Commit Graph

1410 Commits

Author SHA1 Message Date
Alexei Starovoitov
99c55f7d47 bpf: introduce BPF syscall and maps
BPF syscall is a multiplexor for a range of different operations on eBPF.
This patch introduces syscall with single command to create a map.
Next patch adds commands to access maps.

'maps' is a generic storage of different types for sharing data between kernel
and userspace.

Userspace example:
/* this syscall wrapper creates a map with given type and attributes
 * and returns map_fd on success.
 * use close(map_fd) to delete the map
 */
int bpf_create_map(enum bpf_map_type map_type, int key_size,
                   int value_size, int max_entries)
{
    union bpf_attr attr = {
        .map_type = map_type,
        .key_size = key_size,
        .value_size = value_size,
        .max_entries = max_entries
    };

    return bpf(BPF_MAP_CREATE, &attr, sizeof(attr));
}

'union bpf_attr' is backwards compatible with future extensions.

More details in Documentation/networking/filter.txt and in manpage

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-26 15:05:14 -04:00
Daniel Borkmann
b954d83421 net: bpf: only build bpf_jit_binary_{alloc, free}() when jit selected
Since BPF JIT depends on the availability of module_alloc() and
module_free() helpers (HAVE_BPF_JIT and MODULES), we better build
that code only in case we have BPF_JIT in our config enabled, just
like with other JIT code. Fixes builds for arm/marzen_defconfig
and sh/rsk7269_defconfig.

====================
kernel/built-in.o: In function `bpf_jit_binary_alloc':
/home/cwang/linux/kernel/bpf/core.c:144: undefined reference to `module_alloc'
kernel/built-in.o: In function `bpf_jit_binary_free':
/home/cwang/linux/kernel/bpf/core.c:164: undefined reference to `module_free'
make: *** [vmlinux] Error 1
====================

Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Fixes: 738cbe72ad ("net: bpf: consolidate JIT binary allocator")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-10 14:05:07 -07:00
Daniel Borkmann
738cbe72ad net: bpf: consolidate JIT binary allocator
Introduced in commit 314beb9bca ("x86: bpf_jit_comp: secure bpf jit
against spraying attacks") and later on replicated in aa2d2c73c2
("s390/bpf,jit: address randomize and write protect jit code") for
s390 architecture, write protection for BPF JIT images got added and
a random start address of the JIT code, so that it's not on a page
boundary anymore.

Since both use a very similar allocator for the BPF binary header,
we can consolidate this code into the BPF core as it's mostly JIT
independant anyway.

This will also allow for future archs that support DEBUG_SET_MODULE_RONX
to just reuse instead of reimplementing it.

JIT tested on x86_64 and s390x with BPF test suite.

Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-09 16:58:56 -07:00
Alexei Starovoitov
02ab695bb3 net: filter: add "load 64-bit immediate" eBPF instruction
add BPF_LD_IMM64 instruction to load 64-bit immediate value into a register.
All previous instructions were 8-byte. This is first 16-byte instruction.
Two consecutive 'struct bpf_insn' blocks are interpreted as single instruction:
insn[0].code = BPF_LD | BPF_DW | BPF_IMM
insn[0].dst_reg = destination register
insn[0].imm = lower 32-bit
insn[1].code = 0
insn[1].imm = upper 32-bit
All unused fields must be zero.

Classic BPF has similar instruction: BPF_LD | BPF_W | BPF_IMM
which loads 32-bit immediate value into a register.

x64 JITs it as single 'movabsq %rax, imm64'
arm64 may JIT as sequence of four 'movk x0, #imm16, lsl #shift' insn

Note that old eBPF programs are binary compatible with new interpreter.

It helps eBPF programs load 64-bit constant into a register with one
instruction instead of using two registers and 4 instructions:
BPF_MOV32_IMM(R1, imm32)
BPF_ALU64_IMM(BPF_LSH, R1, 32)
BPF_MOV32_IMM(R2, imm32)
BPF_ALU64_REG(BPF_OR, R1, R2)

User space generated programs will use this instruction to load constants only.

To tell kernel that user space needs a pointer the _pseudo_ variant of
this instruction may be added later, which will use extra bits of encoding
to indicate what type of pointer user space is asking kernel to provide.
For example 'off' or 'src_reg' fields can be used for such purpose.
src_reg = 1 could mean that user space is asking kernel to validate and
load in-kernel map pointer.
src_reg = 2 could mean that user space needs readonly data section pointer
src_reg = 3 could mean that user space needs a pointer to per-cpu local data
All such future pseudo instructions will not be carrying the actual pointer
as part of the instruction, but rather will be treated as a request to kernel
to provide one. The kernel will verify the request_for_a_pointer, then
will drop _pseudo_ marking and will store actual internal pointer inside
the instruction, so the end result is the interpreter and JITs never
see pseudo BPF_LD_IMM64 insns and only operate on generic BPF_LD_IMM64 that
loads 64-bit immediate into a register. User space never operates on direct
pointers and verifier can easily recognize request_for_pointer vs other
instructions.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-09 10:26:47 -07:00
Daniel Borkmann
60a3b2253c net: bpf: make eBPF interpreter images read-only
With eBPF getting more extended and exposure to user space is on it's way,
hardening the memory range the interpreter uses to steer its command flow
seems appropriate.  This patch moves the to be interpreted bytecode to
read-only pages.

In case we execute a corrupted BPF interpreter image for some reason e.g.
caused by an attacker which got past a verifier stage, it would not only
provide arbitrary read/write memory access but arbitrary function calls
as well. After setting up the BPF interpreter image, its contents do not
change until destruction time, thus we can setup the image on immutable
made pages in order to mitigate modifications to that code. The idea
is derived from commit 314beb9bca ("x86: bpf_jit_comp: secure bpf jit
against spraying attacks").

This is possible because bpf_prog is not part of sk_filter anymore.
After setup bpf_prog cannot be altered during its life-time. This prevents
any modifications to the entire bpf_prog structure (incl. function/JIT
image pointer).

Every eBPF program (including classic BPF that are migrated) have to call
bpf_prog_select_runtime() to select either interpreter or a JIT image
as a last setup step, and they all are being freed via bpf_prog_free(),
including non-JIT. Therefore, we can easily integrate this into the
eBPF life-time, plus since we directly allocate a bpf_prog, we have no
performance penalty.

Tested with seccomp and test_bpf testsuite in JIT/non-JIT mode and manual
inspection of kernel_page_tables.  Brad Spengler proposed the same idea
via Twitter during development of this patch.

Joint work with Hannes Frederic Sowa.

Suggested-by: Brad Spengler <spender@grsecurity.net>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Kees Cook <keescook@chromium.org>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-05 12:02:48 -07:00
Alexei Starovoitov
7ae457c1e5 net: filter: split 'struct sk_filter' into socket and bpf parts
clean up names related to socket filtering and bpf in the following way:
- everything that deals with sockets keeps 'sk_*' prefix
- everything that is pure BPF is changed to 'bpf_*' prefix

split 'struct sk_filter' into
struct sk_filter {
	atomic_t        refcnt;
	struct rcu_head rcu;
	struct bpf_prog *prog;
};
and
struct bpf_prog {
        u32                     jited:1,
                                len:31;
        struct sock_fprog_kern  *orig_prog;
        unsigned int            (*bpf_func)(const struct sk_buff *skb,
                                            const struct bpf_insn *filter);
        union {
                struct sock_filter      insns[0];
                struct bpf_insn         insnsi[0];
                struct work_struct      work;
        };
};
so that 'struct bpf_prog' can be used independent of sockets and cleans up
'unattached' bpf use cases

split SK_RUN_FILTER macro into:
    SK_RUN_FILTER to be used with 'struct sk_filter *' and
    BPF_PROG_RUN to be used with 'struct bpf_prog *'

__sk_filter_release(struct sk_filter *) gains
__bpf_prog_release(struct bpf_prog *) helper function

also perform related renames for the functions that work
with 'struct bpf_prog *', since they're on the same lines:

sk_filter_size -> bpf_prog_size
sk_filter_select_runtime -> bpf_prog_select_runtime
sk_filter_free -> bpf_prog_free
sk_unattached_filter_create -> bpf_prog_create
sk_unattached_filter_destroy -> bpf_prog_destroy
sk_store_orig_filter -> bpf_prog_store_orig_filter
sk_release_orig_filter -> bpf_release_orig_filter
__sk_migrate_filter -> bpf_migrate_filter
__sk_prepare_filter -> bpf_prepare_filter

API for attaching classic BPF to a socket stays the same:
sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *)
and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program
which is used by sockets, tun, af_packet

API for 'unattached' BPF programs becomes:
bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *)
and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program
which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-02 15:03:58 -07:00
Alexei Starovoitov
8fb575ca39 net: filter: rename sk_convert_filter() -> bpf_convert_filter()
to indicate that this function is converting classic BPF into eBPF
and not related to sockets

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-02 15:02:38 -07:00
Alexei Starovoitov
4df95ff488 net: filter: rename sk_chk_filter() -> bpf_check_classic()
trivial rename to indicate that this functions performs classic BPF checking

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-08-02 15:02:38 -07:00
Alexei Starovoitov
2695fb552c net: filter: rename 'struct sock_filter_int' into 'struct bpf_insn'
eBPF is used by socket filtering, seccomp and soon by tracing and
exposed to userspace, therefore 'sock_filter_int' name is not accurate.
Rename it to 'bpf_insn'

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-24 23:27:17 -07:00
Alexei Starovoitov
f5bffecda9 net: filter: split filter.c into two files
BPF is used in several kernel components. This split creates logical boundary
between generic eBPF core and the rest

kernel/bpf/core.c: eBPF interpreter

net/core/filter.c: classic->eBPF converter, classic verifiers, socket filters

This patch only moves functions.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-23 21:06:22 -07:00