Commit Graph

14 Commits

Author SHA1 Message Date
Walter Wu
e4b7818b9a kasan: record and print the free track
Move free track from kasan_alloc_meta to kasan_free_meta in order to make
struct kasan_alloc_meta and kasan_free_meta size are both 16 bytes.  It is
a good size because it is the minimal redzone size and a good number of
alignment.

For free track, we make some modifications as shown below:
1) Remove the free_track from struct kasan_alloc_meta.
2) Add the free_track into struct kasan_free_meta.
3) Add a macro KASAN_KMALLOC_FREETRACK in order to check whether
   it can print free stack in KASAN report.

[1]https://bugzilla.kernel.org/show_bug.cgi?id=198437

[walter-zh.wu@mediatek.com: build fix]
  Link: http://lkml.kernel.org/r/20200710162440.23887-1-walter-zh.wu@mediatek.com

Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Co-developed-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Link: http://lkml.kernel.org/r/20200601051022.1230-1-walter-zh.wu@mediatek.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:28 -07:00
Arun KS
ca79b0c211 mm: convert totalram_pages and totalhigh_pages variables to atomic
totalram_pages and totalhigh_pages are made static inline function.

Main motivation was that managed_page_count_lock handling was complicating
things.  It was discussed in length here,
https://lore.kernel.org/patchwork/patch/995739/#1181785 So it seemes
better to remove the lock and convert variables to atomic, with preventing
poteintial store-to-read tearing as a bonus.

[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/1542090790-21750-4-git-send-email-arunks@codeaurora.org
Signed-off-by: Arun KS <arunks@codeaurora.org>
Suggested-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:47 -08:00
Andrey Konovalov
e886bf9d9a kasan: add SPDX-License-Identifier mark to source files
This patch adds a "SPDX-License-Identifier: GPL-2.0" mark to all source
files under mm/kasan.

Link: http://lkml.kernel.org/r/bce2d1e618afa5142e81961ab8fa4b4165337380.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:44 -08:00
Clark Williams
026d1eaf5e mm/kasan/quarantine.c: make quarantine_lock a raw_spinlock_t
The static lock quarantine_lock is used in quarantine.c to protect the
quarantine queue datastructures.  It is taken inside quarantine queue
manipulation routines (quarantine_put(), quarantine_reduce() and
quarantine_remove_cache()), with IRQs disabled.  This is not a problem on
a stock kernel but is problematic on an RT kernel where spin locks are
sleeping spinlocks, which can sleep and can not be acquired with disabled
interrupts.

Convert the quarantine_lock to a raw spinlock_t.  The usage of
quarantine_lock is confined to quarantine.c and the work performed while
the lock is held is used for debug purpose.

[bigeasy@linutronix.de: slightly altered the commit message]
Link: http://lkml.kernel.org/r/20181010214945.5owshc3mlrh74z4b@linutronix.de
Signed-off-by: Clark Williams <williams@redhat.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:38:15 -07:00
Dmitry Vyukov
ce5bec54bb kasan: fix races in quarantine_remove_cache()
quarantine_remove_cache() frees all pending objects that belong to the
cache, before we destroy the cache itself.  However there are currently
two possibilities how it can fail to do so.

First, another thread can hold some of the objects from the cache in
temp list in quarantine_put().  quarantine_put() has a windows of
enabled interrupts, and on_each_cpu() in quarantine_remove_cache() can
finish right in that window.  These objects will be later freed into the
destroyed cache.

Then, quarantine_reduce() has the same problem.  It grabs a batch of
objects from the global quarantine, then unlocks quarantine_lock and
then frees the batch.  quarantine_remove_cache() can finish while some
objects from the cache are still in the local to_free list in
quarantine_reduce().

Fix the race with quarantine_put() by disabling interrupts for the whole
duration of quarantine_put().  In combination with on_each_cpu() in
quarantine_remove_cache() it ensures that quarantine_remove_cache()
either sees the objects in the per-cpu list or in the global list.

Fix the race with quarantine_reduce() by protecting quarantine_reduce()
with srcu critical section and then doing synchronize_srcu() at the end
of quarantine_remove_cache().

I've done some assessment of how good synchronize_srcu() works in this
case.  And on a 4 CPU VM I see that it blocks waiting for pending read
critical sections in about 2-3% of cases.  Which looks good to me.

I suspect that these races are the root cause of some GPFs that I
episodically hit.  Previously I did not have any explanation for them.

  BUG: unable to handle kernel NULL pointer dereference at 00000000000000c8
  IP: qlist_free_all+0x2e/0xc0 mm/kasan/quarantine.c:155
  PGD 6aeea067
  PUD 60ed7067
  PMD 0
  Oops: 0000 [#1] SMP KASAN
  Dumping ftrace buffer:
     (ftrace buffer empty)
  Modules linked in:
  CPU: 0 PID: 13667 Comm: syz-executor2 Not tainted 4.10.0+ #60
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
  task: ffff88005f948040 task.stack: ffff880069818000
  RIP: 0010:qlist_free_all+0x2e/0xc0 mm/kasan/quarantine.c:155
  RSP: 0018:ffff88006981f298 EFLAGS: 00010246
  RAX: ffffea0000ffff00 RBX: 0000000000000000 RCX: ffffea0000ffff1f
  RDX: 0000000000000000 RSI: ffff88003fffc3e0 RDI: 0000000000000000
  RBP: ffff88006981f2c0 R08: ffff88002fed7bd8 R09: 00000001001f000d
  R10: 00000000001f000d R11: ffff88006981f000 R12: ffff88003fffc3e0
  R13: ffff88006981f2d0 R14: ffffffff81877fae R15: 0000000080000000
  FS:  00007fb911a2d700(0000) GS:ffff88003ec00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00000000000000c8 CR3: 0000000060ed6000 CR4: 00000000000006f0
  Call Trace:
   quarantine_reduce+0x10e/0x120 mm/kasan/quarantine.c:239
   kasan_kmalloc+0xca/0xe0 mm/kasan/kasan.c:590
   kasan_slab_alloc+0x12/0x20 mm/kasan/kasan.c:544
   slab_post_alloc_hook mm/slab.h:456 [inline]
   slab_alloc_node mm/slub.c:2718 [inline]
   kmem_cache_alloc_node+0x1d3/0x280 mm/slub.c:2754
   __alloc_skb+0x10f/0x770 net/core/skbuff.c:219
   alloc_skb include/linux/skbuff.h:932 [inline]
   _sctp_make_chunk+0x3b/0x260 net/sctp/sm_make_chunk.c:1388
   sctp_make_data net/sctp/sm_make_chunk.c:1420 [inline]
   sctp_make_datafrag_empty+0x208/0x360 net/sctp/sm_make_chunk.c:746
   sctp_datamsg_from_user+0x7e8/0x11d0 net/sctp/chunk.c:266
   sctp_sendmsg+0x2611/0x3970 net/sctp/socket.c:1962
   inet_sendmsg+0x164/0x5b0 net/ipv4/af_inet.c:761
   sock_sendmsg_nosec net/socket.c:633 [inline]
   sock_sendmsg+0xca/0x110 net/socket.c:643
   SYSC_sendto+0x660/0x810 net/socket.c:1685
   SyS_sendto+0x40/0x50 net/socket.c:1653

I am not sure about backporting.  The bug is quite hard to trigger, I've
seen it few times during our massive continuous testing (however, it
could be cause of some other episodic stray crashes as it leads to
memory corruption...).  If it is triggered, the consequences are very
bad -- almost definite bad memory corruption.  The fix is non trivial
and has chances of introducing new bugs.  I am also not sure how
actively people use KASAN on older releases.

[dvyukov@google.com: - sorted includes[
  Link: http://lkml.kernel.org/r/20170309094028.51088-1-dvyukov@google.com
Link: http://lkml.kernel.org/r/20170308151532.5070-1-dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-09 17:01:10 -08:00
Dmitry Vyukov
68fd814a33 kasan: resched in quarantine_remove_cache()
We see reported stalls/lockups in quarantine_remove_cache() on machines
with large amounts of RAM.  quarantine_remove_cache() needs to scan
whole quarantine in order to take out all objects belonging to the
cache.  Quarantine is currently 1/32-th of RAM, e.g.  on a machine with
256GB of memory that will be 8GB.  Moreover quarantine scanning is a
walk over uncached linked list, which is slow.

Add cond_resched() after scanning of each non-empty batch of objects.
Batches are specifically kept of reasonable size for quarantine_put().
On a machine with 256GB of RAM we should have ~512 non-empty batches,
each with 16MB of objects.

Link: http://lkml.kernel.org/r/20170308154239.25440-1-dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-09 17:01:10 -08:00
Greg Thelen
f9fa1d919c kasan: drain quarantine of memcg slab objects
Per memcg slab accounting and kasan have a problem with kmem_cache
destruction.
 - kmem_cache_create() allocates a kmem_cache, which is used for
   allocations from processes running in root (top) memcg.
 - Processes running in non root memcg and allocating with either
   __GFP_ACCOUNT or from a SLAB_ACCOUNT cache use a per memcg
   kmem_cache.
 - Kasan catches use-after-free by having kfree() and kmem_cache_free()
   defer freeing of objects. Objects are placed in a quarantine.
 - kmem_cache_destroy() destroys root and non root kmem_caches. It takes
   care to drain the quarantine of objects from the root memcg's
   kmem_cache, but ignores objects associated with non root memcg. This
   causes leaks because quarantined per memcg objects refer to per memcg
   kmem cache being destroyed.

To see the problem:

 1) create a slab cache with kmem_cache_create(,,,SLAB_ACCOUNT,)
 2) from non root memcg, allocate and free a few objects from cache
 3) dispose of the cache with kmem_cache_destroy() kmem_cache_destroy()
    will trigger a "Slab cache still has objects" warning indicating
    that the per memcg kmem_cache structure was leaked.

Fix the leak by draining kasan quarantined objects allocated from non
root memcg.

Racing memcg deletion is tricky, but handled.  kmem_cache_destroy() =>
shutdown_memcg_caches() => __shutdown_memcg_cache() => shutdown_cache()
flushes per memcg quarantined objects, even if that memcg has been
rmdir'd and gone through memcg_deactivate_kmem_caches().

This leak only affects destroyed SLAB_ACCOUNT kmem caches when kasan is
enabled.  So I don't think it's worth patching stable kernels.

Link: http://lkml.kernel.org/r/1482257462-36948-1-git-send-email-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:56 -08:00
Dmitry Vyukov
64abdcb243 kasan: eliminate long stalls during quarantine reduction
Currently we dedicate 1/32 of RAM for quarantine and then reduce it by
1/4 of total quarantine size.  This can be a significant amount of
memory.  For example, with 4GB of RAM total quarantine size is 128MB and
it is reduced by 32MB at a time.  With 128GB of RAM total quarantine
size is 4GB and it is reduced by 1GB.  This leads to several problems:

 - freeing 1GB can take tens of seconds, causes rcu stall warnings and
   just introduces unexpected long delays at random places
 - if kmalloc() is called under a mutex, other threads stall on that
   mutex while a thread reduces quarantine
 - threads wait on quarantine_lock while one thread grabs a large batch
   of objects to evict
 - we walk the uncached list of object to free twice which makes all of
   the above worse
 - when a thread frees objects, they are already not accounted against
   global_quarantine.bytes; as the result we can have quarantine_size
   bytes in quarantine + unbounded amount of memory in large batches in
   threads that are in process of freeing

Reduce size of quarantine in smaller batches to reduce the delays.  The
only reason to reduce it in batches is amortization of overheads, the
new batch size of 1MB should be well enough to amortize spinlock
lock/unlock and few function calls.

Plus organize quarantine as a FIFO array of batches.  This allows to not
walk the list in quarantine_reduce() under quarantine_lock, which in
turn reduces contention and is just faster.

This improves performance of heavy load (syzkaller fuzzing) by ~20% with
4 CPUs and 32GB of RAM.  Also this eliminates frequent (every 5 sec)
drops of CPU consumption from ~400% to ~100% (one thread reduces
quarantine while others are waiting on a mutex).

Some reference numbers:
1. Machine with 4 CPUs and 4GB of memory. Quarantine size 128MB.
   Currently we free 32MB at at time.
   With new code we free 1MB at a time (1024 batches, ~128 are used).
2. Machine with 32 CPUs and 128GB of memory. Quarantine size 4GB.
   Currently we free 1GB at at time.
   With new code we free 8MB at a time (1024 batches, ~512 are used).
3. Machine with 4096 CPUs and 1TB of memory. Quarantine size 32GB.
   Currently we free 8GB at at time.
   With new code we free 4MB at a time (16K batches, ~8K are used).

Link: http://lkml.kernel.org/r/1478756952-18695-1-git-send-email-dvyukov@google.com
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:09 -08:00
Alexander Potapenko
bcbf0d566b kasan: remove the unnecessary WARN_ONCE from quarantine.c
It's quite unlikely that the user will so little memory that the per-CPU
quarantines won't fit into the given fraction of the available memory.
Even in that case he won't be able to do anything with the information
given in the warning.

Link: http://lkml.kernel.org/r/1470929182-101413-1-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-11 16:58:14 -07:00
Alexander Potapenko
c3cee37228 kasan: avoid overflowing quarantine size on low memory systems
If the total amount of memory assigned to quarantine is less than the
amount of memory assigned to per-cpu quarantines, |new_quarantine_size|
may overflow.  Instead, set it to zero.

[akpm@linux-foundation.org: cleanup: use WARN_ONCE return value]
Link: http://lkml.kernel.org/r/1470063563-96266-1-git-send-email-glider@google.com
Fixes: 55834c5909 ("mm: kasan: initial memory quarantine implementation")
Signed-off-by: Alexander Potapenko <glider@google.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 17:31:41 -04:00
Andrey Ryabinin
b3cbd9bf77 mm/kasan: get rid of ->state in struct kasan_alloc_meta
The state of object currently tracked in two places - shadow memory, and
the ->state field in struct kasan_alloc_meta.  We can get rid of the
latter.  The will save us a little bit of memory.  Also, this allow us
to move free stack into struct kasan_alloc_meta, without increasing
memory consumption.  So now we should always know when the last time the
object was freed.  This may be useful for long delayed use-after-free
bugs.

As a side effect this fixes following UBSAN warning:
	UBSAN: Undefined behaviour in mm/kasan/quarantine.c:102:13
	member access within misaligned address ffff88000d1efebc for type 'struct qlist_node'
	which requires 8 byte alignment

Link: http://lkml.kernel.org/r/1470062715-14077-5-git-send-email-aryabinin@virtuozzo.com
Reported-by: kernel test robot <xiaolong.ye@intel.com>
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 17:31:41 -04:00
Andrey Ryabinin
f7376aed6c mm/kasan, slub: don't disable interrupts when object leaves quarantine
SLUB doesn't require disabled interrupts to call ___cache_free().

Link: http://lkml.kernel.org/r/1470062715-14077-3-git-send-email-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 17:31:41 -04:00
Joonsoo Kim
0ab686d8c8 kasan/quarantine: fix bugs on qlist_move_cache()
There are two bugs on qlist_move_cache().  One is that qlist's tail
isn't set properly.  curr->next can be NULL since it is singly linked
list and NULL value on tail is invalid if there is one item on qlist.
Another one is that if cache is matched, qlist_put() is called and it
will set curr->next to NULL.  It would cause to stop the loop
prematurely.

These problems come from complicated implementation so I'd like to
re-implement it completely.  Implementation in this patch is really
simple.  Iterate all qlist_nodes and put them to appropriate list.

Unfortunately, I got this bug sometime ago and lose oops message.  But,
the bug looks trivial and no need to attach oops.

Fixes: 55834c5909 ("mm: kasan: initial memory quarantine implementation")
Link: http://lkml.kernel.org/r/1467766348-22419-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Kuthonuzo Luruo <poll.stdin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 14:54:27 +09:00
Alexander Potapenko
55834c5909 mm: kasan: initial memory quarantine implementation
Quarantine isolates freed objects in a separate queue.  The objects are
returned to the allocator later, which helps to detect use-after-free
errors.

When the object is freed, its state changes from KASAN_STATE_ALLOC to
KASAN_STATE_QUARANTINE.  The object is poisoned and put into quarantine
instead of being returned to the allocator, therefore every subsequent
access to that object triggers a KASAN error, and the error handler is
able to say where the object has been allocated and deallocated.

When it's time for the object to leave quarantine, its state becomes
KASAN_STATE_FREE and it's returned to the allocator.  From now on the
allocator may reuse it for another allocation.  Before that happens,
it's still possible to detect a use-after free on that object (it
retains the allocation/deallocation stacks).

When the allocator reuses this object, the shadow is unpoisoned and old
allocation/deallocation stacks are wiped.  Therefore a use of this
object, even an incorrect one, won't trigger ASan warning.

Without the quarantine, it's not guaranteed that the objects aren't
reused immediately, that's why the probability of catching a
use-after-free is lower than with quarantine in place.

Quarantine isolates freed objects in a separate queue.  The objects are
returned to the allocator later, which helps to detect use-after-free
errors.

Freed objects are first added to per-cpu quarantine queues.  When a
cache is destroyed or memory shrinking is requested, the objects are
moved into the global quarantine queue.  Whenever a kmalloc call allows
memory reclaiming, the oldest objects are popped out of the global queue
until the total size of objects in quarantine is less than 3/4 of the
maximum quarantine size (which is a fraction of installed physical
memory).

As long as an object remains in the quarantine, KASAN is able to report
accesses to it, so the chance of reporting a use-after-free is
increased.  Once the object leaves quarantine, the allocator may reuse
it, in which case the object is unpoisoned and KASAN can't detect
incorrect accesses to it.

Right now quarantine support is only enabled in SLAB allocator.
Unification of KASAN features in SLAB and SLUB will be done later.

This patch is based on the "mm: kasan: quarantine" patch originally
prepared by Dmitry Chernenkov.  A number of improvements have been
suggested by Andrey Ryabinin.

[glider@google.com: v9]
  Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00