Commit Graph

5538 Commits

Author SHA1 Message Date
Paolo Bonzini
cf05a67b68 KVM: x86: omit "impossible" pmu MSRs from MSR list
INTEL_PMC_MAX_GENERIC is currently 32, which exceeds the 18
contiguous MSR indices reserved by Intel for event selectors.
Since some machines actually have MSRs past the reserved range,
filtering them against x86_pmu.num_counters_gp may have false
positives.  Cut the list to 18 entries to avoid this.

Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jim Mattson <jamttson@google.com>
Fixes: e2ada66ec4 ("kvm: x86: Add Intel PMU MSRs to msrs_to_save[]", 2019-08-21)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-10-04 14:01:28 +02:00
Sean Christopherson
567926cca9 KVM: nVMX: Fix consistency check on injected exception error code
Current versions of Intel's SDM incorrectly state that "bits 31:15 of
the VM-Entry exception error-code field" must be zero.  In reality, bits
31:16 must be zero, i.e. error codes are 16-bit values.

The bogus error code check manifests as an unexpected VM-Entry failure
due to an invalid code field (error number 7) in L1, e.g. when injecting
a #GP with error_code=0x9f00.

Nadav previously reported the bug[*], both to KVM and Intel, and fixed
the associated kvm-unit-test.

[*] https://patchwork.kernel.org/patch/11124749/

Reported-by: Nadav Amit <namit@vmware.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-10-03 12:32:44 +02:00
Paolo Bonzini
24c29b7ac0 KVM: x86: omit absent pmu MSRs from MSR list
INTEL_PMC_MAX_GENERIC is currently 32, which exceeds the 18 contiguous
MSR indices reserved by Intel for event selectors.  Since some machines
actually have MSRs past the reserved range, these may survive the
filtering of msrs_to_save array and would be rejected by KVM_GET/SET_MSR.
To avoid this, cut the list to whatever CPUID reports for the host's
architectural PMU.

Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Fixes: e2ada66ec4 ("kvm: x86: Add Intel PMU MSRs to msrs_to_save[]", 2019-08-21)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-10-03 12:07:59 +02:00
Jim Mattson
e1fba49cc1 kvm: vmx: Limit guest PMCs to those supported on the host
KVM can only virtualize as many PMCs as the host supports.

Limit the number of generic counters and fixed counters to the number
of corresponding counters supported on the host, rather than to
INTEL_PMC_MAX_GENERIC and INTEL_PMC_MAX_FIXED, respectively.

Note that INTEL_PMC_MAX_GENERIC is currently 32, which exceeds the 18
contiguous MSR indices reserved by Intel for event selectors. Since
the existing code relies on a contiguous range of MSR indices for
event selectors, it can't possibly work for more than 18 general
purpose counters.

Fixes: f5132b0138 ("KVM: Expose a version 2 architectural PMU to a guests")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-10-01 15:15:06 +02:00
Paolo Bonzini
833b45de69 kvm: x86, powerpc: do not allow clearing largepages debugfs entry
The largepages debugfs entry is incremented/decremented as shadow
pages are created or destroyed.  Clearing it will result in an
underflow, which is harmless to KVM but ugly (and could be
misinterpreted by tools that use debugfs information), so make
this particular statistic read-only.

Cc: kvm-ppc@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-30 18:52:00 +02:00
Waiman Long
19a36d329f KVM: VMX: Set VMENTER_L1D_FLUSH_NOT_REQUIRED if !X86_BUG_L1TF
The l1tf_vmx_mitigation is only set to VMENTER_L1D_FLUSH_NOT_REQUIRED
when the ARCH_CAPABILITIES MSR indicates that L1D flush is not required.
However, if the CPU is not affected by L1TF, l1tf_vmx_mitigation will
still be set to VMENTER_L1D_FLUSH_AUTO. This is certainly not the best
option for a !X86_BUG_L1TF CPU.

So force l1tf_vmx_mitigation to VMENTER_L1D_FLUSH_NOT_REQUIRED to make it
more explicit in case users are checking the vmentry_l1d_flush parameter.

Signed-off-by: Waiman Long <longman@redhat.com>
[Patch rewritten accoring to Borislav Petkov's suggestion. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-27 18:04:18 +02:00
Paolo Bonzini
1f4e5fc83a KVM: x86: fix nested guest live migration with PML
Shadow paging is fundamentally incompatible with the page-modification
log, because the GPAs in the log come from the wrong memory map.
In particular, for the EPT page-modification log, the GPAs in the log come
from L2 rather than L1.  (If there was a non-EPT page-modification log,
we couldn't use it for shadow paging because it would log GVAs rather
than GPAs).

Therefore, we need to rely on write protection to record dirty pages.
This has the side effect of bypassing PML, since writes now result in an
EPT violation vmexit.

This is relatively easy to add to KVM, because pretty much the only place
that needs changing is spte_clear_dirty.  The first access to the page
already goes through the page fault path and records the correct GPA;
it's only subsequent accesses that are wrong.  Therefore, we can equip
set_spte (where the first access happens) to record that the SPTE will
have to be write protected, and then spte_clear_dirty will use this
information to do the right thing.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-27 13:13:39 +02:00
Paolo Bonzini
6eeb4ef049 KVM: x86: assign two bits to track SPTE kinds
Currently, we are overloading SPTE_SPECIAL_MASK to mean both
"A/D bits unavailable" and MMIO, where the difference between the
two is determined by mio_mask and mmio_value.

However, the next patch will need two bits to distinguish
availability of A/D bits from write protection.  So, while at
it give MMIO its own bit pattern, and move the two bits from
bit 62 to bits 52..53 since Intel is allocating EPT page table
bits from the top.

Reviewed-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-27 13:13:24 +02:00
Sebastian Andrzej Siewior
504ce1954f KVM: x86: Expose XSAVEERPTR to the guest
I was surprised to see that the guest reported `fxsave_leak' while the
host did not. After digging deeper I noticed that the bits are simply
masked out during enumeration.

The XSAVEERPTR feature is actually a bug fix on AMD which means the
kernel can disable a workaround.

Pass XSAVEERPTR to the guest if available on the host.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-26 13:20:55 +02:00
Jim Mattson
40bc47b08b kvm: x86: Enumerate support for CLZERO instruction
CLZERO is available to the guest if it is supported on the
host. Therefore, enumerate support for the instruction in
KVM_GET_SUPPORTED_CPUID whenever it is supported on the host.

Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-26 13:20:54 +02:00
Jim Mattson
5f41a37b15 kvm: x86: Use AMD CPUID semantics for AMD vCPUs
When the guest CPUID information represents an AMD vCPU, return all
zeroes for queries of undefined CPUID leaves, whether or not they are
in range.

Signed-off-by: Jim Mattson <jmattson@google.com>
Fixes: bd22f5cfcf ("KVM: move and fix substitue search for missing CPUID entries")
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Jacob Xu <jacobhxu@google.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-26 12:31:32 +02:00
Jim Mattson
43561123ab kvm: x86: Improve emulation of CPUID leaves 0BH and 1FH
For these CPUID leaves, the EDX output is not dependent on the ECX
input (i.e. the SIGNIFCANT_INDEX flag doesn't apply to
EDX). Furthermore, the low byte of the ECX output is always identical
to the low byte of the ECX input. KVM does not produce the correct ECX
and EDX outputs for any undefined subleaves beyond the first.

Special-case these CPUID leaves in kvm_cpuid, so that the ECX and EDX
outputs are properly generated for all undefined subleaves.

Fixes: 0771671749 ("KVM: Enhance guest cpuid management")
Fixes: a87f2d3a6e ("KVM: x86: Add Intel CPUID.1F cpuid emulation support")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Jacob Xu <jacobhxu@google.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-26 12:31:31 +02:00
Wanpeng Li
3ca9419227 KVM: X86: Fix userspace set invalid CR4
Reported by syzkaller:

	WARNING: CPU: 0 PID: 6544 at /home/kernel/data/kvm/arch/x86/kvm//vmx/vmx.c:4689 handle_desc+0x37/0x40 [kvm_intel]
	CPU: 0 PID: 6544 Comm: a.out Tainted: G           OE     5.3.0-rc4+ #4
	RIP: 0010:handle_desc+0x37/0x40 [kvm_intel]
	Call Trace:
	 vmx_handle_exit+0xbe/0x6b0 [kvm_intel]
	 vcpu_enter_guest+0x4dc/0x18d0 [kvm]
	 kvm_arch_vcpu_ioctl_run+0x407/0x660 [kvm]
	 kvm_vcpu_ioctl+0x3ad/0x690 [kvm]
	 do_vfs_ioctl+0xa2/0x690
	 ksys_ioctl+0x6d/0x80
	 __x64_sys_ioctl+0x1a/0x20
	 do_syscall_64+0x74/0x720
	 entry_SYSCALL_64_after_hwframe+0x49/0xbe

When CR4.UMIP is set, guest should have UMIP cpuid flag. Current
kvm set_sregs function doesn't have such check when userspace inputs
sregs values. SECONDARY_EXEC_DESC is enabled on writes to CR4.UMIP
in vmx_set_cr4 though guest doesn't have UMIP cpuid flag. The testcast
triggers handle_desc warning when executing ltr instruction since
guest architectural CR4 doesn't set UMIP. This patch fixes it by
adding valid CR4 and CPUID combination checking in __set_sregs.

syzkaller source: https://syzkaller.appspot.com/x/repro.c?x=138efb99600000

Reported-by: syzbot+0f1819555fbdce992df9@syzkaller.appspotmail.com
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-26 12:31:31 +02:00
Jim Mattson
a1a640b8c0 kvm: x86: Fix a spurious -E2BIG in __do_cpuid_func
Don't return -E2BIG from __do_cpuid_func when processing function 0BH
or 1FH and the last interesting subleaf occupies the last allocated
entry in the result array.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 831bf664e9 ("KVM: Refactor and simplify kvm_dev_ioctl_get_supported_cpuid")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-26 12:31:30 +02:00
Wanpeng Li
a0f0037e90 KVM: LAPIC: Loosen filter for adaptive tuning of lapic_timer_advance_ns
5000 guest cycles delta is easy to encounter on desktop, per-vCPU
lapic_timer_advance_ns always keeps at 1000ns initial value, let's
loosen the filter a bit to let adaptive tuning make progress.

Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-26 12:31:29 +02:00
Paolo Bonzini
fd3edd4a90 KVM: nVMX: cleanup and fix host 64-bit mode checks
KVM was incorrectly checking vmcs12->host_ia32_efer even if the "load
IA32_EFER" exit control was reset.  Also, some checks were not using
the new CC macro for tracing.

Cleanup everything so that the vCPU's 64-bit mode is determined
directly from EFER_LMA and the VMCS checks are based on that, which
matches section 26.2.4 of the SDM.

Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Fixes: 5845038c11
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-25 19:22:33 +02:00
Vitaly Kuznetsov
cab0185027 KVM: vmx: fix build warnings in hv_enable_direct_tlbflush() on i386
The following was reported on i386:

  arch/x86/kvm/vmx/vmx.c: In function 'hv_enable_direct_tlbflush':
  arch/x86/kvm/vmx/vmx.c:503:10: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]

pr_debugs() in this function are  more or less useless, let's just
remove them. evmcs->hv_vm_id can use 'unsigned long' instead of 'u64'.

Also, simplify the code a little bit.

Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-25 15:31:23 +02:00
Sean Christopherson
6e2020977e KVM: VMX: Add error handling to VMREAD helper
Now that VMREAD flows require a taken branch, courtesy of commit

  3901336ed9 ("x86/kvm: Don't call kvm_spurious_fault() from .fixup")

bite the bullet and add full error handling to VMREAD, i.e. replace the
JMP added by __ex()/____kvm_handle_fault_on_reboot() with a hinted Jcc.

To minimize the code footprint, add a helper function, vmread_error(),
to handle both faults and failures so that the inline flow has a single
CALL.

Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-25 15:30:09 +02:00
Sean Christopherson
52a9fcbc73 KVM: VMX: Optimize VMX instruction error and fault handling
Rework the VMX instruction helpers using asm-goto to branch directly
to error/fault "handlers" in lieu of using __ex(), i.e. the generic
____kvm_handle_fault_on_reboot().  Branching directly to fault handling
code during fixup avoids the extra JMP that is inserted after every VMX
instruction when using the generic "fault on reboot" (see commit
3901336ed9, "x86/kvm: Don't call kvm_spurious_fault() from .fixup").

Opportunistically clean up the helpers so that they all have consistent
error handling and messages.

Leave the usage of ____kvm_handle_fault_on_reboot() (via __ex()) in
kvm_cpu_vmxoff() and nested_vmx_check_vmentry_hw() as is.  The VMXOFF
case is not a fast path, i.e. the cleanliness of __ex() is worth the
JMP, and the extra JMP in nested_vmx_check_vmentry_hw() is unavoidable.

Note, VMREAD cannot get the asm-goto treatment as output operands aren't
compatible with GCC's asm-goto due to internal compiler restrictions.

Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-25 15:30:02 +02:00
Sean Christopherson
4b526de50e KVM: x86: Check kvm_rebooting in kvm_spurious_fault()
Explicitly check kvm_rebooting in kvm_spurious_fault() prior to invoking
BUG(), as opposed to assuming the caller has already done so.  Letting
kvm_spurious_fault() be called "directly" will allow VMX to better
optimize its low level assembly flows.

As a happy side effect, kvm_spurious_fault() no longer needs to be
marked as a dead end since it doesn't unconditionally BUG().

Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-25 15:23:33 +02:00
Marc Orr
f0b5105af6 kvm: nvmx: limit atomic switch MSRs
Allowing an unlimited number of MSRs to be specified via the VMX
load/store MSR lists (e.g., vm-entry MSR load list) is bad for two
reasons. First, a guest can specify an unreasonable number of MSRs,
forcing KVM to process all of them in software. Second, the SDM bounds
the number of MSRs allowed to be packed into the atomic switch MSR lists.
Quoting the "Miscellaneous Data" section in the "VMX Capability
Reporting Facility" appendix:

"Bits 27:25 is used to compute the recommended maximum number of MSRs
that should appear in the VM-exit MSR-store list, the VM-exit MSR-load
list, or the VM-entry MSR-load list. Specifically, if the value bits
27:25 of IA32_VMX_MISC is N, then 512 * (N + 1) is the recommended
maximum number of MSRs to be included in each list. If the limit is
exceeded, undefined processor behavior may result (including a machine
check during the VMX transition)."

Because KVM needs to protect itself and can't model "undefined processor
behavior", arbitrarily force a VM-entry to fail due to MSR loading when
the MSR load list is too large. Similarly, trigger an abort during a VM
exit that encounters an MSR load list or MSR store list that is too large.

The MSR list size is intentionally not pre-checked so as to maintain
compatibility with hardware inasmuch as possible.

Test these new checks with the kvm-unit-test "x86: nvmx: test max atomic
switch MSRs".

Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 16:32:15 +02:00
Jim Mattson
0cb8410b90 kvm: svm: Intercept RDPRU
The RDPRU instruction gives the guest read access to the IA32_APERF
MSR and the IA32_MPERF MSR. According to volume 3 of the APM, "When
virtualization is enabled, this instruction can be intercepted by the
Hypervisor. The intercept bit is at VMCB byte offset 10h, bit 14."
Since we don't enumerate the instruction in KVM_SUPPORTED_CPUID,
intercept it and synthesize #UD.

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Drew Schmitt <dasch@google.com>
Reviewed-by: Jacob Xu <jacobhxu@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 16:15:36 +02:00
Jim Mattson
a06dcd625d kvm: x86: Add "significant index" flag to a few CPUID leaves
According to the Intel SDM, volume 2, "CPUID," the index is
significant (or partially significant) for CPUID leaves 0FH, 10H, 12H,
17H, 18H, and 1FH.

Add the corresponding flag to these CPUID leaves in do_host_cpuid().

Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Steve Rutherford <srutherford@google.com>
Fixes: a87f2d3a6e ("KVM: x86: Add Intel CPUID.1F cpuid emulation support")
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 16:04:44 +02:00
Sean Christopherson
9a5c034c9a KVM: x86/mmu: Skip invalid pages during zapping iff root_count is zero
Do not skip invalid shadow pages when zapping obsolete pages if the
pages' root_count has reached zero, in which case the page can be
immediately zapped and freed.

Update the comment accordingly.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:36:06 +02:00
Sean Christopherson
ca333add69 KVM: x86/mmu: Explicitly track only a single invalid mmu generation
Toggle mmu_valid_gen between '0' and '1' instead of blindly incrementing
the generation.  Because slots_lock is held for the entire duration of
zapping obsolete pages, it's impossible for there to be multiple invalid
generations associated with shadow pages at any given time.

Toggling between the two generations (valid vs. invalid) allows changing
mmu_valid_gen from an unsigned long to a u8, which reduces the size of
struct kvm_mmu_page from 160 to 152 bytes on 64-bit KVM, i.e. reduces
KVM's memory footprint by 8 bytes per shadow page.

Set sp->mmu_valid_gen before it is added to active_mmu_pages.
Functionally this has no effect as kvm_mmu_alloc_page() has a single
caller that sets sp->mmu_valid_gen soon thereafter, but visually it is
jarring to see a shadow page being added to the list without its
mmu_valid_gen first being set.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:36:00 +02:00
Sean Christopherson
10605204e9 KVM: x86/mmu: Revert "KVM: x86/mmu: Remove is_obsolete() call"
Now that the fast invalidate mechanism has been reintroduced, restore
the performance tweaks for fast invalidation that existed prior to its
removal.

Paraphrasing the original changelog (commit 5ff0568374 was itself a
partial revert):

  Don't force reloading the remote mmu when zapping an obsolete page, as
  a MMU_RELOAD request has already been issued by kvm_mmu_zap_all_fast()
  immediately after incrementing mmu_valid_gen, i.e. after marking pages
  obsolete.

This reverts commit 5ff0568374.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:35:53 +02:00
Sean Christopherson
4506ecf485 KVM: x86/mmu: Revert "Revert "KVM: MMU: collapse TLB flushes when zap all pages""
Now that the fast invalidate mechanism has been reintroduced, restore
the performance tweaks for fast invalidation that existed prior to its
removal.

Paraphrashing the original changelog:

  Reload the mmu on all vCPUs after updating the generation number so
  that obsolete pages are not used by any vCPUs.  This allows collapsing
  all TLB flushes during obsolete page zapping into a single flush, as
  there is no need to flush when dropping mmu_lock (to reschedule).

  Note: a remote TLB flush is still needed before freeing the pages as
  other vCPUs may be doing a lockless shadow page walk.

Opportunstically improve the comments restored by the revert (the
code itself is a true revert).

This reverts commit f34d251d66.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:35:41 +02:00
Sean Christopherson
fbb158cb88 KVM: x86/mmu: Revert "Revert "KVM: MMU: zap pages in batch""
Now that the fast invalidate mechanism has been reintroduced, restore
the performance tweaks for fast invalidation that existed prior to its
removal.

Paraphrashing the original changelog:

  Zap at least 10 shadow pages before releasing mmu_lock to reduce the
  overhead associated with re-acquiring the lock.

  Note: "10" is an arbitrary number, speculated to be high enough so
  that a vCPU isn't stuck zapping obsolete pages for an extended period,
  but small enough so that other vCPUs aren't starved waiting for
  mmu_lock.

This reverts commit 43d2b14b10.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:35:35 +02:00
Sean Christopherson
14a3c4f498 KVM: x86/mmu: Revert "Revert "KVM: MMU: add tracepoint for kvm_mmu_invalidate_all_pages""
Now that the fast invalidate mechanism has been reintroduced, restore
the tracepoint associated with said mechanism.

Note, the name of the tracepoint deviates from the original tracepoint
so as to match KVM's current nomenclature.

This reverts commit 42560fb1f3.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:35:28 +02:00
Sean Christopherson
dd6223c762 KVM: x86/mmu: Revert "Revert "KVM: MMU: show mmu_valid_gen in shadow page related tracepoints""
Now that the fast invalidate mechanism has been reintroduced, restore
tracing of the generation number in shadow page tracepoints.

This reverts commit b59c4830ca.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:35:23 +02:00
Sean Christopherson
92f58b5c01 KVM: x86/mmu: Use fast invalidate mechanism to zap MMIO sptes
Use the fast invalidate mechasim to zap MMIO sptes on a MMIO generation
wrap.  The fast invalidate flow was reintroduced to fix a livelock bug
in kvm_mmu_zap_all() that can occur if kvm_mmu_zap_all() is invoked when
the guest has live vCPUs.  I.e. using kvm_mmu_zap_all() to handle the
MMIO generation wrap is theoretically susceptible to the livelock bug.

This effectively reverts commit 4771450c34 ("Revert "KVM: MMU: drop
kvm_mmu_zap_mmio_sptes""), i.e. restores the behavior of commit
a8eca9dcc6 ("KVM: MMU: drop kvm_mmu_zap_mmio_sptes").

Note, this actually fixes commit 571c5af06e ("KVM: x86/mmu:
Voluntarily reschedule as needed when zapping MMIO sptes"), but there
is no need to incrementally revert back to using fast invalidate, e.g.
doing so doesn't provide any bisection or stability benefits.

Fixes: 571c5af06e ("KVM: x86/mmu: Voluntarily reschedule as needed when zapping MMIO sptes")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:35:18 +02:00
Sean Christopherson
fac026dac0 KVM: x86/mmu: Treat invalid shadow pages as obsolete
Treat invalid shadow pages as obsolete to fix a bug where an obsolete
and invalid page with a non-zero root count could become non-obsolete
due to mmu_valid_gen wrapping.  The bug is largely theoretical with the
current code base, as an unsigned long will effectively never wrap on
64-bit KVM, and userspace would have to deliberately stall a vCPU in
order to keep an obsolete invalid page on the active list while
simultaneously modifying memslots billions of times to trigger a wrap.

The obvious alternative is to use a 64-bit value for mmu_valid_gen,
but it's actually desirable to go in the opposite direction, i.e. using
a smaller 8-bit value to reduce KVM's memory footprint by 8 bytes per
shadow page, and relying on proper treatment of invalid pages instead of
preventing the generation from wrapping.

Note, "Fixes" points at a commit that was at one point reverted, but has
since been restored.

Fixes: 5304b8d37c ("KVM: MMU: fast invalidate all pages")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:35:12 +02:00
Wanpeng Li
d0f5a86a34 KVM: LAPIC: Tune lapic_timer_advance_ns smoothly
Filter out drastic fluctuation and random fluctuation, remove
timer_advance_adjust_done altogether, the adjustment would be
continuous.

Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:35:06 +02:00
Tao Xu
bf653b78f9 KVM: vmx: Introduce handle_unexpected_vmexit and handle WAITPKG vmexit
As the latest Intel 64 and IA-32 Architectures Software Developer's
Manual, UMWAIT and TPAUSE instructions cause a VM exit if the
RDTSC exiting and enable user wait and pause VM-execution
controls are both 1.

Because KVM never enable RDTSC exiting, the vm-exit for UMWAIT and TPAUSE
should never happen. Considering EXIT_REASON_XSAVES and
EXIT_REASON_XRSTORS is also unexpected VM-exit for KVM. Introduce a common
exit helper handle_unexpected_vmexit() to handle these unexpected VM-exit.

Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:34:51 +02:00
Tao Xu
6e3ba4abce KVM: vmx: Emulate MSR IA32_UMWAIT_CONTROL
UMWAIT and TPAUSE instructions use 32bit IA32_UMWAIT_CONTROL at MSR index
E1H to determines the maximum time in TSC-quanta that the processor can
reside in either C0.1 or C0.2.

This patch emulates MSR IA32_UMWAIT_CONTROL in guest and differentiate
IA32_UMWAIT_CONTROL between host and guest. The variable
mwait_control_cached in arch/x86/kernel/cpu/umwait.c caches the MSR value,
so this patch uses it to avoid frequently rdmsr of IA32_UMWAIT_CONTROL.

Co-developed-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:34:36 +02:00
Tao Xu
e69e72faa3 KVM: x86: Add support for user wait instructions
UMONITOR, UMWAIT and TPAUSE are a set of user wait instructions.
This patch adds support for user wait instructions in KVM. Availability
of the user wait instructions is indicated by the presence of the CPUID
feature flag WAITPKG CPUID.0x07.0x0:ECX[5]. User wait instructions may
be executed at any privilege level, and use 32bit IA32_UMWAIT_CONTROL MSR
to set the maximum time.

The behavior of user wait instructions in VMX non-root operation is
determined first by the setting of the "enable user wait and pause"
secondary processor-based VM-execution control bit 26.
	If the VM-execution control is 0, UMONITOR/UMWAIT/TPAUSE cause
an invalid-opcode exception (#UD).
	If the VM-execution control is 1, treatment is based on the
setting of the “RDTSC exiting†VM-execution control. Because KVM never
enables RDTSC exiting, if the instruction causes a delay, the amount of
time delayed is called here the physical delay. The physical delay is
first computed by determining the virtual delay. If
IA32_UMWAIT_CONTROL[31:2] is zero, the virtual delay is the value in
EDX:EAX minus the value that RDTSC would return; if
IA32_UMWAIT_CONTROL[31:2] is not zero, the virtual delay is the minimum
of that difference and AND(IA32_UMWAIT_CONTROL,FFFFFFFCH).

Because umwait and tpause can put a (psysical) CPU into a power saving
state, by default we dont't expose it to kvm and enable it only when
guest CPUID has it.

Detailed information about user wait instructions can be found in the
latest Intel 64 and IA-32 Architectures Software Developer's Manual.

Co-developed-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Jingqi Liu <jingqi.liu@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:34:20 +02:00
Sean Christopherson
1957aa63be KVM: VMX: Handle single-step #DB for EMULTYPE_SKIP on EPT misconfig
VMX's EPT misconfig flow to handle fast-MMIO path falls back to decoding
the instruction to determine the instruction length when running as a
guest (Hyper-V doesn't fill VMCS.VM_EXIT_INSTRUCTION_LEN because it's
technically not defined for EPT misconfigs).  Rather than implement the
slow skip in VMX's generic skip_emulated_instruction(),
handle_ept_misconfig() directly calls kvm_emulate_instruction() with
EMULTYPE_SKIP, which intentionally doesn't do single-step detection, and
so handle_ept_misconfig() misses a single-step #DB.

Rework the EPT misconfig fallback case to route it through
kvm_skip_emulated_instruction() so that single-step #DBs and interrupt
shadow updates are handled automatically.  I.e. make VMX's slow skip
logic match SVM's and have the SVM flow not intentionally avoid the
shadow update.

Alternatively, the handle_ept_misconfig() could manually handle single-
step detection, but that results in EMULTYPE_SKIP having split logic for
the interrupt shadow vs. single-step #DBs, and split emulator logic is
largely what led to this mess in the first place.

Modifying SVM to mirror VMX flow isn't really an option as SVM's case
isn't limited to a specific exit reason, i.e. handling the slow skip in
skip_emulated_instruction() is mandatory for all intents and purposes.

Drop VMX's skip_emulated_instruction() wrapper since it can now fail,
and instead WARN if it fails unexpectedly, e.g. if exit_reason somehow
becomes corrupted.

Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Fixes: d391f12070 ("x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:34:08 +02:00
Sean Christopherson
60fc3d02d5 KVM: x86: Remove emulation_result enums, EMULATE_{DONE,FAIL,USER_EXIT}
Deferring emulation failure handling (in some cases) to the caller of
x86_emulate_instruction() has proven fragile, e.g. multiple instances of
KVM not setting run->exit_reason on EMULATE_FAIL, largely due to it
being difficult to discern what emulation types can return what result,
and which combination of types and results are handled where.

Now that x86_emulate_instruction() always handles emulation failure,
i.e. EMULATION_FAIL is only referenced in callers, remove the
emulation_result enums entirely.  Per KVM's existing exit handling
conventions, return '0' and '1' for "exit to userspace" and "resume
guest" respectively.  Doing so cleans up many callers, e.g. they can
return kvm_emulate_instruction() directly instead of having to interpret
its result.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:34:00 +02:00
Sean Christopherson
8fff2710ea KVM: VMX: Remove EMULATE_FAIL handling in handle_invalid_guest_state()
Now that EMULATE_FAIL is completely unused, remove the last remaning
usage where KVM does something functional in response to EMULATE_FAIL.
Leave the check in place as a WARN_ON_ONCE to provide a better paper
trail when EMULATE_{DONE,FAIL,USER_EXIT} are completely removed.

Opportunistically remove the gotos in handle_invalid_guest_state().
With the EMULATE_FAIL handling gone there is no need to have a common
handler for emulation failure and the gotos only complicate things,
e.g. the signal_pending() check always returns '1', but this is far
from obvious when glancing through the code.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:31:26 +02:00
Sean Christopherson
9497e1f2ec KVM: x86: Move triple fault request into RM int injection
Request triple fault in kvm_inject_realmode_interrupt() instead of
returning EMULATE_FAIL and deferring to the caller.  All existing
callers request triple fault and it's highly unlikely Real Mode is
going to acquire new features.  While this consolidates a small amount
of code, the real goal is to remove the last reference to EMULATE_FAIL.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:31:20 +02:00
Sean Christopherson
1051778f6e KVM: x86: Handle emulation failure directly in kvm_task_switch()
Consolidate the reporting of emulation failure into kvm_task_switch()
so that it can return EMULATE_USER_EXIT.  This helps pave the way for
removing EMULATE_FAIL altogether.

This also fixes a theoretical bug where task switch interception could
suppress an EMULATE_USER_EXIT return.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:31:13 +02:00
Sean Christopherson
738fece46d KVM: x86: Exit to userspace on emulation skip failure
Kill a few birds with one stone by forcing an exit to userspace on skip
emulation failure.  This removes a reference to EMULATE_FAIL, fixes a
bug in handle_ept_misconfig() where it would exit to userspace without
setting run->exit_reason, and fixes a theoretical bug in SVM's
task_switch_interception() where it would overwrite run->exit_reason on
a return of EMULATE_USER_EXIT.

Note, this technically doesn't fully fix task_switch_interception()
as it now incorrectly handles EMULATE_FAIL, but in practice there is no
bug as EMULATE_FAIL will never be returned for EMULTYPE_SKIP.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:31:07 +02:00
Sean Christopherson
c83fad65e2 KVM: x86: Move #UD injection for failed emulation into emulation code
Immediately inject a #UD and return EMULATE done if emulation fails when
handling an intercepted #UD.  This helps pave the way for removing
EMULATE_FAIL altogether.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:31:01 +02:00
Sean Christopherson
b400060620 KVM: x86: Add explicit flag for forced emulation on #UD
Add an explicit emulation type for forced #UD emulation and use it to
detect that KVM should unconditionally inject a #UD instead of falling
into its standard emulation failure handling.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:30:54 +02:00
Sean Christopherson
42cbf06872 KVM: x86: Move #GP injection for VMware into x86_emulate_instruction()
Immediately inject a #GP when VMware emulation fails and return
EMULATE_DONE instead of propagating EMULATE_FAIL up the stack.  This
helps pave the way for removing EMULATE_FAIL altogether.

Rename EMULTYPE_VMWARE to EMULTYPE_VMWARE_GP to document that the x86
emulator is called to handle VMware #GP interception, e.g. why a #GP
is injected on emulation failure for EMULTYPE_VMWARE_GP.

Drop EMULTYPE_NO_UD_ON_FAIL as a standalone type.  The "no #UD on fail"
is used only in the VMWare case and is obsoleted by having the emulator
itself reinject #GP.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:30:47 +02:00
Sean Christopherson
a6c6ed1e81 KVM: x86: Don't attempt VMWare emulation on #GP with non-zero error code
The VMware backdoor hooks #GP faults on IN{S}, OUT{S}, and RDPMC, none
of which generate a non-zero error code for their #GP.  Re-injecting #GP
instead of attempting emulation on a non-zero error code will allow a
future patch to move #GP injection (for emulation failure) into
kvm_emulate_instruction() without having to plumb in the error code.

Reviewed-and-tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:30:42 +02:00
Sean Christopherson
120c2c4f99 KVM: x86: Refactor kvm_vcpu_do_singlestep() to remove out param
Return the single-step emulation result directly instead of via an out
param.  Presumably at some point in the past kvm_vcpu_do_singlestep()
could be called with *r==EMULATE_USER_EXIT, but that is no longer the
case, i.e. all callers are happy to overwrite their own return variable.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 14:30:32 +02:00
Sean Christopherson
22da61c912 KVM: x86: Clean up handle_emulation_failure()
When handling emulation failure, return the emulation result directly
instead of capturing it in a local variable.  Future patches will move
additional cases into handle_emulation_failure(), clean up the cruft
before so there isn't an ugly mix of setting a local variable and
returning directly.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 13:37:36 +02:00
Sean Christopherson
bc8a0aafcb KVM: x86: Relocate MMIO exit stats counting
Move the stat.mmio_exits update into x86_emulate_instruction().  This is
both a bug fix, e.g. the current update flows will incorrectly increment
mmio_exits on emulation failure, and a preparatory change to set the
stage for eliminating EMULATE_DONE and company.

Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 13:37:35 +02:00
Krish Sadhukhan
5845038c11 KVM: nVMX: Check Host Address Space Size on vmentry of nested guests
According to section "Checks Related to Address-Space Size" in Intel SDM
vol 3C, the following checks are performed on vmentry of nested guests:

    If the logical processor is outside IA-32e mode (if IA32_EFER.LMA = 0)
    at the time of VM entry, the following must hold:
	- The "IA-32e mode guest" VM-entry control is 0.
	- The "host address-space size" VM-exit control is 0.

    If the logical processor is in IA-32e mode (if IA32_EFER.LMA = 1) at the
    time of VM entry, the "host address-space size" VM-exit control must be 1.

    If the "host address-space size" VM-exit control is 0, the following must
    hold:
	- The "IA-32e mode guest" VM-entry control is 0.
	- Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is 0.
	- Bits 63:32 in the RIP field are 0.

    If the "host address-space size" VM-exit control is 1, the following must
    hold:
	- Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.
	- The RIP field contains a canonical address.

    On processors that do not support Intel 64 architecture, checks are
    performed to ensure that the "IA-32e mode guest" VM-entry control and the
    "host address-space size" VM-exit control are both 0.

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-09-24 13:37:33 +02:00