should really be cleared before we do
any load or store other than fetching code.
This fix works based on the assumption that all SMP 64-bit PowerMacs use
variants of the 970, which fortunately is true, by explicitely clearing
that bit, adding an slbia for good measure as RM_CI mode is known to
create bogus ERAT entries.
I also removed some spurrious debug output that was left enabled by
mistake while at it.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
The __kdump_flag ABI is overly constraining for future development.
As of 2.6.27, the kernel entry point has 4 constraints: Offset 0 is
the starting point for the master (boot) cpu (entered with r3 pointing
to the device tree structure), offset 0x60 is code for the slave cpus
(entered with r3 set to their device tree physical id), offset 0x20 is
used by the iseries hypervisor, and secondary cpus must be well behaved
when the first 256 bytes are copied to address 0.
Placing the __kdump_flag at 0x18 is bad because:
- It was taking the last 8 bytes before the iseries hypervisor data.
- It was 8 bytes for a boolean flag
- It had no way of identifying that the flag was present
- It does leave any room for the master to add any additional code
before branching, which hurts debug.
- It will be unnecessarily hard for 32 bit code to be common (8 bytes)
Now that we have eliminated the use of __kdump_flag in favor of
the standard is_kdump_kernel(), this flag only controls run without
relocating the kernel to PHYSICAL_START (0), so rename it __run_at_load.
Move the flag to 0x5c, 1 word before the secondary cpu entry point at
0x60. Initialize it with "run0" to say it will run at 0 unless it is
set to 1. It only exists if we are relocatable.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds relocatable kernel support for kdump. With this one can
use the same regular kernel to capture the kdump. A signature (0xfeed1234)
is passed in r6 from panic code to the next kernel through kexec_sequence
and purgatory code. The signature is used to differentiate between
kdump kernel and non-kdump kernels.
The purgatory code compares the signature and sets the __kdump_flag in
head_64.S. During the boot up, kernel code checks __kdump_flag and if it
is set, the kernel will behave as relocatable kdump kernel. This kernel
will boot at the address where it was loaded by kexec-tools ie. at the
address reserved through crashkernel boot parameter.
CONFIG_CRASH_DUMP depends on CONFIG_RELOCATABLE option to build kdump
kernel as relocatable. So the same kernel can be used as production and
kdump kernel.
This patch incorporates the changes suggested by Paul Mackerras to avoid
GOT use and to avoid two copies of the code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Mohan Kumar M <mohan@in.ibm.com>
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This implements CONFIG_RELOCATABLE for 64-bit by making the kernel as
a position-independent executable (PIE) when it is set. This involves
processing the dynamic relocations in the image in the early stages of
booting, even if the kernel is being run at the address it is linked at,
since the linker does not necessarily fill in words in the image for
which there are dynamic relocations. (In fact the linker does fill in
such words for 64-bit executables, though not for 32-bit executables,
so in principle we could avoid calling relocate() entirely when we're
running a 64-bit kernel at the linked address.)
The dynamic relocations are processed by a new function relocate(addr),
where the addr parameter is the virtual address where the image will be
run. In fact we call it twice; once before calling prom_init, and again
when starting the main kernel. This means that reloc_offset() returns
0 in prom_init (since it has been relocated to the address it is running
at), which necessitated a few adjustments.
This also changes __va and __pa to use an equivalent definition that is
simpler. With the relocatable kernel, PAGE_OFFSET and MEMORY_START are
constants (for 64-bit) whereas PHYSICAL_START is a variable (and
KERNELBASE ideally should be too, but isn't yet).
With this, relocatable kernels still copy themselves down to physical
address 0 and run there.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Using LOAD_REG_IMMEDIATE to get the address of kernel symbols
generates 5 instructions where LOAD_REG_ADDR can do it in one,
and will generate R_PPC64_ADDR16_* relocations in the output when
we get to making the kernel as a position-independent executable,
which we'd rather not have to handle. This changes various bits
of assembly code to use LOAD_REG_ADDR when we need to get the
address of a symbol, or to use suitable position-independent code
for cases where we can't access the TOC for various reasons, or
if we're not running at the address we were linked at.
It also cleans up a few minor things; there's no reason to save and
restore SRR0/1 around RTAS calls, __mmu_off can get the return
address from LR more conveniently than the caller can supply it in
R4 (and we already assume elsewhere that EA == RA if the MMU is on
in early boot), and enable_64b_mode was using 5 instructions where
2 would do.
Signed-off-by: Paul Mackerras <paulus@samba.org>
This changes the way that the exception prologs transfer control to
the handlers in 64-bit kernels with the aim of making it possible to
have the prologs separate from the main body of the kernel. Now,
instead of computing the address of the handler by taking the top
32 bits of the paca address (to get the 0xc0000000........ part) and
ORing in something in the bottom 16 bits, we get the base address of
the kernel by doing a load from the paca and add an offset.
This also replaces an mfmsr and an ori to compute the MSR value for
the handler with a load from the paca. That makes it unnecessary to
have a separate version of EXCEPTION_PROLOG_PSERIES that forces 64-bit
mode.
We can no longer use a direct branches in the exception prolog code,
which means that the SLB miss handlers can't branch directly to
.slb_miss_realmode any more. Instead we have to compute the address
and do an indirect branch. This is conditional on CONFIG_RELOCATABLE;
for non-relocatable kernels we use a direct branch as before. (A later
change will allow CONFIG_RELOCATABLE to be set on 64-bit powerpc.)
Since the secondary CPUs on pSeries start execution in the first 0x100
bytes of real memory and then have to get to wherever the kernel is,
we can't use a direct branch to get there. Instead this changes
__secondary_hold_spinloop from a flag to a function pointer. When it
is set to a non-NULL value, the secondary CPUs jump to the function
pointed to by that value.
Finally this eliminates one code difference between 32-bit and 64-bit
by making __secondary_hold be the text address of the secondary CPU
spinloop rather than a function descriptor for it.
Signed-off-by: Paul Mackerras <paulus@samba.org>
This rearranges head_64.S so that we have all the first-level exception
prologs together starting at 0x100, followed by all the second-level
handlers that are invoked from the first-level prologs, followed by
other code. This doesn't make any functional change but will make
following changes for relocatable kernel support easier.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Push the sync below the secondary smp init hold loop and comment its purpose.
This should speed up boot by reducing global traffic during the single-threaded
portion of boot.
Signed-off-by: Sonny Rao <sonnyrao@us.ibm.com>
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This patch extends the floating point save and restore code to use the
VSX load/stores when VSX is available. This will make FP context
save/restore marginally slower on FP only code, when VSX is available,
as it has to load/store 128bits rather than just 64bits.
Mixing FP, VMX and VSX code will get constant architected state.
The signals interface is extended to enable access to VSR 0-31
doubleword 1 after discussions with tool chain maintainers. Backward
compatibility is maintained.
The ptrace interface is also extended to allow access to VSR 0-31 full
registers.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Make load_up_fpu and load_up_altivec callable so they can be reused by
the VSX code.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Move the altivec_unavailable code, to make room at 0xf40 where the
vsx_unavailable exception will be.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
When doing lockdep, I had two patches to initialize paca->_current
early, one bogus, and one correct. Unfortunately both got merged
as the bad one ended up being part of the main lockdep patch by
mistake. This causes memory corruption at boot. This removes
the offending code.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds a system call on 64-bit platforms for switching between
little-endian and big-endian modes that is much faster than doing a
prctl call. This system call is handled as a special case right at
the start of the system call entry code, and because it is a special
case, it uses a system call number which is out of the range of
normal system calls, namely 0x1ebe.
Measurements with lmbench on a 4.2GHz POWER6 showed no measurable
change in the speed of normal system calls with this patch.
Switching endianness with this new system call takes around 60ns on a
4.2GHz POWER6, compared with around 300ns to switch endian mode with a
prctl. This can provide a significant performance advantage for
emulators for little-endian architectures that want to switch between
big-endian and little-endian mode frequently, e.g. because they are
generating instructions sequences on the fly and they want to run
those sequences in little-endian mode.
The other thing about this system call is that it doesn't clobber as
many registers as a normal system call. It only clobbers r12.
Signed-off-by: Paul Mackerras <paulus@samba.org>
This adds the low level irq tracing hooks to the powerpc architecture
needed to enable full lockdep functionality.
This is partly based on Johannes Berg's initial version. I removed
the asm trampoline that isn't needed (thus improving performance) and
modified all sorts of bits and pieces, reworking most of the assembly,
etc...
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Currently, we initialize the "current" pointer in the PACA (which
is used by the "current" macro in the kernel) before calling
setup_system(). That means that early_setup() is called with
current still "NULL" which is -not- a good idea. It happens to
work so far but breaks with lockdep when early code calls printk.
This changes it so that all PACAs are statically initialized with
__current pointing to the init task. For non-0 CPUs, this is fixed
up before use.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
If an SLB miss interrupt happens while the RI bit of MSR is zero, we
can't just return, because RI being zero indicates that SRR0/SRR1
potentially had live values in them, and the process of taking an
interrupt overwrites them.
This should never happen, but if it does, we try to print a nice oops
message. That doesn't work, however, because the code at unrecov_slb
assumes that the MMU has been turned on, but we call it with the MMU
off (and have done so since the SLB miss handler was rewritten to run
without turning the MMU on) -- except on iSeries, where everything runs
with the MMU on.
This fixes it by adding the necessary code to turn the MMU on if
necessary.
Signed-off-by: Paul Mackerras <paulus@samba.org>
A subtle bug sneaked into iSeries recently. On this platform, we must
not normally clear MSR:EE (the hardware external interrupt enable)
except for short periods of time. Taking an interrupt while
soft-disabled doesn't cause us to clear it for example.
The iSeries kernel expects to mostly run with MSR:EE enabled at all
times except in a few exception entry/exit code paths. Thus
local_irq_enable() doesn't check if it needs to hard-enable as it
expects this to be unnecessary on iSeries.
However, hard_irq_disable() _does_ cause MSR:EE to be cleared,
including on iSeries. A call to it was recently added to the
context switch code, thus causing interrupts to become disabled
for a long periods of time, causing the iSeries watchdog to kick
in under some circumstances and other nasty things.
This patch fixes it by making local_irq_enable() properly re-enable
MSR:EE on iSeries. It basically removes a return statement here
to make iSeries use the same code path as everybody else. That does
mean that we might occasionally get spurious decrementer interrupts
but I don't think that matters.
Another option would have been to make hard_irq_disable() a nop
on iSeries but I didn't like it much, in case we have good reasons
to hard-disable.
Part of the patch is fixes to make sure the hard_enabled PACA field
is properly set on iSeries as it used not to be before, since it
was mostly unused.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Using 64k pages on 64-bit PowerPC systems makes life difficult for
emulators that are trying to emulate an ISA, such as x86, which use a
smaller page size, since the emulator can no longer use the MMU and
the normal system calls for controlling page protections. Of course,
the emulator can emulate the MMU by checking and possibly remapping
the address for each memory access in software, but that is pretty
slow.
This provides a facility for such programs to control the access
permissions on individual 4k sub-pages of 64k pages. The idea is
that the emulator supplies an array of protection masks to apply to a
specified range of virtual addresses. These masks are applied at the
level where hardware PTEs are inserted into the hardware page table
based on the Linux PTEs, so the Linux PTEs are not affected. Note
that this new mechanism does not allow any access that would otherwise
be prohibited; it can only prohibit accesses that would otherwise be
allowed. This new facility is only available on 64-bit PowerPC and
only when the kernel is configured for 64k pages.
The masks are supplied using a new subpage_prot system call, which
takes a starting virtual address and length, and a pointer to an array
of protection masks in memory. The array has a 32-bit word per 64k
page to be protected; each 32-bit word consists of 16 2-bit fields,
for which 0 allows any access (that is otherwise allowed), 1 prevents
write accesses, and 2 or 3 prevent any access.
Implicit in this is that the regions of the address space that are
protected are switched to use 4k hardware pages rather than 64k
hardware pages (on machines with hardware 64k page support). In fact
the whole process is switched to use 4k hardware pages when the
subpage_prot system call is used, but this could be improved in future
to switch only the affected segments.
The subpage protection bits are stored in a 3 level tree akin to the
page table tree. The top level of this tree is stored in a structure
that is appended to the top level of the page table tree, i.e., the
pgd array. Since it will often only be 32-bit addresses (below 4GB)
that are protected, the pointers to the first four bottom level pages
are also stored in this structure (each bottom level page contains the
protection bits for 1GB of address space), so the protection bits for
addresses below 4GB can be accessed with one fewer loads than those
for higher addresses.
Signed-off-by: Paul Mackerras <paulus@samba.org>
If the low level MMU hash table insertion returns an error (which
can happen in some rare circumstances when the hypervisor refuses
the insertion of a PTE, typically if you try to access junk via
/dev/mem), the generated signal had an incorrect si_addr value due
to a bug in the assembly, which was loading it as a 32 bits quantity
instead of a 64 bits quantity.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This makes the kernel use 1TB segments for all kernel mappings and for
user addresses of 1TB and above, on machines which support them
(currently POWER5+, POWER6 and PA6T).
We detect that the machine supports 1TB segments by looking at the
ibm,processor-segment-sizes property in the device tree.
We don't currently use 1TB segments for user addresses < 1T, since
that would effectively prevent 32-bit processes from using huge pages
unless we also had a way to revert to using 256MB segments. That
would be possible but would involve extra complications (such as
keeping track of which segment size was used when HPTEs were inserted)
and is not addressed here.
Parts of this patch were originally written by Ben Herrenschmidt.
Signed-off-by: Paul Mackerras <paulus@samba.org>
This saves 4k on non pSeries builds (except for iSeries where it saves
almost 4k).
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
David Gibson pointed out that swapper_pg_dir actually need to be
PGD_TABLE_SIZE bytes long not PAGE_SIZE. This actually saves 64k in
the bss for a kernel ppc64_defconfig built with CONFIG_PPC_64K_PAGES.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
It is just a C char array, so declare it thusly.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
There's no need to call the runlatch on functions on processors that
don't implement them (CPU_FTR_CTRL).
Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Paul Mackerras <paulus@samba.org>
out of head_64.S and into platforms/iseries/exception.S
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
It makes head_64.S a bit more readable and will allow us to move the
iSeries exceptions elsewhere.
This also removes the last line of the comment:
* The following macros define the code that appears as
* the prologue to each of the exception handlers. They
* are split into two parts to allow a single kernel binary
* to be used for pSeries and iSeries.
* LOL. One day... - paulus
Anything is possible. :-)
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
We need to have xLparMap in head_64.S so that it is at a fixed address
(because the linker will not resolve (address & 0xffffffff) for us).
But the assembler miscalculates the KERNEL_VSID() expressions. So put
the confusing expressions into asm-offsets.c.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
WARNING: vmlinux.o(.text+0x8124): Section mismatch: reference to .init.text:.iSeries_early_setup (between '.__start_initialization_iSeries' and '.__mmu_off')
WARNING: vmlinux.o(.text+0x8128): Section mismatch: reference to .init.text:.early_setup (between '.__start_initialization_iSeries' and '.__mmu_off')
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Remove references to pSeries and OpenFirmware in the __secondary_hold
usage comment. __secondary_hold is a generic routine and can be used
by other platforms.
Signed-off-by: Geoff Levand <geoffrey.levand@am.sony.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Save the trap number in the case of getting a bad stack in an exception
handler. It is sometimes useful to know what exception it was that caused
this to happen. Without this, no trap number is reported.
Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Paul Mackerras <paulus@samba.org>
This is now inaccurate because we may not have entered prom_init() and
r3 is overwritten immediately anyway.
Signed-off-by: Sonny Rao <sonny@burdell.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Remove some redundant isync instructions.
enable_64b_mode() already does an isync, so there is no need to do it again.
Signed-off-by: MOKUNO, Masakazu <mokuno@sm.sony.co.jp>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
To the issue: some point during 2.6.20 development, Paul Mackerras
introduced the "lazy IRQ disabling" patch (very cool work, BTW).
In that patch, the performance monitor unit exception was marked as
"maskable", in the sense that if interrupts were soft-disabled, that
exception could be ignored. This broke my PowerPC profiling code.
The symptom that I see is that a varying number of interrupts
(from 0 to $n$, typically closer to 0) get delivered, when, in
reality, it should always be very close to $n$.
The issue stems from the way masking is being done. Masking in
this fashion seems to work well with the decrementer and external
interrupts, because they are raised again until "really" handled.
For the PMU, however, this does not apply (at least on my Xserver
machine with a 970FX processor). If the PMU exception is not handled,
it will _not_ be re-raised (at least on my machine). The documentation
states that the PMXE bit in MMCR0 is set to 0 when the PMU exception
is raised. However, software must re-set the bit to re-enable PMU
exceptions. If the exception is ignored (as currently) not only is
that interrupt lost, but because software does not re-set PMXE, the
PMU registers are "frozen" forever.
[This patch means that performance monitor exceptions are taken and
handled even if irqs are off, as long as some other interrupt hasn't
come along and caused interrupts to be hard-disabled. In this sense
the PMU exception becomes like an NMI. The oprofile code for most
powerpc processors does nothing that is unsafe in an NMI context, but
the Cell oprofile code does a spin_lock_irqsave. However, that turns
out to be OK because Cell doesn't actually use the performance
monitor exception; performance monitor interrupts come in as a
regular interrupt on Cell, so will be disabled when irqs are off.
-- paulus.]
Signed-off-by: Paul Mackerras <paulus@samba.org>
Commit 3ccfc65c50 missed the same fixes for
legacy iSeries specific code, so make some more symbols no longer global.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>