Add a memory pool for struct kmemleak_object in case the normal
kmem_cache_alloc() fails under the gfp constraints passed by the caller.
The mem_pool[] array size is currently fixed at 16000.
We are not using the existing mempool kernel API since this requires
the slab allocator to be available (for pool->elements allocation). A
subsequent kmemleak patch will replace the static early log buffer with
the pool allocation introduced here and this functionality is required
to be available before the slab was initialised.
Link: http://lkml.kernel.org/r/20190812160642.52134-3-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: kmemleak: Use a memory pool for kmemleak object
allocations", v3.
Following the discussions on v2 of this patch(set) [1], this series takes
slightly different approach:
- it implements its own simple memory pool that does not rely on the
slab allocator
- drops the early log buffer logic entirely since it can now allocate
metadata from the memory pool directly before kmemleak is fully
initialised
- CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE option is renamed to
CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE
- moves the kmemleak_init() call earlier (mm_init())
- to avoid a separate memory pool for struct scan_area, it makes the
tool robust when such allocations fail as scan areas are rather an
optimisation
[1] http://lkml.kernel.org/r/20190727132334.9184-1-catalin.marinas@arm.com
This patch (of 3):
Object scan areas are an optimisation aimed to decrease the false
positives and slightly improve the scanning time of large objects known to
only have a few specific pointers. If a struct scan_area fails to
allocate, kmemleak can still function normally by scanning the full
object.
Introduce an OBJECT_FULL_SCAN flag and mark objects as such when scan_area
allocation fails.
Link: http://lkml.kernel.org/r/20190812160642.52134-2-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
tid_to_cpu() and tid_to_event() are only used in note_cmpxchg_failure()
when SLUB_DEBUG_CMPXCHG=y, so when SLUB_DEBUG_CMPXCHG=n by default, Clang
will complain that those unused functions.
Link: http://lkml.kernel.org/r/1568752232-5094-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg_cache_params structure is only embedded into the kmem_cache of
slab and slub allocators as defined in slab_def.h and slub_def.h and used
internally by mm code. There is no needed to expose it in a public
header. So move it from include/linux/slab.h to mm/slab.h. It is just a
refactoring patch with no code change.
In fact both the slub_def.h and slab_def.h should be moved into the mm
directory as well, but that will probably cause many merge conflicts.
Link: http://lkml.kernel.org/r/20190718180827.18758-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, a value of '1" is written to /sys/kernel/slab/<slab>/shrink
file to shrink the slab by flushing out all the per-cpu slabs and free
slabs in partial lists. This can be useful to squeeze out a bit more
memory under extreme condition as well as making the active object counts
in /proc/slabinfo more accurate.
This usually applies only to the root caches, as the SLUB_MEMCG_SYSFS_ON
option is usually not enabled and "slub_memcg_sysfs=1" not set. Even if
memcg sysfs is turned on, it is too cumbersome and impractical to manage
all those per-memcg sysfs files in a real production system.
So there is no practical way to shrink memcg caches. Fix this by enabling
a proper write to the shrink sysfs file of the root cache to scan all the
available memcg caches and shrink them as well. For a non-root memcg
cache (when SLUB_MEMCG_SYSFS_ON or slub_memcg_sysfs is on), only that
cache will be shrunk when written.
On a 2-socket 64-core 256-thread arm64 system with 64k page after
a parallel kernel build, the the amount of memory occupied by slabs
before shrinking slabs were:
# grep task_struct /proc/slabinfo
task_struct 53137 53192 4288 61 4 : tunables 0 0
0 : slabdata 872 872 0
# grep "^S[lRU]" /proc/meminfo
Slab: 3936832 kB
SReclaimable: 399104 kB
SUnreclaim: 3537728 kB
After shrinking slabs (by echoing "1" to all shrink files):
# grep "^S[lRU]" /proc/meminfo
Slab: 1356288 kB
SReclaimable: 263296 kB
SUnreclaim: 1092992 kB
# grep task_struct /proc/slabinfo
task_struct 2764 6832 4288 61 4 : tunables 0 0
0 : slabdata 112 112 0
Link: http://lkml.kernel.org/r/20190723151445.7385-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
z3fold_page_reclaim()'s retry mechanism is broken: on a second iteration
it will have zhdr from the first one so that zhdr is no longer in line
with struct page. That leads to crashes when the system is stressed.
Fix that by moving zhdr assignment up.
While at it, protect against using already freed handles by using own
local slots structure in z3fold_page_reclaim().
Link: http://lkml.kernel.org/r/20190908162919.830388dc7404d1e2c80f4095@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Reported-by: Markus Linnala <markus.linnala@gmail.com>
Reported-by: Chris Murphy <bugzilla@colorremedies.com>
Reported-by: Agustin Dall'Alba <agustin@dallalba.com.ar>
Cc: "Maciej S. Szmigiero" <mail@maciej.szmigiero.name>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the original commit applied, z3fold_zpool_destroy() may get blocked
on wait_event() for indefinite time. Revert this commit for the time
being to get rid of this problem since the issue the original commit
addresses is less severe.
Link: http://lkml.kernel.org/r/20190910123142.7a9c8d2de4d0acbc0977c602@gmail.com
Fixes: d776aaa989 ("mm/z3fold.c: fix race between migration and destruction")
Reported-by: Agustín Dall'Alba <agustin@dallalba.com.ar>
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Jonathan Adams <jwadams@google.com>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is more cleanup and consolidation of the hmm APIs and the very
strongly related mmu_notifier interfaces. Many places across the tree
using these interfaces are touched in the process. Beyond that a cleanup
to the page walker API and a few memremap related changes round out the
series:
- General improvement of hmm_range_fault() and related APIs, more
documentation, bug fixes from testing, API simplification &
consolidation, and unused API removal
- Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE, and
make them internal kconfig selects
- Hoist a lot of code related to mmu notifier attachment out of drivers by
using a refcount get/put attachment idiom and remove the convoluted
mmu_notifier_unregister_no_release() and related APIs.
- General API improvement for the migrate_vma API and revision of its only
user in nouveau
- Annotate mmu_notifiers with lockdep and sleeping region debugging
Two series unrelated to HMM or mmu_notifiers came along due to
dependencies:
- Allow pagemap's memremap_pages family of APIs to work without providing
a struct device
- Make walk_page_range() and related use a constant structure for function
pointers
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl1/nnkACgkQOG33FX4g
mxqaRg//c6FqowV1pQlLutvAOAgMdpzfZ9eaaDKngy9RVQxz+k/MmJrdRH/p/mMA
Pq93A1XfwtraGKErHegFXGEDk4XhOustVAVFwvjyXO41dTUdoFVUkti6ftbrl/rS
6CT+X90jlvrwdRY7QBeuo7lxx7z8Qkqbk1O1kc1IOracjKfNJS+y6LTamy6weM3g
tIMHI65PkxpRzN36DV9uCN5dMwFzJ73DWHp1b0acnDIigkl6u5zp6orAJVWRjyQX
nmEd3/IOvdxaubAoAvboNS5CyVb4yS9xshWWMbH6AulKJv3Glca1Aa7QuSpBoN8v
wy4c9+umzqRgzgUJUe1xwN9P49oBNhJpgBSu8MUlgBA4IOc3rDl/Tw0b5KCFVfkH
yHkp8n6MP8VsRrzXTC6Kx0vdjIkAO8SUeylVJczAcVSyHIo6/JUJCVDeFLSTVymh
EGWJ7zX2iRhUbssJ6/izQTTQyCH3YIyZ5QtqByWuX2U7ZrfkqS3/EnBW1Q+j+gPF
Z2yW8iT6k0iENw6s8psE9czexuywa/Lttz94IyNlOQ8rJTiQqB9wLaAvg9hvUk7a
kuspL+JGIZkrL3ouCeO/VA6xnaP+Q7nR8geWBRb8zKGHmtWrb5Gwmt6t+vTnCC2l
olIDebrnnxwfBQhEJ5219W+M1pBpjiTpqK/UdBd92A4+sOOhOD0=
=FRGg
-----END PGP SIGNATURE-----
Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull hmm updates from Jason Gunthorpe:
"This is more cleanup and consolidation of the hmm APIs and the very
strongly related mmu_notifier interfaces. Many places across the tree
using these interfaces are touched in the process. Beyond that a
cleanup to the page walker API and a few memremap related changes
round out the series:
- General improvement of hmm_range_fault() and related APIs, more
documentation, bug fixes from testing, API simplification &
consolidation, and unused API removal
- Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE,
and make them internal kconfig selects
- Hoist a lot of code related to mmu notifier attachment out of
drivers by using a refcount get/put attachment idiom and remove the
convoluted mmu_notifier_unregister_no_release() and related APIs.
- General API improvement for the migrate_vma API and revision of its
only user in nouveau
- Annotate mmu_notifiers with lockdep and sleeping region debugging
Two series unrelated to HMM or mmu_notifiers came along due to
dependencies:
- Allow pagemap's memremap_pages family of APIs to work without
providing a struct device
- Make walk_page_range() and related use a constant structure for
function pointers"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (75 commits)
libnvdimm: Enable unit test infrastructure compile checks
mm, notifier: Catch sleeping/blocking for !blockable
kernel.h: Add non_block_start/end()
drm/radeon: guard against calling an unpaired radeon_mn_unregister()
csky: add missing brackets in a macro for tlb.h
pagewalk: use lockdep_assert_held for locking validation
pagewalk: separate function pointers from iterator data
mm: split out a new pagewalk.h header from mm.h
mm/mmu_notifiers: annotate with might_sleep()
mm/mmu_notifiers: prime lockdep
mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end
mm/mmu_notifiers: remove the __mmu_notifier_invalidate_range_start/end exports
mm/hmm: hmm_range_fault() infinite loop
mm/hmm: hmm_range_fault() NULL pointer bug
mm/hmm: fix hmm_range_fault()'s handling of swapped out pages
mm/mmu_notifiers: remove unregister_no_release
RDMA/odp: remove ib_ucontext from ib_umem
RDMA/odp: use mmu_notifier_get/put for 'struct ib_ucontext_per_mm'
RDMA/mlx5: Use odp instead of mr->umem in pagefault_mr
RDMA/mlx5: Use ib_umem_start instead of umem.address
...
- add dma-mapping and block layer helpers to take care of IOMMU
merging for mmc plus subsequent fixups (Yoshihiro Shimoda)
- rework handling of the pgprot bits for remapping (me)
- take care of the dma direct infrastructure for swiotlb-xen (me)
- improve the dma noncoherent remapping infrastructure (me)
- better defaults for ->mmap, ->get_sgtable and ->get_required_mask (me)
- cleanup mmaping of coherent DMA allocations (me)
- various misc cleanups (Andy Shevchenko, me)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl2CSucLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYPfrhAAgXZA/EdFPvkkCoDrmgtf3XkudX9gajeCd9g4NZy6
ZBQElTVvm4S0sQj7IXgALnMumDMbbTibW5SQLX5GwQDe+XXBpZ8ajpAnJAXc8a5T
qaFQ4SInr4CgBZf9nZKDkbSBZ1Tu3AQm1c0QI8riRCkrVTuX4L06xpCef4Yh4mgO
rwWEjIioYpQiKZMmu98riXh3ZNfFG3mVJRhKt8B6XJbBgnUnjDOPYGgaUwp6CU20
tFBKL2GaaV0vdLJ5wYhIGXT4DJ8tp9T5n3IYGZv1Ux889RaZEHlCrMxzelYeDbCT
KhZbhcSECGnddsh73t/UX7/KhytuqnfKa9n+Xo6AWuA47xO4c36quOOcTk9M0vE5
TfGDmewgL6WIv4lzokpRn5EkfDhyL33j8eYJrJ8e0ldcOhSQIFk4ciXnf2stWi6O
JrlzzzSid+zXxu48iTfoPdnMr7psTpiMvvRvKfEeMp2FX9Fg6EdMzJYLTEl+COHB
0WwNacZmY3P01+b5EZXEgqKEZevIIdmPKbyM9rPtTjz8BjBwkABHTpN3fWbVBf7/
Ax6OPYyW40xp1fnJuzn89m3pdOxn88FpDdOaeLz892Zd+Qpnro1ayulnFspVtqGM
mGbzA9whILvXNRpWBSQrvr2IjqMRjbBxX3BVACl3MMpOChgkpp5iANNfSDjCftSF
Zu8=
=/wGv
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-5.4' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- add dma-mapping and block layer helpers to take care of IOMMU merging
for mmc plus subsequent fixups (Yoshihiro Shimoda)
- rework handling of the pgprot bits for remapping (me)
- take care of the dma direct infrastructure for swiotlb-xen (me)
- improve the dma noncoherent remapping infrastructure (me)
- better defaults for ->mmap, ->get_sgtable and ->get_required_mask
(me)
- cleanup mmaping of coherent DMA allocations (me)
- various misc cleanups (Andy Shevchenko, me)
* tag 'dma-mapping-5.4' of git://git.infradead.org/users/hch/dma-mapping: (41 commits)
mmc: renesas_sdhi_internal_dmac: Add MMC_CAP2_MERGE_CAPABLE
mmc: queue: Fix bigger segments usage
arm64: use asm-generic/dma-mapping.h
swiotlb-xen: merge xen_unmap_single into xen_swiotlb_unmap_page
swiotlb-xen: simplify cache maintainance
swiotlb-xen: use the same foreign page check everywhere
swiotlb-xen: remove xen_swiotlb_dma_mmap and xen_swiotlb_dma_get_sgtable
xen: remove the exports for xen_{create,destroy}_contiguous_region
xen/arm: remove xen_dma_ops
xen/arm: simplify dma_cache_maint
xen/arm: use dev_is_dma_coherent
xen/arm: consolidate page-coherent.h
xen/arm: use dma-noncoherent.h calls for xen-swiotlb cache maintainance
arm: remove wrappers for the generic dma remap helpers
dma-mapping: introduce a dma_common_find_pages helper
dma-mapping: always use VM_DMA_COHERENT for generic DMA remap
vmalloc: lift the arm flag for coherent mappings to common code
dma-mapping: provide a better default ->get_required_mask
dma-mapping: remove the dma_declare_coherent_memory export
remoteproc: don't allow modular build
...
Pull misc mount API conversions from Al Viro:
"Conversions to new API for shmem and friends and for mount_mtd()-using
filesystems.
As for the rest of the mount API conversions in -next, some of them
belong in the individual trees (e.g. binderfs one should definitely go
through android folks, after getting redone on top of their changes).
I'm going to drop those and send the rest (trivial ones + stuff ACKed
by maintainers) in a separate series - by that point they are
independent from each other.
Some stuff has already migrated into individual trees (NFS conversion,
for example, or FUSE stuff, etc.); those presumably will go through
the regular merges from corresponding trees."
* 'work.mount2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: Make fs_parse() handle fs_param_is_fd-type params better
vfs: Convert ramfs, shmem, tmpfs, devtmpfs, rootfs to use the new mount API
shmem_parse_one(): switch to use of fs_parse()
shmem_parse_options(): take handling a single option into a helper
shmem_parse_options(): don't bother with mpol in separate variable
shmem_parse_options(): use a separate structure to keep the results
make shmem_fill_super() static
make ramfs_fill_super() static
devtmpfs: don't mix {ramfs,shmem}_fill_super() with mount_single()
vfs: Convert squashfs to use the new mount API
mtd: Kill mount_mtd()
vfs: Convert jffs2 to use the new mount API
vfs: Convert cramfs to use the new mount API
vfs: Convert romfs to use the new mount API
vfs: Add a single-or-reconfig keying to vfs_get_super()
- Remove KM_SLEEP/KM_NOSLEEP.
- Ensure that memory buffers for IO are properly sector-aligned to avoid
problems that the block layer doesn't check.
- Make the bmap scrubber more efficient in its record checking.
- Don't crash xfs_db when superblock inode geometry is corrupt.
- Fix btree key helper functions.
- Remove unneeded error returns for things that can't fail.
- Fix buffer logging bugs in repair.
- Clean up iterator return values.
- Speed up directory entry creation.
- Enable allocation of xattr value memory buffer during lookup.
- Fix readahead racing with truncate/punch hole.
- Other minor cleanups.
- Fix one AGI/AGF deadlock with RENAME_WHITEOUT.
- More BUG -> WARN whackamole.
- Fix various problems with the log failing to advance under certain
circumstances, which results in stalls during mount.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAl1yhwsACgkQ+H93GTRK
tOtTig//fYLgFVz3l6ffCb8WkJkmi7iWOJp3eLzK55+3W0++ThNsMlRTOWH7xCpZ
f+3LEvvm1ILBgf4XVlwUGt2HlLmNZeKYmiOl/jZxCH25KdfILRIyeyacAYf9vIWf
NQr5HOutsa1IfEDCiDwEnxuuVbgC+rN8j7Rlp/PpweXwRYjssqRWnGRgaZchLbyr
JZ40D9J1HLooY/yftKrgnxtfL4rmAhPoGdX3DnZmobHYRpFHrY31Ks24w6ogShDu
usczNeShXWlg31B4fVHo/rrVQ0xG77U+w/DTNvrAj0uvAlzvWVVibpaZjZtbhadO
NM0zOG41BY/ExBAHhpg0ieVdYI7wNEftF9gjyT7cXO9soD1mRgH6UKQMCm+o1frF
brtcpgQS2aEyGZaXGBIS23ziT/+LLGcav7LUeo7Rf6yiVoEA+FlsGaymC7l+FGCQ
lcgHdeRkeukdj+GJlmpiedb+Xya2g464CXswW7JtCghdNsypRsI4OdQQ2r8Du+w0
PUwfugv1cMAz99xfSZtSoTa7pimFxb6tHRcoqZVfQCefbKQ0VMJDU/AY7gQ2U3UM
PiFKXgPFo0p4tUvA/9ECTPcMDhMKMv200CGCJKXrokWwHtJ6jrAHb+EobjrfoiyX
+hkGEmzzt3vur7Zt2+YesCH3tZj1UfpsemOlorxYQk3hbsA9HEc=
=TZLp
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.4-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"For this cycle we have the usual pile of cleanups and bug fixes, some
performance improvements for online metadata scrubbing, massive
speedups in the directory entry creation code, some performance
improvement in the file ACL lookup code, a fix for a logging stall
during mount, and fixes for concurrency problems.
It has survived a couple of weeks of xfstests runs and merges cleanly.
Summary:
- Remove KM_SLEEP/KM_NOSLEEP.
- Ensure that memory buffers for IO are properly sector-aligned to
avoid problems that the block layer doesn't check.
- Make the bmap scrubber more efficient in its record checking.
- Don't crash xfs_db when superblock inode geometry is corrupt.
- Fix btree key helper functions.
- Remove unneeded error returns for things that can't fail.
- Fix buffer logging bugs in repair.
- Clean up iterator return values.
- Speed up directory entry creation.
- Enable allocation of xattr value memory buffer during lookup.
- Fix readahead racing with truncate/punch hole.
- Other minor cleanups.
- Fix one AGI/AGF deadlock with RENAME_WHITEOUT.
- More BUG -> WARN whackamole.
- Fix various problems with the log failing to advance under certain
circumstances, which results in stalls during mount"
* tag 'xfs-5.4-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (45 commits)
xfs: push the grant head when the log head moves forward
xfs: push iclog state cleaning into xlog_state_clean_log
xfs: factor iclog state processing out of xlog_state_do_callback()
xfs: factor callbacks out of xlog_state_do_callback()
xfs: factor debug code out of xlog_state_do_callback()
xfs: prevent CIL push holdoff in log recovery
xfs: fix missed wakeup on l_flush_wait
xfs: push the AIL in xlog_grant_head_wake
xfs: Use WARN_ON_ONCE for bailout mount-operation
xfs: Fix deadlock between AGI and AGF with RENAME_WHITEOUT
xfs: define a flags field for the AG geometry ioctl structure
xfs: add a xfs_valid_startblock helper
xfs: remove the unused XFS_ALLOC_USERDATA flag
xfs: cleanup xfs_fsb_to_db
xfs: fix the dax supported check in xfs_ioctl_setattr_dax_invalidate
xfs: Fix stale data exposure when readahead races with hole punch
fs: Export generic_fadvise()
mm: Handle MADV_WILLNEED through vfs_fadvise()
xfs: allocate xattr buffer on demand
xfs: consolidate attribute value copying
...
- Prohibit writing to active swap files and swap partitions.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAl1cDHQACgkQ+H93GTRK
tOs1qw//aqXAQ7bpLDl7jx9CSuAighzKir0mHYFm9HUsnuRT6gLqIOVSeugoi8hY
tYhPNzcKHL39YDa1QfKo1RKW6uCwsECHT/5TebLxBkTL3vGGAenPchAcjj89SV54
lQ/h8O6hkDU+KCKC0kmDem7ma7DD5YZmWXDxW/HvnygjCnZ9BFaOeLQt/TPBmOmN
lozPHcdrxhIuCuSTMjIZRq27Zl6uzj5tr+FkT+FWiYDrGhgWT7is6o397SEm7yYT
3JqUQ+ZUOY4IwLlrWiVKqi0IqjvWqhaLzmjZaKF+YC8Ni0sdpaDdsE/uPSCyQ7k7
28qbfypnu7bswakjcekdSX2Dj/SZivFb8AzlqaSIMVlw4STFzjMMYMLib8/OlPES
z1pAjXHypLjNO3dNBYp/mRll+/BQ2NM6oCtnVVQGKVnlcx3oLo+n6JSRK8t74DTf
BkYu93aybBpfE49Fb3VQum+9okg9BdShRxvUp023/WTUaa8aUyIbizn3iTrke/sx
0bC+Vvdr33JZnoO8WKVzSd7COTHOTQ920NodTKAJ9bkF3WKyLM135ctavHrtdAg3
FHBXpN7AjbOaLovLpiy3eb//ghKJwgyhqbN6VCGTudC/nkaXq7y7M3DPbXxQYxom
yCA0qMByMg+cL4BtzS52QEda7xK1iiuQ/3jbdQ4lFuBHhwekVKs=
=Ag/B
-----END PGP SIGNATURE-----
Merge tag 'vfs-5.4-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull swap access updates from Darrick Wong:
"Prohibit writing to active swap files and swap partitions.
There's no non-malicious use case for allowing userspace to scribble
on storage that the kernel thinks it owns"
* tag 'vfs-5.4-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
vfs: don't allow writes to swap files
mm: set S_SWAPFILE on blockdev swap devices
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl1/no0QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpmo9EACFXMbdNmEEUMyRSdOkVLlr7ZlTyQi1tLpB
YESDPxdBfybzpi0qa8JSaysGIfvSkSjmSAqBqrWPmASOSOL6CK4bbA4fTYbgPplk
XeHUdgGiG34oCQUn8Xil5reYaTm7I6LQWnWTpVa5fIhAyUYaGJL+987ykoGmpQmB
Dvf3YSc+8H0RTp9PCMVd6UCGPkZbVlLImGad3PF5ULvTEaE4RCXC2aiAgh0p1l5A
J2CkRZ+/mio3zN2O4YN7VdPGfr1Wo1iZ834xbIGLegv1miHXagFk7jwTcC7zIt5t
oSnJnqIg3iCe7SpWt4Bkzw/zy/2UqaspifbCMgw8vychlViVRUHFO5h85Yboo7kQ
OMLEQPcwjm6dTHv5h1iXF9LW1O7NoiYmmgvApU9uOo1HUrl1X7PZ3JEfUsVHxkOO
T4D5igf0Krsl1eAbiwEUQzy7vFZ8PlRHqrHgK+fkyotzHu1BJR7OQkYygEfGFOB/
EfMxplGDpmibYGuWCwDX2bPAmLV3SPUQENReHrfPJRDt5TD1UkFpVGv/PLLhbr0p
cLYI78DKpDSigBpVMmwq5nTYpnex33eyDTTA8C0sakcsdzdmU5qv30y3wm4nTiep
f6gZo6IMXwRg/rCgVVrd9SKQAr/8wEzVlsDW3qyi2pVT8sHIgm0tFv7paihXGdDV
xsKgmTrQQQ==
=Qt+h
-----END PGP SIGNATURE-----
Merge tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
- Two NVMe pull requests:
- ana log parse fix from Anton
- nvme quirks support for Apple devices from Ben
- fix missing bio completion tracing for multipath stack devices
from Hannes and Mikhail
- IP TOS settings for nvme rdma and tcp transports from Israel
- rq_dma_dir cleanups from Israel
- tracing for Get LBA Status command from Minwoo
- Some nvme-tcp cleanups from Minwoo, Potnuri and Myself
- Some consolidation between the fabrics transports for handling
the CAP register
- reset race with ns scanning fix for fabrics (move fabrics
commands to a dedicated request queue with a different lifetime
from the admin request queue)."
- controller reset and namespace scan races fixes
- nvme discovery log change uevent support
- naming improvements from Keith
- multiple discovery controllers reject fix from James
- some regular cleanups from various people
- Series fixing (and re-fixing) null_blk debug printing and nr_devices
checks (André)
- A few pull requests from Song, with fixes from Andy, Guoqing,
Guilherme, Neil, Nigel, and Yufen.
- REQ_OP_ZONE_RESET_ALL support (Chaitanya)
- Bio merge handling unification (Christoph)
- Pick default elevator correctly for devices with special needs
(Damien)
- Block stats fixes (Hou)
- Timeout and support devices nbd fixes (Mike)
- Series fixing races around elevator switching and device add/remove
(Ming)
- sed-opal cleanups (Revanth)
- Per device weight support for BFQ (Fam)
- Support for blk-iocost, a new model that can properly account cost of
IO workloads. (Tejun)
- blk-cgroup writeback fixes (Tejun)
- paride queue init fixes (zhengbin)
- blk_set_runtime_active() cleanup (Stanley)
- Block segment mapping optimizations (Bart)
- lightnvm fixes (Hans/Minwoo/YueHaibing)
- Various little fixes and cleanups
* tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block: (186 commits)
null_blk: format pr_* logs with pr_fmt
null_blk: match the type of parameter nr_devices
null_blk: do not fail the module load with zero devices
block: also check RQF_STATS in blk_mq_need_time_stamp()
block: make rq sector size accessible for block stats
bfq: Fix bfq linkage error
raid5: use bio_end_sector in r5_next_bio
raid5: remove STRIPE_OPS_REQ_PENDING
md: add feature flag MD_FEATURE_RAID0_LAYOUT
md/raid0: avoid RAID0 data corruption due to layout confusion.
raid5: don't set STRIPE_HANDLE to stripe which is in batch list
raid5: don't increment read_errors on EILSEQ return
nvmet: fix a wrong error status returned in error log page
nvme: send discovery log page change events to userspace
nvme: add uevent variables for controller devices
nvme: enable aen regardless of the presence of I/O queues
nvme-fabrics: allow discovery subsystems accept a kato
nvmet: Use PTR_ERR_OR_ZERO() in nvmet_init_discovery()
nvme: Remove redundant assignment of cq vector
nvme: Assign subsys instance from first ctrl
...
Pull percpu updates from Dennis Zhou:
"A couple of updates to clean up the code with no change in behavior"
* 'for-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
percpu: Use struct_size() helper
percpu: fix typo in pcpu_setup_first_chunk() comment
percpu: Make pcpu_setup_first_chunk() void function
Pull scheduler updates from Ingo Molnar:
- MAINTAINERS: Add Mark Rutland as perf submaintainer, Juri Lelli and
Vincent Guittot as scheduler submaintainers. Add Dietmar Eggemann,
Steven Rostedt, Ben Segall and Mel Gorman as scheduler reviewers.
As perf and the scheduler is getting bigger and more complex,
document the status quo of current responsibilities and interests,
and spread the review pain^H^H^H^H fun via an increase in the Cc:
linecount generated by scripts/get_maintainer.pl. :-)
- Add another series of patches that brings the -rt (PREEMPT_RT) tree
closer to mainline: split the monolithic CONFIG_PREEMPT dependencies
into a new CONFIG_PREEMPTION category that will allow the eventual
introduction of CONFIG_PREEMPT_RT. Still a few more hundred patches
to go though.
- Extend the CPU cgroup controller with uclamp.min and uclamp.max to
allow the finer shaping of CPU bandwidth usage.
- Micro-optimize energy-aware wake-ups from O(CPUS^2) to O(CPUS).
- Improve the behavior of high CPU count, high thread count
applications running under cpu.cfs_quota_us constraints.
- Improve balancing with SCHED_IDLE (SCHED_BATCH) tasks present.
- Improve CPU isolation housekeeping CPU allocation NUMA locality.
- Fix deadline scheduler bandwidth calculations and logic when cpusets
rebuilds the topology, or when it gets deadline-throttled while it's
being offlined.
- Convert the cpuset_mutex to percpu_rwsem, to allow it to be used from
setscheduler() system calls without creating global serialization.
Add new synchronization between cpuset topology-changing events and
the deadline acceptance tests in setscheduler(), which were broken
before.
- Rework the active_mm state machine to be less confusing and more
optimal.
- Rework (simplify) the pick_next_task() slowpath.
- Improve load-balancing on AMD EPYC systems.
- ... and misc cleanups, smaller fixes and improvements - please see
the Git log for more details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
sched/psi: Correct overly pessimistic size calculation
sched/fair: Speed-up energy-aware wake-ups
sched/uclamp: Always use 'enum uclamp_id' for clamp_id values
sched/uclamp: Update CPU's refcount on TG's clamp changes
sched/uclamp: Use TG's clamps to restrict TASK's clamps
sched/uclamp: Propagate system defaults to the root group
sched/uclamp: Propagate parent clamps
sched/uclamp: Extend CPU's cgroup controller
sched/topology: Improve load balancing on AMD EPYC systems
arch, ia64: Make NUMA select SMP
sched, perf: MAINTAINERS update, add submaintainers and reviewers
sched/fair: Use rq_lock/unlock in online_fair_sched_group
cpufreq: schedutil: fix equation in comment
sched: Rework pick_next_task() slow-path
sched: Allow put_prev_task() to drop rq->lock
sched/fair: Expose newidle_balance()
sched: Add task_struct pointer to sched_class::set_curr_task
sched: Rework CPU hotplug task selection
sched/{rt,deadline}: Fix set_next_task vs pick_next_task
sched: Fix kerneldoc comment for ia64_set_curr_task
...
Convert the ramfs, shmem, tmpfs, devtmpfs and rootfs filesystems to the new
internal mount API as the old one will be obsoleted and removed. This
allows greater flexibility in communication of mount parameters between
userspace, the VFS and the filesystem.
See Documentation/filesystems/mount_api.txt for more information.
Note that tmpfs is slightly tricky as it can contain embedded commas, so it
can't be trivially split up using strsep() to break on commas in
generic_parse_monolithic(). Instead, tmpfs has to supply its own generic
parser.
However, if tmpfs changes, then devtmpfs and rootfs, which are wrappers
around tmpfs or ramfs, must change too - and thus so must ramfs, so these
had to be converted also.
[AV: rewritten]
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Hugh Dickins <hughd@google.com>
cc: linux-mm@kvack.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This thing will eventually become our ->parse_param(), while
shmem_parse_options() - ->parse_monolithic(). At that point
shmem_parse_options() will start calling vfs_parse_fs_string(),
rather than calling shmem_parse_one() directly.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... and copy the data from it into sbinfo in the callers.
For use by remount we need to keep track whether there'd
been options setting max_inodes, max_blocks and huge resp.
and do the sanity checks (and copying) only if such options
had been seen. uid/gid/mode is ignored by remount and
NULL mpol is already explicitly treated as "ignore it",
so we don't need to keep track of those.
Note: theoretically, mpol_parse_string() may return NULL
not in case of error (for default policy), so the assumption
that NULL mpol means "change nothing" is incorrect. However,
that's the mainline behaviour and any changes belong in
a separate patch. If we go for that, we'll need to keep
track of having encountered mpol= option too.
[changes in remount logics from Hugh Dickins folded]
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We need to make sure implementations don't cheat and don't have a possible
schedule/blocking point deeply burried where review can't catch it.
I'm not sure whether this is the best way to make sure all the
might_sleep() callsites trigger, and it's a bit ugly in the code flow.
But it gets the job done.
Inspired by an i915 patch series which did exactly that, because the rules
haven't been entirely clear to us.
Link: https://lore.kernel.org/r/20190826201425.17547-5-daniel.vetter@ffwll.ch
Reviewed-by: Christian König <christian.koenig@amd.com> (v1)
Reviewed-by: Jérôme Glisse <jglisse@redhat.com> (v4)
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Use lockdep to check for held locks instead of using home grown asserts.
Link: https://lore.kernel.org/r/20190828141955.22210-4-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
The mm_walk structure currently mixed data and code. Split out the
operations vectors into a new mm_walk_ops structure, and while we are
changing the API also declare the mm_walk structure inside the
walk_page_range and walk_page_vma functions.
Based on patch from Linus Torvalds.
Link: https://lore.kernel.org/r/20190828141955.22210-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Add a new header for the two handful of users of the walk_page_range /
walk_page_vma interface instead of polluting all users of mm.h with it.
Link: https://lore.kernel.org/r/20190828141955.22210-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
We want to teach lockdep that mmu notifiers can be called from direct
reclaim paths, since on many CI systems load might never reach that
level (e.g. when just running fuzzer or small functional tests).
I've put the annotation into mmu_notifier_register since only when we have
mmu notifiers registered is there any point in teaching lockdep about
them. Also, we already have a kmalloc(, GFP_KERNEL), so this is safe.
Link: https://lore.kernel.org/r/20190826201425.17547-3-daniel.vetter@ffwll.ch
Suggested-by: Jason Gunthorpe <jgg@mellanox.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
This is a similar idea to the fs_reclaim fake lockdep lock. It's fairly
easy to provoke a specific notifier to be run on a specific range: Just
prep it, and then munmap() it.
A bit harder, but still doable, is to provoke the mmu notifiers for all
the various callchains that might lead to them. But both at the same time
is really hard to reliably hit, especially when you want to exercise paths
like direct reclaim or compaction, where it's not easy to control what
exactly will be unmapped.
By introducing a lockdep map to tie them all together we allow lockdep to
see a lot more dependencies, without having to actually hit them in a
single challchain while testing.
On Jason's suggestion this is is rolled out for both
invalidate_range_start and invalidate_range_end. They both have the same
calling context, hence we can share the same lockdep map. Note that the
annotation for invalidate_ranage_start is outside of the
mm_has_notifiers(), to make sure lockdep is informed about all paths
leading to this context irrespective of whether mmu notifiers are present
for a given context. We don't do that on the invalidate_range_end side to
avoid paying the overhead twice, there the lockdep annotation is pushed
down behind the mm_has_notifiers() check.
Link: https://lore.kernel.org/r/20190826201425.17547-2-daniel.vetter@ffwll.ch
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct pcpu_alloc_info {
...
struct pcpu_group_info groups[];
};
Make use of the struct_size() helper instead of an open-coded version
in order to avoid any potential type mistakes.
So, replace the following form:
sizeof(*ai) + nr_groups * sizeof(ai->groups[0])
with:
struct_size(ai, groups, nr_groups)
This code was detected with the help of Coccinelle.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
There is no reason to print warnings when balloon page allocation fails,
as they are expected and can be handled gracefully. Since VMware
balloon now uses balloon-compaction infrastructure, and suppressed these
warnings before, it is also beneficial to suppress these warnings to
keep the same behavior that the balloon had before.
Cc: Jason Wang <jasowang@redhat.com>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
The arm architecture had a VM_ARM_DMA_CONSISTENT flag to mark DMA
coherent remapping for a while. Lift this flag to common code so
that we can use it generically. We also check it in the only place
VM_USERMAP is directly check so that we can entirely replace that
flag as well (although I'm not even sure why we'd want to allow
remapping DMA appings, but I'd rather not change behavior).
Signed-off-by: Christoph Hellwig <hch@lst.de>
SD_BALANCE_{FORK,EXEC} and SD_WAKE_AFFINE are stripped in sd_init()
for any sched domains with a NUMA distance greater than 2 hops
(RECLAIM_DISTANCE). The idea being that it's expensive to balance
across domains that far apart.
However, as is rather unfortunately explained in:
commit 32e45ff43e ("mm: increase RECLAIM_DISTANCE to 30")
the value for RECLAIM_DISTANCE is based on node distance tables from
2011-era hardware.
Current AMD EPYC machines have the following NUMA node distances:
node distances:
node 0 1 2 3 4 5 6 7
0: 10 16 16 16 32 32 32 32
1: 16 10 16 16 32 32 32 32
2: 16 16 10 16 32 32 32 32
3: 16 16 16 10 32 32 32 32
4: 32 32 32 32 10 16 16 16
5: 32 32 32 32 16 10 16 16
6: 32 32 32 32 16 16 10 16
7: 32 32 32 32 16 16 16 10
where 2 hops is 32.
The result is that the scheduler fails to load balance properly across
NUMA nodes on different sockets -- 2 hops apart.
For example, pinning 16 busy threads to NUMA nodes 0 (CPUs 0-7) and 4
(CPUs 32-39) like so,
$ numactl -C 0-7,32-39 ./spinner 16
causes all threads to fork and remain on node 0 until the active
balancer kicks in after a few seconds and forcibly moves some threads
to node 4.
Override node_reclaim_distance for AMD Zen.
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Suravee.Suthikulpanit@amd.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas.Lendacky@amd.com
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20190808195301.13222-3-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Filesystems will need to call this function from their fadvise handlers.
CC: stable@vger.kernel.org
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Currently handling of MADV_WILLNEED hint calls directly into readahead
code. Handle it by calling vfs_fadvise() instead so that filesystem can
use its ->fadvise() callback to acquire necessary locks or otherwise
prepare for the request.
Suggested-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Boaz Harrosh <boazh@netapp.com>
CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Instead of using raw_cpu_read() use per_cpu() to read the actual data of
the corresponding cpu otherwise we will be reading the data of the
current cpu for the number of online CPUs.
Link: http://lkml.kernel.org/r/20190829203110.129263-1-shakeelb@google.com
Fixes: bb65f89b7d ("mm: memcontrol: flush percpu vmevents before releasing memcg")
Fixes: c350a99ea2 ("mm: memcontrol: flush percpu vmstats before releasing memcg")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adric Blake has noticed[1] the following warning:
WARNING: CPU: 7 PID: 175 at mm/vmscan.c:245 set_task_reclaim_state+0x1e/0x40
[...]
Call Trace:
mem_cgroup_shrink_node+0x9b/0x1d0
mem_cgroup_soft_limit_reclaim+0x10c/0x3a0
balance_pgdat+0x276/0x540
kswapd+0x200/0x3f0
? wait_woken+0x80/0x80
kthread+0xfd/0x130
? balance_pgdat+0x540/0x540
? kthread_park+0x80/0x80
ret_from_fork+0x35/0x40
---[ end trace 727343df67b2398a ]---
which tells us that soft limit reclaim is about to overwrite the
reclaim_state configured up in the call chain (kswapd in this case but
the direct reclaim is equally possible). This means that reclaim stats
would get misleading once the soft reclaim returns and another reclaim
is done.
Fix the warning by dropping set_task_reclaim_state from the soft reclaim
which is always called with reclaim_state set up.
[1] http://lkml.kernel.org/r/CAE1jjeePxYPvw1mw2B3v803xHVR_BNnz0hQUY_JDMN8ny29M6w@mail.gmail.com
Link: http://lkml.kernel.org/r/20190828071808.20410-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Adric Blake <promarbler14@gmail.com>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hdanton@sina.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 766a4c19d8 ("mm/memcontrol.c: keep local VM counters in sync
with the hierarchical ones") effectively decreased the precision of
per-memcg vmstats_local and per-memcg-per-node lruvec percpu counters.
That's good for displaying in memory.stat, but brings a serious
regression into the reclaim process.
One issue I've discovered and debugged is the following:
lruvec_lru_size() can return 0 instead of the actual number of pages in
the lru list, preventing the kernel to reclaim last remaining pages.
Result is yet another dying memory cgroups flooding. The opposite is
also happening: scanning an empty lru list is the waste of cpu time.
Also, inactive_list_is_low() can return incorrect values, preventing the
active lru from being scanned and freed. It can fail both because the
size of active and inactive lists are inaccurate, and because the number
of workingset refaults isn't precise. In other words, the result is
pretty random.
I'm not sure, if using the approximate number of slab pages in
count_shadow_number() is acceptable, but issues described above are
enough to partially revert the patch.
Let's keep per-memcg vmstat_local batched (they are only used for
displaying stats to the userspace), but keep lruvec stats precise. This
change fixes the dead memcg flooding on my setup.
Link: http://lkml.kernel.org/r/20190817004726.2530670-1-guro@fb.com
Fixes: 766a4c19d8 ("mm/memcontrol.c: keep local VM counters in sync with the hierarchical ones")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I've noticed that the "slab" value in memory.stat is sometimes 0, even
if some children memory cgroups have a non-zero "slab" value. The
following investigation showed that this is the result of the kmem_cache
reparenting in combination with the per-cpu batching of slab vmstats.
At the offlining some vmstat value may leave in the percpu cache, not
being propagated upwards by the cgroup hierarchy. It means that stats
on ancestor levels are lower than actual. Later when slab pages are
released, the precise number of pages is substracted on the parent
level, making the value negative. We don't show negative values, 0 is
printed instead.
To fix this issue, let's flush percpu slab memcg and lruvec stats on
memcg offlining. This guarantees that numbers on all ancestor levels
are accurate and match the actual number of outstanding slab pages.
Link: http://lkml.kernel.org/r/20190819202338.363363-3-guro@fb.com
Fixes: fb2f2b0adb ("mm: memcg/slab: reparent memcg kmem_caches on cgroup removal")
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup foreign inode handling has quite a bit of heuristics and
internal states which sometimes makes it difficult to understand
what's going on. Add tracepoints to improve visibility.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
No modular code uses these, which makes a lot of sense given the wrappers
around them are only called by core mm code.
Link: https://lore.kernel.org/r/20190828142109.29012-1-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Normally, callers to handle_mm_fault() are supposed to check the
vma->vm_flags first. hmm_range_fault() checks for VM_READ but doesn't
check for VM_WRITE if the caller requests a page to be faulted in with
write permission (via the hmm_range.pfns[] value). If the vma is write
protected, this can result in an infinite loop:
hmm_range_fault()
walk_page_range()
...
hmm_vma_walk_hole()
hmm_vma_walk_hole_()
hmm_vma_do_fault()
handle_mm_fault(FAULT_FLAG_WRITE)
/* returns VM_FAULT_WRITE */
/* returns -EBUSY */
/* returns -EBUSY */
/* returns -EBUSY */
/* loops on -EBUSY and range->valid */
Prevent this by checking for vma->vm_flags & VM_WRITE before calling
handle_mm_fault().
Link: https://lore.kernel.org/r/20190823221753.2514-3-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Although hmm_range_fault() calls find_vma() to make sure that a vma exists
before calling walk_page_range(), hmm_vma_walk_hole() can still be called
with walk->vma == NULL if the start and end address are not contained
within the vma range.
hmm_range_fault() /* calls find_vma() but no range check */
walk_page_range() /* calls find_vma(), sets walk->vma = NULL */
__walk_page_range()
walk_pgd_range()
walk_p4d_range()
walk_pud_range()
hmm_vma_walk_hole()
hmm_vma_walk_hole_()
hmm_vma_do_fault()
handle_mm_fault(vma=0)
Link: https://lore.kernel.org/r/20190823221753.2514-2-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
There's an inherent mismatch between memcg and writeback. The former
trackes ownership per-page while the latter per-inode. This was a
deliberate design decision because honoring per-page ownership in the
writeback path is complicated, may lead to higher CPU and IO overheads
and deemed unnecessary given that write-sharing an inode across
different cgroups isn't a common use-case.
Combined with inode majority-writer ownership switching, this works
well enough in most cases but there are some pathological cases. For
example, let's say there are two cgroups A and B which keep writing to
different but confined parts of the same inode. B owns the inode and
A's memory is limited far below B's. A's dirty ratio can rise enough
to trigger balance_dirty_pages() sleeps but B's can be low enough to
avoid triggering background writeback. A will be slowed down without
a way to make writeback of the dirty pages happen.
This patch implements foreign dirty recording and foreign mechanism so
that when a memcg encounters a condition as above it can trigger
flushes on bdi_writebacks which can clean its pages. Please see the
comment on top of mem_cgroup_track_foreign_dirty_slowpath() for
details.
A reproducer follows.
write-range.c::
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
static const char *usage = "write-range FILE START SIZE\n";
int main(int argc, char **argv)
{
int fd;
unsigned long start, size, end, pos;
char *endp;
char buf[4096];
if (argc < 4) {
fprintf(stderr, usage);
return 1;
}
fd = open(argv[1], O_WRONLY);
if (fd < 0) {
perror("open");
return 1;
}
start = strtoul(argv[2], &endp, 0);
if (*endp != '\0') {
fprintf(stderr, usage);
return 1;
}
size = strtoul(argv[3], &endp, 0);
if (*endp != '\0') {
fprintf(stderr, usage);
return 1;
}
end = start + size;
while (1) {
for (pos = start; pos < end; ) {
long bread, bwritten = 0;
if (lseek(fd, pos, SEEK_SET) < 0) {
perror("lseek");
return 1;
}
bread = read(0, buf, sizeof(buf) < end - pos ?
sizeof(buf) : end - pos);
if (bread < 0) {
perror("read");
return 1;
}
if (bread == 0)
return 0;
while (bwritten < bread) {
long this;
this = write(fd, buf + bwritten,
bread - bwritten);
if (this < 0) {
perror("write");
return 1;
}
bwritten += this;
pos += bwritten;
}
}
}
}
repro.sh::
#!/bin/bash
set -e
set -x
sysctl -w vm.dirty_expire_centisecs=300000
sysctl -w vm.dirty_writeback_centisecs=300000
sysctl -w vm.dirtytime_expire_seconds=300000
echo 3 > /proc/sys/vm/drop_caches
TEST=/sys/fs/cgroup/test
A=$TEST/A
B=$TEST/B
mkdir -p $A $B
echo "+memory +io" > $TEST/cgroup.subtree_control
echo $((1<<30)) > $A/memory.high
echo $((32<<30)) > $B/memory.high
rm -f testfile
touch testfile
fallocate -l 4G testfile
echo "Starting B"
(echo $BASHPID > $B/cgroup.procs
pv -q --rate-limit 70M < /dev/urandom | ./write-range testfile $((2<<30)) $((2<<30))) &
echo "Waiting 10s to ensure B claims the testfile inode"
sleep 5
sync
sleep 5
sync
echo "Starting A"
(echo $BASHPID > $A/cgroup.procs
pv < /dev/urandom | ./write-range testfile 0 $((2<<30)))
v2: Added comments explaining why the specific intervals are being used.
v3: Use 0 @nr when calling cgroup_writeback_by_id() to use best-effort
flushing while avoding possible livelocks.
v4: Use get_jiffies_64() and time_before/after64() instead of raw
jiffies_64 and arthimetic comparisons as suggested by Jan.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Separate out wb_get_lookup() which doesn't try to create one if there
isn't already one from wb_get_create(). This will be used by later
patches.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There currently is no way to universally identify and lookup a bdi
without holding a reference and pointer to it. This patch adds an
non-recycling bdi->id and implements bdi_get_by_id() which looks up
bdis by their ids. This will be used by memcg foreign inode flushing.
I left bdi_list alone for simplicity and because while rb_tree does
support rcu assignment it doesn't seem to guarantee lossless walk when
walk is racing aginst tree rebalance operations.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The code like this:
ptr = kmalloc(size, GFP_KERNEL);
page = virt_to_page(ptr);
offset = offset_in_page(ptr);
kfree(page_address(page) + offset);
may produce false-positive invalid-free reports on the kernel with
CONFIG_KASAN_SW_TAGS=y.
In the example above we lose the original tag assigned to 'ptr', so
kfree() gets the pointer with 0xFF tag. In kfree() we check that 0xFF
tag is different from the tag in shadow hence print false report.
Instead of just comparing tags, do the following:
1) Check that shadow doesn't contain KASAN_TAG_INVALID. Otherwise it's
double-free and it doesn't matter what tag the pointer have.
2) If pointer tag is different from 0xFF, make sure that tag in the
shadow is the same as in the pointer.
Link: http://lkml.kernel.org/r/20190819172540.19581-1-aryabinin@virtuozzo.com
Fixes: 7f94ffbc4c ("kasan: add hooks implementation for tag-based mode")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Walter Wu <walter-zh.wu@mediatek.com>
Reported-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In zs_destroy_pool() we call flush_work(&pool->free_work). However, we
have no guarantee that migration isn't happening in the background at
that time.
Since migration can't directly free pages, it relies on free_work being
scheduled to free the pages. But there's nothing preventing an
in-progress migrate from queuing the work *after*
zs_unregister_migration() has called flush_work(). Which would mean
pages still pointing at the inode when we free it.
Since we know at destroy time all objects should be free, no new
migrations can come in (since zs_page_isolate() fails for fully-free
zspages). This means it is sufficient to track a "# isolated zspages"
count by class, and have the destroy logic ensure all such pages have
drained before proceeding. Keeping that state under the class spinlock
keeps the logic straightforward.
In this case a memory leak could lead to an eventual crash if compaction
hits the leaked page. This crash would only occur if people are
changing their zswap backend at runtime (which eventually starts
destruction).
Link: http://lkml.kernel.org/r/20190809181751.219326-2-henryburns@google.com
Fixes: 48b4800a1c ("zsmalloc: page migration support")
Signed-off-by: Henry Burns <henryburns@google.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Jonathan Adams <jwadams@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In zs_page_migrate() we call putback_zspage() after we have finished
migrating all pages in this zspage. However, the return value is
ignored. If a zs_free() races in between zs_page_isolate() and
zs_page_migrate(), freeing the last object in the zspage,
putback_zspage() will leave the page in ZS_EMPTY for potentially an
unbounded amount of time.
To fix this, we need to do the same thing as zs_page_putback() does:
schedule free_work to occur.
To avoid duplicated code, move the sequence to a new
putback_zspage_deferred() function which both zs_page_migrate() and
zs_page_putback() call.
Link: http://lkml.kernel.org/r/20190809181751.219326-1-henryburns@google.com
Fixes: 48b4800a1c ("zsmalloc: page migration support")
Signed-off-by: Henry Burns <henryburns@google.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Jonathan Adams <jwadams@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>