I don't know of any problem from the way it's used in our current tree,
but there is one defect in page migration's custom put_new_page feature.
An unused newpage is expected to be released with the put_new_page(), but
there was one MIGRATEPAGE_SUCCESS (0) path which released it with
putback_lru_page(): which can be very wrong for a custom pool.
Fixed more easily by resetting put_new_page once it won't be needed, than
by adding a further flag to modify the rc test.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After v4.3's commit 0610c25daa ("memcg: fix dirty page migration")
mem_cgroup_migrate() doesn't have much to offer in page migration: convert
migrate_misplaced_transhuge_page() to set_page_memcg() instead.
Then rename mem_cgroup_migrate() to mem_cgroup_replace_page(), since its
remaining callers are replace_page_cache_page() and shmem_replace_page():
both of whom passed lrucare true, so just eliminate that argument.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit e6c509f854 ("mm: use clear_page_mlock() in page_remove_rmap()")
in v3.7 inadvertently made mlock_migrate_page() impotent: page migration
unmaps the page from userspace before migrating, and that commit clears
PageMlocked on the final unmap, leaving mlock_migrate_page() with
nothing to do. Not a serious bug, the next attempt at reclaiming the
page would fix it up; but a betrayal of page migration's intent - the
new page ought to emerge as PageMlocked.
I don't see how to fix it for mlock_migrate_page() itself; but easily
fixed in remove_migration_pte(), by calling mlock_vma_page() when the vma
is VM_LOCKED - under pte lock as in try_to_unmap_one().
Delete mlock_migrate_page()? Not quite, it does still serve a purpose for
migrate_misplaced_transhuge_page(): where we could replace it by a test,
clear_page_mlock(), mlock_vma_page() sequence; but would that be an
improvement? mlock_migrate_page() is fairly lean, and let's make it
leaner by skipping the irq save/restore now clearly not needed.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migration tries up to 10 times to migrate pages that return -EAGAIN until
it gives up. If some pages fail all retries, they are counted towards the
number of failed pages that migrate_pages() returns. They should also be
counted in the /proc/vmstat pgmigrate_fail and in the mm_migrate_pages
tracepoint.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The problem starts with a file backed dirty page which is charged to a
memcg. Then page migration is used to move oldpage to newpage.
Migration:
- copies the oldpage's data to newpage
- clears oldpage.PG_dirty
- sets newpage.PG_dirty
- uncharges oldpage from memcg
- charges newpage to memcg
Clearing oldpage.PG_dirty decrements the charged memcg's dirty page
count.
However, because newpage is not yet charged, setting newpage.PG_dirty
does not increment the memcg's dirty page count. After migration
completes newpage.PG_dirty is eventually cleared, often in
account_page_cleaned(). At this time newpage is charged to a memcg so
the memcg's dirty page count is decremented which causes underflow
because the count was not previously incremented by migration. This
underflow causes balance_dirty_pages() to see a very large unsigned
number of dirty memcg pages which leads to aggressive throttling of
buffered writes by processes in non root memcg.
This issue:
- can harm performance of non root memcg buffered writes.
- can report too small (even negative) values in
memory.stat[(total_)dirty] counters of all memcg, including the root.
To avoid polluting migrate.c with #ifdef CONFIG_MEMCG checks, introduce
page_memcg() and set_page_memcg() helpers.
Test:
0) setup and enter limited memcg
mkdir /sys/fs/cgroup/test
echo 1G > /sys/fs/cgroup/test/memory.limit_in_bytes
echo $$ > /sys/fs/cgroup/test/cgroup.procs
1) buffered writes baseline
dd if=/dev/zero of=/data/tmp/foo bs=1M count=1k
sync
grep ^dirty /sys/fs/cgroup/test/memory.stat
2) buffered writes with compaction antagonist to induce migration
yes 1 > /proc/sys/vm/compact_memory &
rm -rf /data/tmp/foo
dd if=/dev/zero of=/data/tmp/foo bs=1M count=1k
kill %
sync
grep ^dirty /sys/fs/cgroup/test/memory.stat
3) buffered writes without antagonist, should match baseline
rm -rf /data/tmp/foo
dd if=/dev/zero of=/data/tmp/foo bs=1M count=1k
sync
grep ^dirty /sys/fs/cgroup/test/memory.stat
(speed, dirty residue)
unpatched patched
1) 841 MB/s 0 dirty pages 886 MB/s 0 dirty pages
2) 611 MB/s -33427456 dirty pages 793 MB/s 0 dirty pages
3) 114 MB/s -33427456 dirty pages 891 MB/s 0 dirty pages
Notice that unpatched baseline performance (1) fell after
migration (3): 841 -> 114 MB/s. In the patched kernel, post
migration performance matches baseline.
Fixes: c4843a7593 ("memcg: add per cgroup dirty page accounting")
Signed-off-by: Greg Thelen <gthelen@google.com>
Reported-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org> [4.2+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit bcc5422230 ("mm: hugetlb: introduce page_huge_active")
each hugetlb page maintains its active flag to avoid a race condition
betwe= en multiple calls of isolate_huge_page(), but current kernel
doesn't set the f= lag on a hugepage allocated by migration because the
proper putback routine isn= 't called. This means that users could
still encounter the race referred to by bcc5422230 in this special
case, so this patch fixes it.
Fixes: bcc5422230 ("mm: hugetlb: introduce page_huge_active")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org> [4.1.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Knowing the portion of memory that is not used by a certain application or
memory cgroup (idle memory) can be useful for partitioning the system
efficiently, e.g. by setting memory cgroup limits appropriately.
Currently, the only means to estimate the amount of idle memory provided
by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
access bit for all pages mapped to a particular process by writing 1 to
clear_refs, wait for some time, and then count smaps:Referenced. However,
this method has two serious shortcomings:
- it does not count unmapped file pages
- it affects the reclaimer logic
To overcome these drawbacks, this patch introduces two new page flags,
Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap.
A page's Idle flag can only be set from userspace by setting bit in
/sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page,
and it is cleared whenever the page is accessed either through page tables
(it is cleared in page_referenced() in this case) or using the read(2)
system call (mark_page_accessed()). Thus by setting the Idle flag for
pages of a particular workload, which can be found e.g. by reading
/proc/PID/pagemap, waiting for some time to let the workload access its
working set, and then reading the bitmap file, one can estimate the amount
of pages that are not used by the workload.
The Young page flag is used to avoid interference with the memory
reclaimer. A page's Young flag is set whenever the Access bit of a page
table entry pointing to the page is cleared by writing to the bitmap file.
If page_referenced() is called on a Young page, it will add 1 to its
return value, therefore concealing the fact that the Access bit was
cleared.
Note, since there is no room for extra page flags on 32 bit, this feature
uses extended page flags when compiled on 32 bit.
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: kpageidle requires an MMU]
[akpm@linux-foundation.org: decouple from page-flags rework]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_pages_exact_node() was introduced in commit 6484eb3e2a ("page
allocator: do not check NUMA node ID when the caller knows the node is
valid") as an optimized variant of alloc_pages_node(), that doesn't
fallback to current node for nid == NUMA_NO_NODE. Unfortunately the
name of the function can easily suggest that the allocation is
restricted to the given node and fails otherwise. In truth, the node is
only preferred, unless __GFP_THISNODE is passed among the gfp flags.
The misleading name has lead to mistakes in the past, see for example
commits 5265047ac3 ("mm, thp: really limit transparent hugepage
allocation to local node") and b360edb43f ("mm, mempolicy:
migrate_to_node should only migrate to node").
Another issue with the name is that there's a family of
alloc_pages_exact*() functions where 'exact' means exact size (instead
of page order), which leads to more confusion.
To prevent further mistakes, this patch effectively renames
alloc_pages_exact_node() to __alloc_pages_node() to better convey that
it's an optimized variant of alloc_pages_node() not intended for general
usage. Both functions get described in comments.
It has been also considered to really provide a convenience function for
allocations restricted to a node, but the major opinion seems to be that
__GFP_THISNODE already provides that functionality and we shouldn't
duplicate the API needlessly. The number of users would be small
anyway.
Existing callers of alloc_pages_exact_node() are simply converted to
call __alloc_pages_node(), with the exception of sba_alloc_coherent()
which open-codes the check for NUMA_NO_NODE, so it is converted to use
alloc_pages_node() instead. This means it no longer performs some
VM_BUG_ON checks, and since the current check for nid in
alloc_pages_node() uses a 'nid < 0' comparison (which includes
NUMA_NO_NODE), it may hide wrong values which would be previously
exposed.
Both differences will be rectified by the next patch.
To sum up, this patch makes no functional changes, except temporarily
hiding potentially buggy callers. Restricting the checks in
alloc_pages_node() is left for the next patch which can in turn expose
more existing buggy callers.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Robin Holt <robinmholt@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cliff Whickman <cpw@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wanpeng Li reported a race between soft_offline_page() and
unpoison_memory(), which causes the following kernel panic:
BUG: Bad page state in process bash pfn:97000
page:ffffea00025c0000 count:0 mapcount:1 mapping: (null) index:0x7f4fdbe00
flags: 0x1fffff80080048(uptodate|active|swapbacked)
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
bad because of flags:
flags: 0x40(active)
Modules linked in: snd_hda_codec_hdmi i915 rpcsec_gss_krb5 nfsv4 dns_resolver bnep rfcomm nfsd bluetooth auth_rpcgss nfs_acl nfs rfkill lockd grace sunrpc i2c_algo_bit drm_kms_helper snd_hda_codec_realtek snd_hda_codec_generic drm snd_hda_intel fscache snd_hda_codec x86_pkg_temp_thermal coretemp kvm_intel snd_hda_core snd_hwdep kvm snd_pcm snd_seq_dummy snd_seq_oss crct10dif_pclmul snd_seq_midi crc32_pclmul snd_seq_midi_event ghash_clmulni_intel snd_rawmidi aesni_intel lrw gf128mul snd_seq glue_helper ablk_helper snd_seq_device cryptd fuse snd_timer dcdbas serio_raw mei_me parport_pc snd mei ppdev i2c_core video lp soundcore parport lpc_ich shpchp mfd_core ext4 mbcache jbd2 sd_mod e1000e ahci ptp libahci crc32c_intel libata pps_core
CPU: 3 PID: 2211 Comm: bash Not tainted 4.2.0-rc5-mm1+ #45
Hardware name: Dell Inc. OptiPlex 7020/0F5C5X, BIOS A03 01/08/2015
Call Trace:
dump_stack+0x48/0x5c
bad_page+0xe6/0x140
free_pages_prepare+0x2f9/0x320
? uncharge_list+0xdd/0x100
free_hot_cold_page+0x40/0x170
__put_single_page+0x20/0x30
put_page+0x25/0x40
unmap_and_move+0x1a6/0x1f0
migrate_pages+0x100/0x1d0
? kill_procs+0x100/0x100
? unlock_page+0x6f/0x90
__soft_offline_page+0x127/0x2a0
soft_offline_page+0xa6/0x200
This race is explained like below:
CPU0 CPU1
soft_offline_page
__soft_offline_page
TestSetPageHWPoison
unpoison_memory
PageHWPoison check (true)
TestClearPageHWPoison
put_page -> release refcount held by get_hwpoison_page in unpoison_memory
put_page -> release refcount held by isolate_lru_page in __soft_offline_page
migrate_pages
The second put_page() releases refcount held by isolate_lru_page() which
will lead to unmap_and_move() releases the last refcount of page and w/
mapcount still 1 since try_to_unmap() is not called if there is only one
user map the page. Anyway, the page refcount and mapcount will still
mess if the page is mapped by multiple users.
This race was introduced by commit 4491f71260 ("mm/memory-failure: set
PageHWPoison before migrate_pages()"), which focuses on preventing the
reuse of successfully migrated page. Before this commit we prevent the
reuse by changing the migratetype to MIGRATE_ISOLATE during soft
offlining, which has the following problems, so simply reverting the
commit is not a best option:
1) it doesn't eliminate the reuse completely, because
set_migratetype_isolate() can fail to set MIGRATE_ISOLATE to the
target page if the pageblock of the page contains one or more
unmovable pages (i.e. has_unmovable_pages() returns true).
2) the original code changes migratetype to MIGRATE_ISOLATE
forcibly, and sets it to MIGRATE_MOVABLE forcibly after soft offline,
regardless of the original migratetype state, which could impact
other subsystems like memory hotplug or compaction.
This patch moves PageSetHWPoison just after put_page() in
unmap_and_move(), which closes up the reported race window and minimizes
another race window b/w SetPageHWPoison and reallocation (which causes
the reuse of soft-offlined page.) The latter race window still exists
but it's acceptable, because it's rare and effectively the same as
ordinary "containment failure" case even if it happens, so keep the
window open is acceptable.
Fixes: 4491f71260 ("mm/memory-failure: set PageHWPoison before migrate_pages()")
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Wanpeng Li <wanpeng.li@hotmail.com>
Tested-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The manpage for move_pages(2) specifies that status code for zero page is
supposed to be -EFAULT. Currently kernel return -ENOENT in this case.
follow_page() can do it for us, if we would ask for FOLL_DUMP. The use of
FOLL_DUMP also means that the upper layer page tables pages are no longer
allocated.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now page freeing code doesn't consider PageHWPoison as a bad page, so by
setting it before completing the page containment, we can prevent the
error page from being reused just after successful page migration.
I added TTU_IGNORE_HWPOISON for try_to_unmap() to make sure that the
page table entry is transformed into migration entry, not to hwpoison
entry.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dean Nelson <dnelson@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The race condition addressed in commit add05cecef ("mm: soft-offline:
don't free target page in successful page migration") was not closed
completely, because that can happen not only for soft-offline, but also
for hard-offline. Consider that a slab page is about to be freed into
buddy pool, and then an uncorrected memory error hits the page just
after entering __free_one_page(), then VM_BUG_ON_PAGE(page->flags &
PAGE_FLAGS_CHECK_AT_PREP) is triggered, despite the fact that it's not
necessary because the data on the affected page is not consumed.
To solve it, this patch drops __PG_HWPOISON from page flag checks at
allocation/free time. I think it's justified because __PG_HWPOISON
flags is defined to prevent the page from being reused, and setting it
outside the page's alloc-free cycle is a designed behavior (not a bug.)
For recent months, I was annoyed about BUG_ON when soft-offlined page
remains on lru cache list for a while, which is avoided by calling
put_page() instead of putback_lru_page() in page migration's success
path. This means that this patch reverts a major change from commit
add05cecef about the new refcounting rule of soft-offlined pages, so
"reuse window" revives. This will be closed by a subsequent patch.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dean Nelson <dnelson@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have confusing functions to clear pmd, pmd_clear_* and pmd_clear. Add
_huge_ to pmdp_clear functions so that we are clear that they operate on
hugepage pte.
We don't bother about other functions like pmdp_set_wrprotect,
pmdp_clear_flush_young, because they operate on PTE bits and hence
indicate they are operating on hugepage ptes
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stress testing showed that soft offline events for a process iterating
"mmap-pagefault-munmap" loop can trigger
VM_BUG_ON(PAGE_FLAGS_CHECK_AT_PREP) in __free_one_page():
Soft offlining page 0x70fe1 at 0x70100008d000
Soft offlining page 0x705fb at 0x70300008d000
page:ffffea0001c3f840 count:0 mapcount:0 mapping: (null) index:0x2
flags: 0x1fffff80800000(hwpoison)
page dumped because: VM_BUG_ON_PAGE(page->flags & ((1 << 25) - 1))
------------[ cut here ]------------
kernel BUG at /src/linux-dev/mm/page_alloc.c:585!
invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC
Modules linked in: cfg80211 rfkill crc32c_intel microcode ppdev parport_pc pcspkr serio_raw virtio_balloon parport i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy
CPU: 3 PID: 1779 Comm: test_base_madv_ Not tainted 4.0.0-v4.0-150511-1451-00009-g82360a3730e6 #139
RIP: free_pcppages_bulk+0x52a/0x6f0
Call Trace:
drain_pages_zone+0x3d/0x50
drain_local_pages+0x1d/0x30
on_each_cpu_mask+0x46/0x80
drain_all_pages+0x14b/0x1e0
soft_offline_page+0x432/0x6e0
SyS_madvise+0x73c/0x780
system_call_fastpath+0x12/0x17
Code: ff 89 45 b4 48 8b 45 c0 48 83 b8 a8 00 00 00 00 0f 85 e3 fb ff ff 0f 1f 00 0f 0b 48 8b 7d 90 48 c7 c6 e8 95 a6 81 e8 e6 32 02 00 <0f> 0b 8b 45 cc 49 89 47 30 41 8b 47 18 83 f8 ff 0f 85 10 ff ff
RIP [<ffffffff811a806a>] free_pcppages_bulk+0x52a/0x6f0
RSP <ffff88007a117d28>
---[ end trace 53926436e76d1f35 ]---
When soft offline successfully migrates page, the source page is supposed
to be freed. But there is a race condition where a source page looks
isolated (i.e. the refcount is 0 and the PageHWPoison is set) but
somewhat linked to pcplist. Then another soft offline event calls
drain_all_pages() and tries to free such hwpoisoned page, which is
forbidden.
This odd page state seems to happen due to the race between put_page() in
putback_lru_page() and __pagevec_lru_add_fn(). But I don't want to play
with tweaking drain code as done in commit 9ab3b598d2 "mm: hwpoison:
drop lru_add_drain_all() in __soft_offline_page()", or to change page
freeing code for this soft offline's purpose.
Instead, let's think about the difference between hard offline and soft
offline. There is an interesting difference in how to isolate the in-use
page between these, that is, hard offline marks PageHWPoison of the target
page at first, and doesn't free it by keeping its refcount 1. OTOH, soft
offline tries to free the target page then marks PageHWPoison. This
difference might be the source of complexity and result in bugs like the
above. So making soft offline isolate with keeping refcount can be a
solution for this problem.
We can pass to page migration code the "reason" which shows the caller, so
let's use this more to avoid calling putback_lru_page() when called from
soft offline, which effectively does the isolation for soft offline. With
this change, target pages of soft offline never be reused without changing
migratetype, so this patch also removes the related code.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the page flag sanitization patchset, an invalid usage of
ClearPageSwapCache() is detected in migration_page_copy().
migrate_page_copy() is shared by both normal and hugepage (both thp and
hugetlb) code path, so let's check PageSwapCache() and clear it if it's
set to avoid misuse of the invalid clear operation.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This code is dead since commit 9e645ab6d0 ("sched/numa: Continue PTE
scanning even if migrate rate limited") so remove it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With gcc version 4.7.3 (Ubuntu/Linaro 4.7.3-12ubuntu1) :
mm/migrate.c: In function `migrate_pages':
mm/migrate.c:1148:1: internal compiler error: in push_minipool_fix, at config/arm/arm.c:13500
Please submit a full bug report,
with preprocessed source if appropriate.
See <file:///usr/share/doc/gcc-4.7/README.Bugs> for instructions.
Preprocessed source stored into /tmp/ccPoM1tr.out file, please attach this to your bugreport.
make[1]: *** [mm/migrate.o] Error 1
make: *** [mm/migrate.o] Error 2
Mark unmap_and_move() (which is used in a single place only) "noinline"
to work around this compiler bug.
[akpm@linux-foundation.org: make it conditional on gcc-4.7.3 and arm]
[khilman@kernel.org: fine-tune compiler versions]
[akpm@linux-foundation.org: fix comment]
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reported-by: Kevin Hilman <khilman@kernel.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Lina Iyer <lina.iyer@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Automatic NUMA balancing depends on being able to protect PTEs to trap a
fault and gather reference locality information. Very broadly speaking
it would mark PTEs as not present and use another bit to distinguish
between NUMA hinting faults and other types of faults. It was
universally loved by everybody and caused no problems whatsoever. That
last sentence might be a lie.
This series is very heavily based on patches from Linus and Aneesh to
replace the existing PTE/PMD NUMA helper functions with normal change
protections. I did alter and add parts of it but I consider them
relatively minor contributions. At their suggestion, acked-bys are in
there but I've no problem converting them to Signed-off-by if requested.
AFAIK, this has received no testing on ppc64 and I'm depending on Aneesh
for that. I tested trinity under kvm-tool and passed and ran a few
other basic tests. At the time of writing, only the short-lived tests
have completed but testing of V2 indicated that long-term testing had no
surprises. In most cases I'm leaving out detail as it's not that
interesting.
specjbb single JVM: There was negligible performance difference in the
benchmark itself for short runs. However, system activity is
higher and interrupts are much higher over time -- possibly TLB
flushes. Migrations are also higher. Overall, this is more overhead
but considering the problems faced with the old approach I think
we just have to suck it up and find another way of reducing the
overhead.
specjbb multi JVM: Negligible performance difference to the actual benchmark
but like the single JVM case, the system overhead is noticeably
higher. Again, interrupts are a major factor.
autonumabench: This was all over the place and about all that can be
reasonably concluded is that it's different but not necessarily
better or worse.
autonumabench
3.18.0-rc5 3.18.0-rc5
mmotm-20141119 protnone-v3r3
User NUMA01 32380.24 ( 0.00%) 21642.92 ( 33.16%)
User NUMA01_THEADLOCAL 22481.02 ( 0.00%) 22283.22 ( 0.88%)
User NUMA02 3137.00 ( 0.00%) 3116.54 ( 0.65%)
User NUMA02_SMT 1614.03 ( 0.00%) 1543.53 ( 4.37%)
System NUMA01 322.97 ( 0.00%) 1465.89 (-353.88%)
System NUMA01_THEADLOCAL 91.87 ( 0.00%) 49.32 ( 46.32%)
System NUMA02 37.83 ( 0.00%) 14.61 ( 61.38%)
System NUMA02_SMT 7.36 ( 0.00%) 7.45 ( -1.22%)
Elapsed NUMA01 716.63 ( 0.00%) 599.29 ( 16.37%)
Elapsed NUMA01_THEADLOCAL 553.98 ( 0.00%) 539.94 ( 2.53%)
Elapsed NUMA02 83.85 ( 0.00%) 83.04 ( 0.97%)
Elapsed NUMA02_SMT 86.57 ( 0.00%) 79.15 ( 8.57%)
CPU NUMA01 4563.00 ( 0.00%) 3855.00 ( 15.52%)
CPU NUMA01_THEADLOCAL 4074.00 ( 0.00%) 4136.00 ( -1.52%)
CPU NUMA02 3785.00 ( 0.00%) 3770.00 ( 0.40%)
CPU NUMA02_SMT 1872.00 ( 0.00%) 1959.00 ( -4.65%)
System CPU usage of NUMA01 is worse but it's an adverse workload on this
machine so I'm reluctant to conclude that it's a problem that matters. On
the other workloads that are sensible on this machine, system CPU usage is
great. Overall time to complete the benchmark is comparable
3.18.0-rc5 3.18.0-rc5
mmotm-20141119protnone-v3r3
User 59612.50 48586.44
System 460.22 1537.45
Elapsed 1442.20 1304.29
NUMA alloc hit 5075182 5743353
NUMA alloc miss 0 0
NUMA interleave hit 0 0
NUMA alloc local 5075174 5743339
NUMA base PTE updates 637061448 443106883
NUMA huge PMD updates 1243434 864747
NUMA page range updates 1273699656 885857347
NUMA hint faults 1658116 1214277
NUMA hint local faults 959487 754113
NUMA hint local percent 57 62
NUMA pages migrated 5467056 61676398
The NUMA pages migrated look terrible but when I looked at a graph of the
activity over time I see that the massive spike in migration activity was
during NUMA01. This correlates with high system CPU usage and could be
simply down to bad luck but any modifications that affect that workload
would be related to scan rates and migrations, not the protection
mechanism. For all other workloads, migration activity was comparable.
Overall, headline performance figures are comparable but the overhead is
higher, mostly in interrupts. To some extent, higher overhead from this
approach was anticipated but not to this degree. It's going to be
necessary to reduce this again with a separate series in the future. It's
still worth going ahead with this series though as it's likely to avoid
constant headaches with Xen and is probably easier to maintain.
This patch (of 10):
A transhuge NUMA hinting fault may find the page is migrating and should
wait until migration completes. The check is race-prone because the pmd
is deferenced outside of the page lock and while the race is tiny, it'll
be larger if the PMD is cleared while marking PMDs for hinting fault.
This patch closes the race.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have a race condition between move_pages() and freeing hugepages, where
move_pages() calls follow_page(FOLL_GET) for hugepages internally and
tries to get its refcount without preventing concurrent freeing. This
race crashes the kernel, so this patch fixes it by moving FOLL_GET code
for hugepages into follow_huge_pmd() with taking the page table lock.
This patch intentionally removes page==NULL check after pte_page.
This is justified because pte_page() never returns NULL for any
architectures or configurations.
This patch changes the behavior of follow_huge_pmd() for tail pages and
then tail pages can be pinned/returned. So the caller must be changed to
properly handle the returned tail pages.
We could have a choice to add the similar locking to
follow_huge_(addr|pud) for consistency, but it's not necessary because
currently these functions don't support FOLL_GET flag, so let's leave it
for future development.
Here is the reproducer:
$ cat movepages.c
#include <stdio.h>
#include <stdlib.h>
#include <numaif.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
#define PS 0x1000
int main(int argc, char *argv[]) {
int i;
int nr_hp = strtol(argv[1], NULL, 0);
int nr_p = nr_hp * HPS / PS;
int ret;
void **addrs;
int *status;
int *nodes;
pid_t pid;
pid = strtol(argv[2], NULL, 0);
addrs = malloc(sizeof(char *) * nr_p + 1);
status = malloc(sizeof(char *) * nr_p + 1);
nodes = malloc(sizeof(char *) * nr_p + 1);
while (1) {
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 1;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
for (i = 0; i < nr_p; i++) {
addrs[i] = (void *)ADDR_INPUT + i * PS;
nodes[i] = 0;
status[i] = 0;
}
ret = numa_move_pages(pid, nr_p, addrs, nodes, status,
MPOL_MF_MOVE_ALL);
if (ret == -1)
err("move_pages");
}
return 0;
}
$ cat hugepage.c
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#define ADDR_INPUT 0x700000000000UL
#define HPS 0x200000
int main(int argc, char *argv[]) {
int nr_hp = strtol(argv[1], NULL, 0);
char *p;
while (1) {
p = mmap((void *)ADDR_INPUT, nr_hp * HPS, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (p != (void *)ADDR_INPUT) {
perror("mmap");
break;
}
memset(p, 0, nr_hp * HPS);
munmap(p, nr_hp * HPS);
}
}
$ sysctl vm.nr_hugepages=40
$ ./hugepage 10 &
$ ./movepages 10 $(pgrep -f hugepage)
Fixes: e632a938d9 ("mm: migrate: add hugepage migration code to move_pages()")
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: <stable@vger.kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't create non-linear mappings anymore. Let's drop code which
handles them in rmap.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
the only instance this method has ever grown was one in kernfs -
one that call ->migrate() of another vm_ops if it exists.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull drm updates from Dave Airlie:
"Highlights:
- AMD KFD driver merge
This is the AMD HSA interface for exposing a lowlevel interface for
GPGPU use. They have an open source userspace built on top of this
interface, and the code looks as good as it was going to get out of
tree.
- Initial atomic modesetting work
The need for an atomic modesetting interface to allow userspace to
try and send a complete set of modesetting state to the driver has
arisen, and been suffering from neglect this past year. No more,
the start of the common code and changes for msm driver to use it
are in this tree. Ongoing work to get the userspace ioctl finished
and the code clean will probably wait until next kernel.
- DisplayID 1.3 and tiled monitor exposed to userspace.
Tiled monitor property is now exposed for userspace to make use of.
- Rockchip drm driver merged.
- imx gpu driver moved out of staging
Other stuff:
- core:
panel - MIPI DSI + new panels.
expose suggested x/y properties for virtual GPUs
- i915:
Initial Skylake (SKL) support
gen3/4 reset work
start of dri1/ums removal
infoframe tracking
fixes for lots of things.
- nouveau:
tegra k1 voltage support
GM204 modesetting support
GT21x memory reclocking work
- radeon:
CI dpm fixes
GPUVM improvements
Initial DPM fan control
- rcar-du:
HDMI support added
removed some support for old boards
slave encoder driver for Analog Devices adv7511
- exynos:
Exynos4415 SoC support
- msm:
a4xx gpu support
atomic helper conversion
- tegra:
iommu support
universal plane support
ganged-mode DSI support
- sti:
HDMI i2c improvements
- vmwgfx:
some late fixes.
- qxl:
use suggested x/y properties"
* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (969 commits)
drm: sti: fix module compilation issue
drm/i915: save/restore GMBUS freq across suspend/resume on gen4
drm: sti: correctly cleanup CRTC and planes
drm: sti: add HQVDP plane
drm: sti: add cursor plane
drm: sti: enable auxiliary CRTC
drm: sti: fix delay in VTG programming
drm: sti: prepare sti_tvout to support auxiliary crtc
drm: sti: use drm_crtc_vblank_{on/off} instead of drm_vblank_{on/off}
drm: sti: fix hdmi avi infoframe
drm: sti: remove event lock while disabling vblank
drm: sti: simplify gdp code
drm: sti: clear all mixer control
drm: sti: remove gpio for HDMI hot plug detection
drm: sti: allow to change hdmi ddc i2c adapter
drm/doc: Document drm_add_modes_noedid() usage
drm/i915: Remove '& 0xffff' from the mask given to WA_REG()
drm/i915: Invert the mask and val arguments in wa_add() and WA_REG()
drm: Zero out DRM object memory upon cleanup
drm/i915/bdw: Fix the write setting up the WIZ hashing mode
...
Page migration's __unmap_and_move(), and rmap's try_to_unmap(), were
created for use on pages almost certainly mapped into userspace. But
nowadays compaction often applies them to unmapped page cache pages: which
may exacerbate contention on i_mmap_rwsem quite unnecessarily, since
try_to_unmap_file() makes no preliminary page_mapped() check.
Now check page_mapped() in __unmap_and_move(); and avoid repeating the
same overhead in rmap_walk_file() - don't remove_migration_ptes() when we
never inserted any.
(The PageAnon(page) comment blocks now look even sillier than before, but
clean that up on some other occasion. And note in passing that
try_to_unmap_one() does not use a migration entry when PageSwapCache, so
remove_migration_ptes() will then not update that swap entry to newpage
pte: not a big deal, but something else to clean up later.)
Davidlohr remarked in "mm,fs: introduce helpers around the i_mmap_mutex"
conversion to i_mmap_rwsem, that "The biggest winner of these changes is
migration": a part of the reason might be all of that unnecessary taking
of i_mmap_mutex in page migration; and it's rather a shame that I didn't
get around to sending this patch in before his - this one is much less
useful after Davidlohr's conversion to rwsem, but still good.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sasha Levin reported KASAN splash inside isolate_migratepages_range().
Problem is in the function __is_movable_balloon_page() which tests
AS_BALLOON_MAP in page->mapping->flags. This function has no protection
against anonymous pages. As result it tried to check address space flags
inside struct anon_vma.
Further investigation shows more problems in current implementation:
* Special branch in __unmap_and_move() never works:
balloon_page_movable() checks page flags and page_count. In
__unmap_and_move() page is locked, reference counter is elevated, thus
balloon_page_movable() always fails. As a result execution goes to the
normal migration path. virtballoon_migratepage() returns
MIGRATEPAGE_BALLOON_SUCCESS instead of MIGRATEPAGE_SUCCESS,
move_to_new_page() thinks this is an error code and assigns
newpage->mapping to NULL. Newly migrated page lose connectivity with
balloon an all ability for further migration.
* lru_lock erroneously required in isolate_migratepages_range() for
isolation ballooned page. This function releases lru_lock periodically,
this makes migration mostly impossible for some pages.
* balloon_page_dequeue have a tight race with balloon_page_isolate:
balloon_page_isolate could be executed in parallel with dequeue between
picking page from list and locking page_lock. Race is rare because they
use trylock_page() for locking.
This patch fixes all of them.
Instead of fake mapping with special flag this patch uses special state of
page->_mapcount: PAGE_BALLOON_MAPCOUNT_VALUE = -256. Buddy allocator uses
PAGE_BUDDY_MAPCOUNT_VALUE = -128 for similar purpose. Storing mark
directly in struct page makes everything safer and easier.
PagePrivate is used to mark pages present in page list (i.e. not
isolated, like PageLRU for normal pages). It replaces special rules for
reference counter and makes balloon migration similar to migration of
normal pages. This flag is protected by page_lock together with link to
the balloon device.
Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Link: http://lkml.kernel.org/p/53E6CEAA.9020105@oracle.com
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: <stable@vger.kernel.org> [3.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A migration entry is marked as write if pte_write was true at the time the
entry was created. The VMA protections are not double checked when migration
entries are being removed as mprotect marks write-migration-entries as
read. It means that potentially we take a spurious fault to mark PTEs write
again but it's straight-forward. However, there is a race between write
migrations being marked read and migrations finishing. This potentially
allows a PTE to be write that should have been read. Close this race by
double checking the VMA permissions using maybe_mkwrite when migration
completes.
[torvalds@linux-foundation.org: use maybe_mkwrite]
Cc: stable@vger.kernel.org
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memcg uncharging code that is involved towards the end of a page's
lifetime - truncation, reclaim, swapout, migration - is impressively
complicated and fragile.
Because anonymous and file pages were always charged before they had their
page->mapping established, uncharges had to happen when the page type
could still be known from the context; as in unmap for anonymous, page
cache removal for file and shmem pages, and swap cache truncation for swap
pages. However, these operations happen well before the page is actually
freed, and so a lot of synchronization is necessary:
- Charging, uncharging, page migration, and charge migration all need
to take a per-page bit spinlock as they could race with uncharging.
- Swap cache truncation happens during both swap-in and swap-out, and
possibly repeatedly before the page is actually freed. This means
that the memcg swapout code is called from many contexts that make
no sense and it has to figure out the direction from page state to
make sure memory and memory+swap are always correctly charged.
- On page migration, the old page might be unmapped but then reused,
so memcg code has to prevent untimely uncharging in that case.
Because this code - which should be a simple charge transfer - is so
special-cased, it is not reusable for replace_page_cache().
But now that charged pages always have a page->mapping, introduce
mem_cgroup_uncharge(), which is called after the final put_page(), when we
know for sure that nobody is looking at the page anymore.
For page migration, introduce mem_cgroup_migrate(), which is called after
the migration is successful and the new page is fully rmapped. Because
the old page is no longer uncharged after migration, prevent double
charges by decoupling the page's memcg association (PCG_USED and
pc->mem_cgroup) from the page holding an actual charge. The new bits
PCG_MEM and PCG_MEMSW represent the respective charges and are transferred
to the new page during migration.
mem_cgroup_migrate() is suitable for replace_page_cache() as well,
which gets rid of mem_cgroup_replace_page_cache(). However, care
needs to be taken because both the source and the target page can
already be charged and on the LRU when fuse is splicing: grab the page
lock on the charge moving side to prevent changing pc->mem_cgroup of a
page under migration. Also, the lruvecs of both pages change as we
uncharge the old and charge the new during migration, and putback may
race with us, so grab the lru lock and isolate the pages iff on LRU to
prevent races and ensure the pages are on the right lruvec afterward.
Swap accounting is massively simplified: because the page is no longer
uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can
transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry
before the final put_page() in page reclaim.
Finally, page_cgroup changes are now protected by whatever protection the
page itself offers: anonymous pages are charged under the page table lock,
whereas page cache insertions, swapin, and migration hold the page lock.
Uncharging happens under full exclusion with no outstanding references.
Charging and uncharging also ensure that the page is off-LRU, which
serializes against charge migration. Remove the very costly page_cgroup
lock and set pc->flags non-atomically.
[mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable]
[vdavydov@parallels.com: fix flags definition]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Tested-by: Jet Chen <jet.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Shortly before 3.16-rc1, Dave Jones reported:
WARNING: CPU: 3 PID: 19721 at fs/xfs/xfs_aops.c:971
xfs_vm_writepage+0x5ce/0x630 [xfs]()
CPU: 3 PID: 19721 Comm: trinity-c61 Not tainted 3.15.0+ #3
Call Trace:
xfs_vm_writepage+0x5ce/0x630 [xfs]
shrink_page_list+0x8f9/0xb90
shrink_inactive_list+0x253/0x510
shrink_lruvec+0x563/0x6c0
shrink_zone+0x3b/0x100
shrink_zones+0x1f1/0x3c0
try_to_free_pages+0x164/0x380
__alloc_pages_nodemask+0x822/0xc90
alloc_pages_vma+0xaf/0x1c0
handle_mm_fault+0xa31/0xc50
etc.
970 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
971 PF_MEMALLOC))
I did not respond at the time, because a glance at the PageDirty block
in shrink_page_list() quickly shows that this is impossible: we don't do
writeback on file pages (other than tmpfs) from direct reclaim nowadays.
Dave was hallucinating, but it would have been disrespectful to say so.
However, my own /var/log/messages now shows similar complaints
WARNING: CPU: 1 PID: 28814 at fs/ext4/inode.c:1881 ext4_writepage+0xa7/0x38b()
WARNING: CPU: 0 PID: 27347 at fs/ext4/inode.c:1764 ext4_writepage+0xa7/0x38b()
from stressing some mmotm trees during July.
Could a dirty xfs or ext4 file page somehow get marked PageSwapBacked,
so fail shrink_page_list()'s page_is_file_cache() test, and so proceed
to mapping->a_ops->writepage()?
Yes, 3.16-rc1's commit 68711a7463 ("mm, migration: add destination
page freeing callback") has provided such a way to compaction: if
migrating a SwapBacked page fails, its newpage may be put back on the
list for later use with PageSwapBacked still set, and nothing will clear
it.
Whether that can do anything worse than issue WARN_ON_ONCEs, and get
some statistics wrong, is unclear: easier to fix than to think through
the consequences.
Fixing it here, before the put_new_page(), addresses the bug directly,
but is probably the worst place to fix it. Page migration is doing too
many parts of the job on too many levels: fixing it in
move_to_new_page() to complement its SetPageSwapBacked would be
preferable, except why is it (and newpage->mapping and newpage->index)
done there, rather than down in migrate_page_move_mapping(), once we are
sure of success? Not a cleanup to get into right now, especially not
with memcg cleanups coming in 3.17.
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Trinity has reported:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: __lock_acquire (kernel/locking/lockdep.c:3070 (discriminator 1))
CPU: 6 PID: 16173 Comm: trinity-c364 Tainted: G W
3.15.0-rc1-next-20140415-sasha-00020-gaa90d09 #398
lock_acquire (arch/x86/include/asm/current.h:14
kernel/locking/lockdep.c:3602)
_raw_spin_lock (include/linux/spinlock_api_smp.h:143
kernel/locking/spinlock.c:151)
remove_migration_pte (mm/migrate.c:137)
rmap_walk (mm/rmap.c:1628 mm/rmap.c:1699)
remove_migration_ptes (mm/migrate.c:224)
migrate_pages (mm/migrate.c:922 mm/migrate.c:960 mm/migrate.c:1126)
migrate_misplaced_page (mm/migrate.c:1733)
__handle_mm_fault (mm/memory.c:3762 mm/memory.c:3812 mm/memory.c:3925)
handle_mm_fault (mm/memory.c:3948)
__get_user_pages (mm/memory.c:1851)
__mlock_vma_pages_range (mm/mlock.c:255)
__mm_populate (mm/mlock.c:711)
SyS_mlockall (include/linux/mm.h:1799 mm/mlock.c:817 mm/mlock.c:791)
I believe this comes about because, whereas collapsing and splitting THP
functions take anon_vma lock in write mode (which excludes concurrent
rmap walks), faulting THP functions (write protection and misplaced
NUMA) do not - and mostly they do not need to.
But they do use a pmdp_clear_flush(), set_pmd_at() sequence which, for
an instant (indeed, for a long instant, given the inter-CPU TLB flush in
there), leaves *pmd neither present not trans_huge.
Which can confuse a concurrent rmap walk, as when removing migration
ptes, seen in the dumped trace. Although that rmap walk has a 4k page
to insert, anon_vmas containing THPs are in no way segregated from
4k-page anon_vmas, so the 4k-intent mm_find_pmd() does need to cope with
that instant when a trans_huge pmd is temporarily absent.
I don't think we need strengthen the locking at the THP end: it's easily
handled with an ACCESS_ONCE() before testing both conditions.
And since mm_find_pmd() had only one caller who wanted a THP rather than
a pmd, let's slightly repurpose it to fail when it hits a THP or
non-present pmd, and open code split_huge_page_address() again.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Lameter <cl@gentwo.org>
Cc: Dave Jones <davej@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We already have a function named hugepages_supported(), and the similar
name hugepage_migration_support() is a bit unconfortable, so let's rename
it hugepage_migration_supported().
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory migration uses a callback defined by the caller to determine how to
allocate destination pages. When migration fails for a source page,
however, it frees the destination page back to the system.
This patch adds a memory migration callback defined by the caller to
determine how to free destination pages. If a caller, such as memory
compaction, builds its own freelist for migration targets, this can reuse
already freed memory instead of scanning additional memory.
If the caller provides a function to handle freeing of destination pages,
it is called when page migration fails. If the caller passes NULL then
freeing back to the system will be handled as usual. This patch
introduces no functional change.
Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migration of misplaced transhuge pages uses page_add_new_anon_rmap() when
putting the page back as it avoided an atomic operations and added the new
page to the correct LRU. A side-effect is that the page gets marked
activated as part of the migration meaning that transhuge and base pages
are treated differently from an aging perspective than base page
migration.
This patch uses page_add_anon_rmap() and putback_lru_page() on completion
of a transhuge migration similar to base page migration. It would require
fewer atomic operations to use lru_cache_add without taking an additional
reference to the page. The downside would be that it's still different to
base page migration and unevictable pages may be added to the wrong LRU
for cleaning up later. Testing of the usual workloads did not show any
adverse impact to the change.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add remove_linear_migration_ptes_from_nonlinear(), to fix an interesting
little include/linux/swapops.h:131 BUG_ON(!PageLocked) found by trinity:
indicating that remove_migration_ptes() failed to find one of the
migration entries that was temporarily inserted.
The problem comes from remap_file_pages()'s switch from vma_interval_tree
(good for inserting the migration entry) to i_mmap_nonlinear list (no good
for locating it again); but can only be a problem if the remap_file_pages()
range does not cover the whole of the vma (zap_pte() clears the range).
remove_migration_ptes() needs a file_nonlinear method to go down the
i_mmap_nonlinear list, applying linear location to look for migration
entries in those vmas too, just in case there was this race.
The file_nonlinear method does need rmap_walk_control.arg to do this;
but it never needed vma passed in - vma comes from its own iteration.
Reported-and-tested-by: Dave Jones <davej@redhat.com>
Reported-and-tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GFP_THISNODE is for callers that implement their own clever fallback to
remote nodes. It restricts the allocation to the specified node and
does not invoke reclaim, assuming that the caller will take care of it
when the fallback fails, e.g. through a subsequent allocation request
without GFP_THISNODE set.
However, many current GFP_THISNODE users only want the node exclusive
aspect of the flag, without actually implementing their own fallback or
triggering reclaim if necessary. This results in things like page
migration failing prematurely even when there is easily reclaimable
memory available, unless kswapd happens to be running already or a
concurrent allocation attempt triggers the necessary reclaim.
Convert all callsites that don't implement their own fallback strategy
to __GFP_THISNODE. This restricts the allocation a single node too, but
at the same time allows the allocator to enter the slowpath, wake
kswapd, and invoke direct reclaim if necessary, to make the allocation
happen when memory is full.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Jan Stancek <jstancek@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 7851a45cd3 ("mm: numa: Copy cpupid on page migration") copies
over the cpupid at page migration time. It is unnecessary to set it
again in alloc_misplaced_dst_page().
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 7851a45cd3 ("mm: numa: Copy cpupid on page migration") copiess
over the cpupid at page migration time. It is unnecessary to set it
again in migrate_misplaced_transhuge_page().
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the VM_BUG_ON assertions are performed on a page. Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.
I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.
This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.
[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some part of putback_lru_pages() and putback_movable_pages() is
duplicated, so it could confuse us what we should use. We can remove
putback_lru_pages() since it is not really needed now. This makes us
undestand and maintain the code more easily.
And comment on putback_movable_pages() is stale now, so fix it.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should remove the page from the list if we fail with ENOSYS, since
migrate_pages() consider error cases except -ENOMEM and -EAGAIN as
permanent failure and it assumes that the page would be removed from the
list. Without this patch, we could overcount number of failure.
In addition, we should put back the new hugepage if
!hugepage_migration_support(). If not, we would leak hugepage memory.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's add a comment about where the failed page goes to, which makes
code more readable.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A low local/remote numa hinting fault ratio is potentially explained by
failed migrations. This patch adds a tracepoint that fires when
migration fails due to migration rate limitation.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NUMA migrate rate limiting protects a migration counter and window using
a lock but in some cases this can be a contended lock. It is not
critical that the number of pages be perfect, lost updates are
acceptable. Reduce the importance of this lock.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
numamigrate_update_ratelimit and numamigrate_isolate_page only have
callers in mm/migrate.c. This patch makes them static.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In each rmap traverse case, there is some difference so that we need
function pointers and arguments to them in order to handle these
For this purpose, struct rmap_walk_control is introduced in this patch,
and will be extended in following patch. Introducing and extending are
separate, because it clarify changes.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add calls to the new mmu_notifier_invalidate_range() function to all
places in the VMM that need it.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Jay Cornwall <Jay.Cornwall@amd.com>
Cc: Oded Gabbay <Oded.Gabbay@amd.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
The arbitrary restriction on page counts offered by the core
migrate_page_move_mapping() code results in rather suspicious looking
fiddling with page reference counts in the aio_migratepage() operation.
To fix this, make migrate_page_move_mapping() take an extra_count parameter
that allows aio to tell the code about its own reference count on the page
being migrated.
While cleaning up aio_migratepage(), make it validate that the old page
being passed in is actually what aio_migratepage() expects to prevent
misbehaviour in the case of races.
Signed-off-by: Benjamin LaHaise <bcrl@kvack.org>
THP migration can fail for a variety of reasons. Avoid flushing the TLB
to deal with THP migration races until the copy is ready to start.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
do_huge_pmd_numa_page() handles the case where there is parallel THP
migration. However, by the time it is checked the NUMA hinting
information has already been disrupted. This patch adds an earlier
check with some helpers.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a PMD changes during a THP migration then migration aborts but the
failure path is doing more work than is necessary.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MMU notifiers must be called on THP page migration or secondary MMUs
will get very confused.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Base pages are unmapped and flushed from cache and TLB during normal
page migration and replaced with a migration entry that causes any
parallel NUMA hinting fault or gup to block until migration completes.
THP does not unmap pages due to a lack of support for migration entries
at a PMD level. This allows races with get_user_pages and
get_user_pages_fast which commit 3f926ab945 ("mm: Close races between
THP migration and PMD numa clearing") made worse by introducing a
pmd_clear_flush().
This patch forces get_user_page (fast and normal) on a pmd_numa page to
go through the slow get_user_page path where it will serialise against
THP migration and properly account for the NUMA hinting fault. On the
migration side the page table lock is taken for each PTE update.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, the migration code in migrate_page_copy() uses copy_huge_page()
for hugetlbfs and thp pages:
if (PageHuge(page) || PageTransHuge(page))
copy_huge_page(newpage, page);
So, yay for code reuse. But:
void copy_huge_page(struct page *dst, struct page *src)
{
struct hstate *h = page_hstate(src);
and a non-hugetlbfs page has no page_hstate(). This works 99% of the
time because page_hstate() determines the hstate from the page order
alone. Since the page order of a THP page matches the default hugetlbfs
page order, it works.
But, if you change the default huge page size on the boot command-line
(say default_hugepagesz=1G), then we might not even *have* a 2MB hstate
so page_hstate() returns null and copy_huge_page() oopses pretty fast
since copy_huge_page() dereferences the hstate:
void copy_huge_page(struct page *dst, struct page *src)
{
struct hstate *h = page_hstate(src);
if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
...
Mel noticed that the migration code is really the only user of these
functions. This moves all the copy code over to migrate.c and makes
copy_huge_page() work for THP by checking for it explicitly.
I believe the bug was introduced in commit b32967ff10 ("mm: numa: Add
THP migration for the NUMA working set scanning fault case")
[akpm@linux-foundation.org: fix coding-style and comment text, per Naoya Horiguchi]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Resolve cherry-picking conflicts:
Conflicts:
mm/huge_memory.c
mm/memory.c
mm/mprotect.c
See this upstream merge commit for more details:
52469b4fcd Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Signed-off-by: Ingo Molnar <mingo@kernel.org>
THP migration uses the page lock to guard against parallel allocations
but there are cases like this still open
Task A Task B
--------------------- ---------------------
do_huge_pmd_numa_page do_huge_pmd_numa_page
lock_page
mpol_misplaced == -1
unlock_page
goto clear_pmdnuma
lock_page
mpol_misplaced == 2
migrate_misplaced_transhuge
pmd = pmd_mknonnuma
set_pmd_at
During hours of testing, one crashed with weird errors and while I have
no direct evidence, I suspect something like the race above happened.
This patch extends the page lock to being held until the pmd_numa is
cleared to prevent migration starting in parallel while the pmd_numa is
being cleared. It also flushes the old pmd entry and orders pagetable
insertion before rmap insertion.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-9-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If page migration is turned on in config and the page is migrating, we
may lose the soft dirty bit. If fork and mprotect are called on
migrating pages (once migration is complete) pages do not obtain the
soft dirty bit in the correspond pte entries. Fix it adding an
appropriate test on swap entries.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After page migration, the new page has the nidpid unset. This makes
every fault on a recently migrated page look like a first numa fault,
leading to another page migration.
Copying over the nidpid at page migration time should prevent erroneous
migrations of recently migrated pages.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-46-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the per page last fault tracking to use cpu,pid instead of
nid,pid. This will allow us to try and lookup the alternate task more
easily. Note that even though it is the cpu that is store in the page
flags that the mpol_misplaced decision is still based on the node.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-43-git-send-email-mgorman@suse.de
[ Fixed build failure on 32-bit systems. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ideally it would be possible to distinguish between NUMA hinting faults that
are private to a task and those that are shared. If treated identically
there is a risk that shared pages bounce between nodes depending on
the order they are referenced by tasks. Ultimately what is desirable is
that task private pages remain local to the task while shared pages are
interleaved between sharing tasks running on different nodes to give good
average performance. This is further complicated by THP as even
applications that partition their data may not be partitioning on a huge
page boundary.
To start with, this patch assumes that multi-threaded or multi-process
applications partition their data and that in general the private accesses
are more important for cpu->memory locality in the general case. Also,
no new infrastructure is required to treat private pages properly but
interleaving for shared pages requires additional infrastructure.
To detect private accesses the pid of the last accessing task is required
but the storage requirements are a high. This patch borrows heavily from
Ingo Molnar's patch "numa, mm, sched: Implement last-CPU+PID hash tracking"
to encode some bits from the last accessing task in the page flags as
well as the node information. Collisions will occur but it is better than
just depending on the node information. Node information is then used to
determine if a page needs to migrate. The PID information is used to detect
private/shared accesses. The preferred NUMA node is selected based on where
the maximum number of approximately private faults were measured. Shared
faults are not taken into consideration for a few reasons.
First, if there are many tasks sharing the page then they'll all move
towards the same node. The node will be compute overloaded and then
scheduled away later only to bounce back again. Alternatively the shared
tasks would just bounce around nodes because the fault information is
effectively noise. Either way accounting for shared faults the same as
private faults can result in lower performance overall.
The second reason is based on a hypothetical workload that has a small
number of very important, heavily accessed private pages but a large shared
array. The shared array would dominate the number of faults and be selected
as a preferred node even though it's the wrong decision.
The third reason is that multiple threads in a process will race each
other to fault the shared page making the fault information unreliable.
Signed-off-by: Mel Gorman <mgorman@suse.de>
[ Fix complication error when !NUMA_BALANCING. ]
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-30-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently automatic NUMA balancing is unable to distinguish between false
shared versus private pages except by ignoring pages with an elevated
page_mapcount entirely. This avoids shared pages bouncing between the
nodes whose task is using them but that is ignored quite a lot of data.
This patch kicks away the training wheels in preparation for adding support
for identifying shared/private pages is now in place. The ordering is so
that the impact of the shared/private detection can be easily measured. Note
that the patch does not migrate shared, file-backed within vmas marked
VM_EXEC as these are generally shared library pages. Migrating such pages
is not beneficial as there is an expectation they are read-shared between
caches and iTLB and iCache pressure is generally low.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-28-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
THP migration uses the page lock to guard against parallel allocations
but there are cases like this still open
Task A Task B
--------------------- ---------------------
do_huge_pmd_numa_page do_huge_pmd_numa_page
lock_page
mpol_misplaced == -1
unlock_page
goto clear_pmdnuma
lock_page
mpol_misplaced == 2
migrate_misplaced_transhuge
pmd = pmd_mknonnuma
set_pmd_at
During hours of testing, one crashed with weird errors and while I have
no direct evidence, I suspect something like the race above happened.
This patch extends the page lock to being held until the pmd_numa is
cleared to prevent migration starting in parallel while the pmd_numa is
being cleared. It also flushes the old pmd entry and orders pagetable
insertion before rmap insertion.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-9-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull aio changes from Ben LaHaise:
"First off, sorry for this pull request being late in the merge window.
Al had raised a couple of concerns about 2 items in the series below.
I addressed the first issue (the race introduced by Gu's use of
mm_populate()), but he has not provided any further details on how he
wants to rework the anon_inode.c changes (which were sent out months
ago but have yet to be commented on).
The bulk of the changes have been sitting in the -next tree for a few
months, with all the issues raised being addressed"
* git://git.kvack.org/~bcrl/aio-next: (22 commits)
aio: rcu_read_lock protection for new rcu_dereference calls
aio: fix race in ring buffer page lookup introduced by page migration support
aio: fix rcu sparse warnings introduced by ioctx table lookup patch
aio: remove unnecessary debugging from aio_free_ring()
aio: table lookup: verify ctx pointer
staging/lustre: kiocb->ki_left is removed
aio: fix error handling and rcu usage in "convert the ioctx list to table lookup v3"
aio: be defensive to ensure request batching is non-zero instead of BUG_ON()
aio: convert the ioctx list to table lookup v3
aio: double aio_max_nr in calculations
aio: Kill ki_dtor
aio: Kill ki_users
aio: Kill unneeded kiocb members
aio: Kill aio_rw_vect_retry()
aio: Don't use ctx->tail unnecessarily
aio: io_cancel() no longer returns the io_event
aio: percpu ioctx refcount
aio: percpu reqs_available
aio: reqs_active -> reqs_available
aio: fix build when migration is disabled
...
This patch is based on KOSAKI's work and I add a little more description,
please refer https://lkml.org/lkml/2012/6/14/74.
Currently, I found system can enter a state that there are lots of free
pages in a zone but only order-0 and order-1 pages which means the zone is
heavily fragmented, then high order allocation could make direct reclaim
path's long stall(ex, 60 seconds) especially in no swap and no compaciton
enviroment. This problem happened on v3.4, but it seems issue still lives
in current tree, the reason is do_try_to_free_pages enter live lock:
kswapd will go to sleep if the zones have been fully scanned and are still
not balanced. As kswapd thinks there's little point trying all over again
to avoid infinite loop. Instead it changes order from high-order to
0-order because kswapd think order-0 is the most important. Look at
73ce02e9 in detail. If watermarks are ok, kswapd will go back to sleep
and may leave zone->all_unreclaimable =3D 0. It assume high-order users
can still perform direct reclaim if they wish.
Direct reclaim continue to reclaim for a high order which is not a
COSTLY_ORDER without oom-killer until kswapd turn on
zone->all_unreclaimble= . This is because to avoid too early oom-kill.
So it means direct_reclaim depends on kswapd to break this loop.
In worst case, direct-reclaim may continue to page reclaim forever when
kswapd sleeps forever until someone like watchdog detect and finally kill
the process. As described in:
http://thread.gmane.org/gmane.linux.kernel.mm/103737
We can't turn on zone->all_unreclaimable from direct reclaim path because
direct reclaim path don't take any lock and this way is racy. Thus this
patch removes zone->all_unreclaimable field completely and recalculates
zone reclaimable state every time.
Note: we can't take the idea that direct-reclaim see zone->pages_scanned
directly and kswapd continue to use zone->all_unreclaimable. Because, it
is racy. commit 929bea7c71 (vmscan: all_unreclaimable() use
zone->all_unreclaimable as a name) describes the detail.
[akpm@linux-foundation.org: uninline zone_reclaimable_pages() and zone_reclaimable()]
Cc: Aaditya Kumar <aaditya.kumar.30@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Nick Piggin <npiggin@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Bob Liu <lliubbo@gmail.com>
Cc: Neil Zhang <zhangwm@marvell.com>
Cc: Russell King - ARM Linux <linux@arm.linux.org.uk>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Lisa Du <cldu@marvell.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently hugepage migration works well only for pmd-based hugepages
(mainly due to lack of testing,) so we had better not enable migration of
other levels of hugepages until we are ready for it.
Some users of hugepage migration (mbind, move_pages, and migrate_pages) do
page table walk and check pud/pmd_huge() there, so they are safe. But the
other users (softoffline and memory hotremove) don't do this, so without
this patch they can try to migrate unexpected types of hugepages.
To prevent this, we introduce hugepage_migration_support() as an
architecture dependent check of whether hugepage are implemented on a pmd
basis or not. And on some architecture multiple sizes of hugepages are
available, so hugepage_migration_support() also checks hugepage size.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Extend move_pages() to handle vma with VM_HUGETLB set. We will be able to
migrate hugepage with move_pages(2) after applying the enablement patch
which comes later in this series.
We avoid getting refcount on tail pages of hugepage, because unlike thp,
hugepage is not split and we need not care about races with splitting.
And migration of larger (1GB for x86_64) hugepage are not enabled.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently migrate_huge_page() takes a pointer to a hugepage to be migrated
as an argument, instead of taking a pointer to the list of hugepages to be
migrated. This behavior was introduced in commit 189ebff28 ("hugetlb:
simplify migrate_huge_page()"), and was OK because until now hugepage
migration is enabled only for soft-offlining which migrates only one
hugepage in a single call.
But the situation will change in the later patches in this series which
enable other users of page migration to support hugepage migration. They
can kick migration for both of normal pages and hugepages in a single
call, so we need to go back to original implementation which uses linked
lists to collect the hugepages to be migrated.
With this patch, soft_offline_huge_page() switches to use migrate_pages(),
and migrate_huge_page() is not used any more. So let's remove it.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently hugepage migration is available only for soft offlining, but
it's also useful for some other users of page migration (clearly because
users of hugepage can enjoy the benefit of mempolicy and memory hotplug.)
So this patchset tries to extend such users to support hugepage migration.
The target of this patchset is to enable hugepage migration for NUMA
related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and
memory hotplug.
This patchset does not add hugepage migration for memory compaction,
because users of memory compaction mainly expect to construct thp by
arranging raw pages, and there's little or no need to compact hugepages.
CMA, another user of page migration, can have benefit from hugepage
migration, but is not enabled to support it for now (just because of lack
of testing and expertise in CMA.)
Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in
x86_64, or hugepages in architectures like ia64) is not enabled for now
(again, because of lack of testing.)
As for how these are achived, I extended the API (migrate_pages()) to
handle hugepage (with patch 1 and 2) and adjusted code of each caller to
check and collect movable hugepages (with patch 3-7). Remaining 2 patches
are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is
about making sure that we only migrate pmd-based hugepages. And patch 9
is about choosing appropriate zone for hugepage allocation.
My test is mainly functional one, simply kicking hugepage migration via
each entry point and confirm that migration is done correctly. Test code
is available here:
git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git
And I always run libhugetlbfs test when changing hugetlbfs's code. With
this patchset, no regression was found in the test.
This patch (of 9):
Before enabling each user of page migration to support hugepage,
this patch enables the list of pages for migration to link not only
LRU pages, but also hugepages. As a result, putback_movable_pages()
and migrate_pages() can handle both of LRU pages and hugepages.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As the aio job will pin the ring pages, that will lead to mem migrated
failed. In order to fix this problem we use an anon inode to manage the aio ring
pages, and setup the migratepage callback in the anon inode's address space, so
that when mem migrating the aio ring pages will be moved to other mem node safely.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Signed-off-by: Benjamin LaHaise <bcrl@kvack.org>
When we have a page fault for the address which is backed by a hugepage
under migration, the kernel can't wait correctly and do busy looping on
hugepage fault until the migration finishes. As a result, users who try
to kick hugepage migration (via soft offlining, for example) occasionally
experience long delay or soft lockup.
This is because pte_offset_map_lock() can't get a correct migration entry
or a correct page table lock for hugepage. This patch introduces
migration_entry_wait_huge() to solve this.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: <stable@vger.kernel.org> [2.6.35+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Page 'new' during MIGRATION can't be flushed with flush_cache_page().
Using flush_cache_page(vma, addr, pfn) is justified only if the page is
already placed in process page table, and that is done right after
flush_cache_page(). But without it the arch function has no knowledge
of process PTE and does nothing.
Besides that, flush_cache_page() flushes an application cache page, but
the kernel has a different page virtual address and dirtied it.
Replace it with flush_dcache_page(new) which is the proper usage.
The old page is flushed in try_to_unmap_one() before migration.
This bug takes place in Sead3 board with M14Kc MIPS CPU without cache
aliasing (but Harvard arch - separate I and D cache) in tight memory
environment (128MB) each 1-3days on SOAK test. It fails in cc1 during
kernel build (SIGILL, SIGBUS, SIGSEG) if CONFIG_COMPACTION is switched
ON.
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Cc: Leonid Yegoshin <yegoshin@mips.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: David Miller <davem@davemloft.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comment over migrate_pages() looks quite weird, and makes it hard to
grasp what it is trying to say. Rewrite it more comprehensibly.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No functional change, but the only purpose of the offlining argument to
migrate_pages() etc, was to ensure that __unmap_and_move() could migrate a
KSM page for memory hotremove (which took ksm_thread_mutex) but not for
other callers. Now all cases are safe, remove the arg.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Migration of KSM pages is now safe: remove the PageKsm restrictions from
mempolicy.c and migrate.c.
But keep PageKsm out of __unmap_and_move()'s anon_vma contortions, which
are irrelevant to KSM: it looks as if that code was preventing hotremove
migration of KSM pages, unless they happened to be in swapcache.
There is some question as to whether enforcing a NUMA mempolicy migration
ought to migrate KSM pages, mapped into entirely unrelated processes; but
moving page_mapcount > 1 is only permitted with MPOL_MF_MOVE_ALL anyway,
and it seems reasonable to assume that you wouldn't set MADV_MERGEABLE on
any area where this is a worry.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KSM page migration is already supported in the case of memory hotremove,
which takes the ksm_thread_mutex across all its migrations to keep life
simple.
But the new KSM NUMA merge_across_nodes knob introduces a problem, when
it's set to non-default 0: if a KSM page is migrated to a different NUMA
node, how do we migrate its stable node to the right tree? And what if
that collides with an existing stable node?
So far there's no provision for that, and this patch does not attempt to
deal with it either. But how will I test a solution, when I don't know
how to hotremove memory? The best answer is to enable KSM page migration
in all cases now, and test more common cases. With THP and compaction
added since KSM came in, page migration is now mainstream, and it's a
shame that a KSM page can frustrate freeing a page block.
Without worrying about merge_across_nodes 0 for now, this patch gets KSM
page migration working reliably for default merge_across_nodes 1 (but
leave the patch enabling it until near the end of the series).
It's much simpler than I'd originally imagined, and does not require an
additional tier of locking: page migration relies on the page lock, KSM
page reclaim relies on the page lock, the page lock is enough for KSM page
migration too.
Almost all the care has to be in get_ksm_page(): that's the function which
worries about when a stable node is stale and should be freed, now it also
has to worry about the KSM page being migrated.
The only new overhead is an additional put/get/lock/unlock_page when
stable_tree_search() arrives at a matching node: to make sure migration
respects the raised page count, and so does not migrate the page while
we're busy with it here. That's probably avoidable, either by changing
internal interfaces from using kpage to stable_node, or by moving the
ksm_migrate_page() callsite into a page_freeze_refs() section (even if not
swapcache); but this works well, I've no urge to pull it apart now.
(Descents of the stable tree may pass through nodes whose KSM pages are
under migration: being unlocked, the raised page count does not prevent
that, nor need it: it's safe to memcmp against either old or new page.)
You might worry about mremap, and whether page migration's rmap_walk to
remove migration entries will find all the KSM locations where it inserted
earlier: that should already be handled, by the satisfyingly heavy hammer
of move_vma()'s call to ksm_madvise(,,,MADV_UNMERGEABLE,).
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The function names page_xchg_last_nid(), page_last_nid() and
reset_page_last_nid() were judged to be inconsistent so rename them to a
struct_field_op style pattern. As it looked jarring to have
reset_page_mapcount() and page_nid_reset_last() beside each other in
memmap_init_zone(), this patch also renames reset_page_mapcount() to
page_mapcount_reset(). There are others like init_page_count() but as
it is used throughout the arch code a rename would likely cause more
conflicts than it is worth.
[akpm@linux-foundation.org: fix zcache]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When correcting commit 04fa5d6a65 ("mm: migrate: check page_count of
THP before migrating") Hugh Dickins noted that the control flow for
transhuge migration was difficult to follow. Unconditionally calling
put_page() in numamigrate_isolate_page() made the failure paths of both
migrate_misplaced_transhuge_page() and migrate_misplaced_page() more
complex that they should be. Further, he was extremely wary that an
unlock_page() should ever happen after a put_page() even if the
put_page() should never be the final put_page.
Hugh implemented the following cleanup to simplify the path by calling
putback_lru_page() inside numamigrate_isolate_page() if it failed to
isolate and always calling unlock_page() within
migrate_misplaced_transhuge_page().
There is no functional change after this patch is applied but the code
is easier to follow and unlock_page() always happens before put_page().
[mgorman@suse.de: changelog only]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Simon Jeons <simon.jeons@gmail.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wanpeng Li pointed out that numamigrate_isolate_page() assumes that only
one base page is being migrated when in fact it can also be checking
THP.
The consequences are that a migration will be attempted when a target
node is nearly full and fail later. It's unlikely to be user-visible
but it should be fixed. While we are there, migrate_balanced_pgdat()
should treat nr_migrate_pages as an unsigned long as it is treated as a
watermark.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Suggested-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Simon Jeons <simon.jeons@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When setting a huge PTE, besides calling pte_mkhuge(), we also need to
call arch_make_huge_pte(), which we indeed do in make_huge_pte(), but we
forget to do in hugetlb_change_protection() and remove_migration_pte().
Signed-off-by: Zhigang Lu <zlu@tilera.com>
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh Dickins pointed out that migrate_misplaced_transhuge_page() does
not check page_count before migrating like base page migration and
khugepage. He could not see why this was safe and he is right.
The potential impact of the bug is avoided due to the limitations of
NUMA balancing. The page_mapcount() check ensures that only a single
address space is using this page and as THPs are typically private it
should not be possible for another address space to fault it in
parallel. If the address space has one associated task then it's
difficult to have both a GUP pin and be referencing the page at the same
time. If there are multiple tasks then a buggy scenario requires that
another thread be accessing the page while the direct IO is in flight.
This is dodgy behaviour as there is a possibility of corruption with or
without THP migration. It would be
While we happen to be safe for the most part it is shoddy to depend on
such "safety" so this patch checks the page count similar to anonymous
pages. Note that this does not mean that the page_mapcount() check can
go away. If we were to remove the page_mapcount() check the the THP
would have to be unmapped from all referencing PTEs, replaced with
migration PTEs and restored properly afterwards.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This build error is currently hidden by the fact that the x86
implementation of 'update_mmu_cache_pmd()' is a macro that doesn't use
its last argument, but commit b32967ff10 ("mm: numa: Add THP migration
for the NUMA working set scanning fault case") introduced a call with
the wrong third argument.
In the akpm tree, it causes this build error:
mm/migrate.c: In function 'migrate_misplaced_transhuge_page_put':
mm/migrate.c:1666:2: error: incompatible type for argument 3 of 'update_mmu_cache_pmd'
arch/x86/include/asm/pgtable.h:792:20: note: expected 'struct pmd_t *' but argument is of type 'pmd_t'
Fix it.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
Ka0JKgnWvsa6ez6FSzKI
=ivQa
-----END PGP SIGNATURE-----
Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma
Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
"There are three implementations for NUMA balancing, this tree
(balancenuma), numacore which has been developed in tip/master and
autonuma which is in aa.git.
In almost all respects balancenuma is the dumbest of the three because
its main impact is on the VM side with no attempt to be smart about
scheduling. In the interest of getting the ball rolling, it would be
desirable to see this much merged for 3.8 with the view to building
scheduler smarts on top and adapting the VM where required for 3.9.
The most recent set of comparisons available from different people are
mel: https://lkml.org/lkml/2012/12/9/108
mingo: https://lkml.org/lkml/2012/12/7/331
tglx: https://lkml.org/lkml/2012/12/10/437
srikar: https://lkml.org/lkml/2012/12/10/397
The results are a mixed bag. In my own tests, balancenuma does
reasonably well. It's dumb as rocks and does not regress against
mainline. On the other hand, Ingo's tests shows that balancenuma is
incapable of converging for this workloads driven by perf which is bad
but is potentially explained by the lack of scheduler smarts. Thomas'
results show balancenuma improves on mainline but falls far short of
numacore or autonuma. Srikar's results indicate we all suffer on a
large machine with imbalanced node sizes.
My own testing showed that recent numacore results have improved
dramatically, particularly in the last week but not universally.
We've butted heads heavily on system CPU usage and high levels of
migration even when it shows that overall performance is better.
There are also cases where it regresses. Of interest is that for
specjbb in some configurations it will regress for lower numbers of
warehouses and show gains for higher numbers which is not reported by
the tool by default and sometimes missed in treports. Recently I
reported for numacore that the JVM was crashing with
NullPointerExceptions but currently it's unclear what the source of
this problem is. Initially I thought it was in how numacore batch
handles PTEs but I'm no longer think this is the case. It's possible
numacore is just able to trigger it due to higher rates of migration.
These reports were quite late in the cycle so I/we would like to start
with this tree as it contains much of the code we can agree on and has
not changed significantly over the last 2-3 weeks."
* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
mm: migrate: Account a transhuge page properly when rate limiting
mm: numa: Account for failed allocations and isolations as migration failures
mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
mm: numa: Add THP migration for the NUMA working set scanning fault case.
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
mm: sched: numa: Control enabling and disabling of NUMA balancing
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
mm: numa: migrate: Set last_nid on newly allocated page
mm: numa: split_huge_page: Transfer last_nid on tail page
mm: numa: Introduce last_nid to the page frame
sched: numa: Slowly increase the scanning period as NUMA faults are handled
mm: numa: Rate limit setting of pte_numa if node is saturated
mm: numa: Rate limit the amount of memory that is migrated between nodes
mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
mm: numa: Migrate pages handled during a pmd_numa hinting fault
mm: numa: Migrate on reference policy
...
N_HIGH_MEMORY stands for the nodes that has normal or high memory.
N_MEMORY stands for the nodes that has any memory.
The code here need to handle with the nodes which have memory, we should
use N_MEMORY instead.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Lin Feng <linfeng@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The PATCH "mm: introduce compaction and migration for virtio ballooned pages"
hacks around putback_lru_pages() in order to allow ballooned pages to be
re-inserted on balloon page list as if a ballooned page was like a LRU page.
As ballooned pages are not legitimate LRU pages, this patch introduces
putback_movable_pages() to properly cope with cases where the isolated
pageset contains ballooned pages and LRU pages, thus fixing the mentioned
inelegant hack around putback_lru_pages().
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory fragmentation introduced by ballooning might reduce significantly
the number of 2MB contiguous memory blocks that can be used within a guest,
thus imposing performance penalties associated with the reduced number of
transparent huge pages that could be used by the guest workload.
This patch introduces the helper functions as well as the necessary changes
to teach compaction and migration bits how to cope with pages which are
part of a guest memory balloon, in order to make them movable by memory
compaction procedures.
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory fragmentation introduced by ballooning might reduce significantly
the number of 2MB contiguous memory blocks that can be used within a
guest, thus imposing performance penalties associated with the reduced
number of transparent huge pages that could be used by the guest workload.
This patch-set follows the main idea discussed at 2012 LSFMMS session:
"Ballooning for transparent huge pages" -- http://lwn.net/Articles/490114/
to introduce the required changes to the virtio_balloon driver, as well as
the changes to the core compaction & migration bits, in order to make
those subsystems aware of ballooned pages and allow memory balloon pages
become movable within a guest, thus avoiding the aforementioned
fragmentation issue
Following are numbers that prove this patch benefits on allowing
compaction to be more effective at memory ballooned guests.
Results for STRESS-HIGHALLOC benchmark, from Mel Gorman's mmtests suite,
running on a 4gB RAM KVM guest which was ballooning 512mB RAM in 64mB
chunks, at every minute (inflating/deflating), while test was running:
===BEGIN stress-highalloc
STRESS-HIGHALLOC
highalloc-3.7 highalloc-3.7
rc4-clean rc4-patch
Pass 1 55.00 ( 0.00%) 62.00 ( 7.00%)
Pass 2 54.00 ( 0.00%) 62.00 ( 8.00%)
while Rested 75.00 ( 0.00%) 80.00 ( 5.00%)
MMTests Statistics: duration
3.7 3.7
rc4-clean rc4-patch
User 1207.59 1207.46
System 1300.55 1299.61
Elapsed 2273.72 2157.06
MMTests Statistics: vmstat
3.7 3.7
rc4-clean rc4-patch
Page Ins 3581516 2374368
Page Outs 11148692 10410332
Swap Ins 80 47
Swap Outs 3641 476
Direct pages scanned 37978 33826
Kswapd pages scanned 1828245 1342869
Kswapd pages reclaimed 1710236 1304099
Direct pages reclaimed 32207 31005
Kswapd efficiency 93% 97%
Kswapd velocity 804.077 622.546
Direct efficiency 84% 91%
Direct velocity 16.703 15.682
Percentage direct scans 2% 2%
Page writes by reclaim 79252 9704
Page writes file 75611 9228
Page writes anon 3641 476
Page reclaim immediate 16764 11014
Page rescued immediate 0 0
Slabs scanned 2171904 2152448
Direct inode steals 385 2261
Kswapd inode steals 659137 609670
Kswapd skipped wait 1 69
THP fault alloc 546 631
THP collapse alloc 361 339
THP splits 259 263
THP fault fallback 98 50
THP collapse fail 20 17
Compaction stalls 747 499
Compaction success 244 145
Compaction failures 503 354
Compaction pages moved 370888 474837
Compaction move failure 77378 65259
===END stress-highalloc
This patch:
Introduce MIGRATEPAGE_SUCCESS as the default return code for
address_space_operations.migratepage() method and documents the expected
return code for the same method in failure cases.
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Several place need to find the pmd by(mm_struct, address), so introduce a
function to simplify it.
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Ni zhan Chen <nizhan.chen@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
rmap_walk_anon() and try_to_unmap_anon() appears to be too
careful about locking the anon vma: while it needs protection
against anon vma list modifications, it does not need exclusive
access to the list itself.
Transforming this exclusive lock to a read-locked rwsem removes
a global lock from the hot path of page-migration intense
threaded workloads which can cause pathological performance like
this:
96.43% process 0 [kernel.kallsyms] [k] perf_trace_sched_switch
|
--- perf_trace_sched_switch
__schedule
schedule
schedule_preempt_disabled
__mutex_lock_common.isra.6
__mutex_lock_slowpath
mutex_lock
|
|--50.61%-- rmap_walk
| move_to_new_page
| migrate_pages
| migrate_misplaced_page
| __do_numa_page.isra.69
| handle_pte_fault
| handle_mm_fault
| __do_page_fault
| do_page_fault
| page_fault
| __memset_sse2
| |
| --100.00%-- worker_thread
| |
| --100.00%-- start_thread
|
--49.39%-- page_lock_anon_vma
try_to_unmap_anon
try_to_unmap
migrate_pages
migrate_misplaced_page
__do_numa_page.isra.69
handle_pte_fault
handle_mm_fault
__do_page_fault
do_page_fault
page_fault
__memset_sse2
|
--100.00%-- worker_thread
start_thread
With this change applied the profile is now nicely flat
and there's no anon-vma related scheduling/blocking.
Rename anon_vma_[un]lock() => anon_vma_[un]lock_write(),
to make it clearer that it's an exclusive write-lock in
that case - suggested by Rik van Riel.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Turner <pjt@google.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
If there is excessive migration due to NUMA balancing it gets rate
limited. It does this by counting the number of pages it has migrated
recently but counts a transhuge page as 1 page. Account for it properly.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Subject says it all. Allocation failures and a failure to isolate should
be accounted as a migration failure. This is partially another
difference between base page and transhuge page migration. A base page
migration makes multiple attempts for these conditions before it would
be accounted for as a failure.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Commit "Add THP migration for the NUMA working set scanning fault case"
breaks the build because HPAGE_PMD_SHIFT and HPAGE_PMD_MASK defined to
explode without CONFIG_TRANSPARENT_HUGEPAGE:
mm/migrate.c: In function 'migrate_misplaced_transhuge_page_put':
mm/migrate.c:1549: error: call to '__build_bug_failed' declared with attribute error: BUILD_BUG failed
mm/migrate.c:1564: error: call to '__build_bug_failed' declared with attribute error: BUILD_BUG failed
mm/migrate.c:1566: error: call to '__build_bug_failed' declared with attribute error: BUILD_BUG failed
mm/migrate.c:1573: error: call to '__build_bug_failed' declared with attribute error: BUILD_BUG failed
mm/migrate.c:1606: error: call to '__build_bug_failed' declared with attribute error: BUILD_BUG failed
mm/migrate.c:1648: error: call to '__build_bug_failed' declared with attribute error: BUILD_BUG failed
CONFIG_NUMA_BALANCING allows compilation without enabling transparent
hugepages, so define the dummy function for such a configuration and only
define migrate_misplaced_transhuge_page_put() when transparent hugepages
are enabled.
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Note: This is very heavily based on a patch from Peter Zijlstra with
fixes from Ingo Molnar, Hugh Dickins and Johannes Weiner. That patch
put a lot of migration logic into mm/huge_memory.c where it does
not belong. This version puts tries to share some of the migration
logic with migrate_misplaced_page. However, it should be noted
that now migrate.c is doing more with the pagetable manipulation
than is preferred. The end result is barely recognisable so as
before, the signed-offs had to be removed but will be re-added if
the original authors are ok with it.
Add THP migration for the NUMA working set scanning fault case.
It uses the page lock to serialize. No migration pte dance is
necessary because the pte is already unmapped when we decide
to migrate.
[dhillf@gmail.com: Fix memory leak on isolation failure]
[dhillf@gmail.com: Fix transfer of last_nid information]
Signed-off-by: Mel Gorman <mgorman@suse.de>
If there are a large number of NUMA hinting faults and all of them
are resulting in migrations it may indicate that memory is just
bouncing uselessly around. NUMA balancing cost is likely exceeding
any benefit from locality. Rate limit the PTE updates if the node
is migration rate-limited. As noted in the comments, this distorts
the NUMA faulting statistics.
Signed-off-by: Mel Gorman <mgorman@suse.de>
NOTE: This is very heavily based on similar logic in autonuma. It should
be signed off by Andrea but because there was no standalone
patch and it's sufficiently different from what he did that
the signed-off is omitted. Will be added back if requested.
If a large number of pages are misplaced then the memory bus can be
saturated just migrating pages between nodes. This patch rate-limits
the amount of memory that can be migrating between nodes.
Signed-off-by: Mel Gorman <mgorman@suse.de>
It is tricky to quantify the basic cost of automatic NUMA placement in a
meaningful manner. This patch adds some vmstats that can be used as part
of a basic costing model.
u = basic unit = sizeof(void *)
Ca = cost of struct page access = sizeof(struct page) / u
Cpte = Cost PTE access = Ca
Cupdate = Cost PTE update = (2 * Cpte) + (2 * Wlock)
where Cpte is incurred twice for a read and a write and Wlock
is a constant representing the cost of taking or releasing a
lock
Cnumahint = Cost of a minor page fault = some high constant e.g. 1000
Cpagerw = Cost to read or write a full page = Ca + PAGE_SIZE/u
Ci = Cost of page isolation = Ca + Wi
where Wi is a constant that should reflect the approximate cost
of the locking operation
Cpagecopy = Cpagerw + (Cpagerw * Wnuma) + Ci + (Ci * Wnuma)
where Wnuma is the approximate NUMA factor. 1 is local. 1.2
would imply that remote accesses are 20% more expensive
Balancing cost = Cpte * numa_pte_updates +
Cnumahint * numa_hint_faults +
Ci * numa_pages_migrated +
Cpagecopy * numa_pages_migrated
Note that numa_pages_migrated is used as a measure of how many pages
were isolated even though it would miss pages that failed to migrate. A
vmstat counter could have been added for it but the isolation cost is
pretty marginal in comparison to the overall cost so it seemed overkill.
The ideal way to measure automatic placement benefit would be to count
the number of remote accesses versus local accesses and do something like
benefit = (remote_accesses_before - remove_access_after) * Wnuma
but the information is not readily available. As a workload converges, the
expection would be that the number of remote numa hints would reduce to 0.
convergence = numa_hint_faults_local / numa_hint_faults
where this is measured for the last N number of
numa hints recorded. When the workload is fully
converged the value is 1.
This can measure if the placement policy is converging and how fast it is
doing it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>