Instead of a globally-contended MR free list, cache MRs in each
rpcrdma_req as they are released. This means acquiring and releasing
an MR will be lock-free in the common case, even outside the
transport send lock.
The original idea of per-rpcrdma_req MR free lists was suggested by
Shirley Ma <shirley.ma@oracle.com> several years ago. I just now
figured out how to make that idea work with on-demand MR allocation.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Refactor: Retrieve an MR and handle error recovery entirely in
rpc_rdma.c, as this is not a device-specific function.
Note that since commit 89f90fe1ad ("SUNRPC: Allow calls to
xprt_transmit() to drain the entire transmit queue"), the
xprt_transmit function handles the cond_resched. The transport no
longer has to do this itself.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Make the field name the same for all trace points that handle
pointers to struct rpcrdma_rep. That makes it easy to grep for
matching rep points in trace output.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Adapt and apply changes that were made to the TCP socket connect
code. See the following commits for details on the purpose of
these changes:
Commit 7196dbb02e ("SUNRPC: Allow changing of the TCP timeout parameters on the fly")
Commit 3851f1cdb2 ("SUNRPC: Limit the reconnect backoff timer to the max RPC message timeout")
Commit 02910177ae ("SUNRPC: Fix reconnection timeouts")
Some common transport code is moved to xprt.c to satisfy the code
duplication police.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Since commit ba69cd122e ("xprtrdma: Remove support for FMR memory
registration"), FRWR is the only supported memory registration mode.
We can take advantage of the asynchronous nature of FRWR's LOCAL_INV
Work Requests to get rid of the completion wait by having the
LOCAL_INV completion handler take care of DMA unmapping MRs and
waking the upper layer RPC waiter.
This eliminates two context switches when local invalidation is
necessary. As a side benefit, we will no longer need the per-xprt
deferred completion work queue.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Now that both the Send and Receive completions are handled in
process context, it is safe to DMA unmap and return MRs to the
free or recycle lists directly in the completion handlers.
Doing this means rpcrdma_frwr no longer needs to track the state of
each MR, meaning that a VALID or FLUSHED MR can no longer appear on
an xprt's MR free list. Thus there is no longer a need to track the
MR's registration state in rpcrdma_frwr.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Under high I/O workloads, I've noticed that an RPC/RDMA transport
occasionally deadlocks (IOPS goes to zero, and doesn't recover).
Diagnosis shows that the sendctx queue is empty, but when sendctxs
are returned to the queue, the xprt_write_space wake-up never
occurs. The wake-up logic in rpcrdma_sendctx_put_locked is racy.
I noticed that both EMPTY_SCQ and XPRT_WRITE_SPACE are implemented
via an atomic bit. Just one of those is sufficient. Removing
EMPTY_SCQ in favor of the generic bit mechanism makes the deadlock
un-reproducible.
Without EMPTY_SCQ, rpcrdma_buffer::rb_flags is no longer used and
is therefore removed.
Unfortunately this patch does not apply cleanly to stable. If
needed, someone will have to port it and test it.
Fixes: 2fad659209 ("xprtrdma: Wait on empty sendctx queue")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
This is a latent bug. xdr_stream_pos works by subtracting
xdr_stream::nwords from xdr_buf::len. But xdr_stream::nwords is not
initialized by xdr_init_encode().
It works today only because all fields in rpcrdma_req::rl_stream
are initialized to zero by rpcrdma_req_create, making the
subtraction in xdr_stream_pos always a no-op.
I found this issue via code inspection. It was introduced by commit
39f4cd9e99 ("xprtrdma: Harden chunk list encoding against send
buffer overflow"), but the code has changed enough since then that
this fix can't be automatically applied to stable.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
A backchannel reply does not set task->tk_client.
Fixes: 0c77668ddb ("SUNRPC: Introduce trace points in ... ")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Record an event when rpcrdma_marshal_req returns a non-zero return
value to help track down why an xprt close might have occurred.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Add infrastructure for trace points in the RPC_AUTH_GSS kernel
module, and add a few sample trace points. These report exceptional
or unexpected events, and observe the assignment of GSS sequence
numbers.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
If a reply has been processed but the RPC is later retransmitted
anyway, the req->rl_reply field still contains the only pointer to
the old rpcrdma rep. When the next reply comes in, the reply handler
will stomp on the rl_reply field, leaking the old rep.
A trace event is added to capture such leaks.
This problem seems to be worsened by the restructuring of the RPC
Call path in v4.20. Fully addressing this issue will require at
least a re-architecture of the disconnect logic, which is not
appropriate during -rc.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
These are rare, but can be helpful at tracking down DMAR and other
problems.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Name them "trace_xprtrdma_op_*" so they can be easily enabled as a
group. No trace point is added where the generic layer already has
observability.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
The chunk-related trace points capture nearly the same information
as the MR-related trace points.
Also, rename them so globbing can be used to enable or disable
these trace points more easily.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Divide the work cleanly:
- rpcrdma_wc_receive is responsible only for RDMA Receives
- rpcrdma_reply_handler is responsible only for RPC Replies
- the posted send and receive counts both belong in rpcrdma_ep
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Use a function name that is consistent with the RDMA core
API and with other consumers. Because this is a function that is
invoked from outside the rpcrdma.ko module, add an appropriate
documenting comment.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up: Use a function name that is consistent with the RDMA core
API and with other consumers. Because this is a function that is
invoked from outside the rpcrdma.ko module, add an appropriate
documenting comment.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Clean up the names of trace events related to MRs so that it's
easy to enable these with a glob.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
When a memory operation fails, the MR's driver state might not match
its hardware state. The only reliable recourse is to dereg the MR.
This is done in ->ro_recover_mr, which then attempts to allocate a
fresh MR to replace the released MR.
Since commit e2ac236c0b ("xprtrdma: Allocate MRs on demand"),
xprtrdma dynamically allocates MRs. It can add more MRs whenever
they are needed.
That makes it possible to simply release an MR when a memory
operation fails, instead of "recovering" it. It will automatically
be replaced by the on-demand MR allocator.
This commit is a little larger than I wanted, but it replaces
->ro_recover_mr, rb_recovery_lock, rb_recovery_worker, and the
rb_stale_mrs list with a generic work queue.
Since MRs are no longer orphaned, the mrs_orphaned metric is no
longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Highlights include:
Stable fixes:
- Fix a 1-byte stack overflow in nfs_idmap_read_and_verify_message
- Fix a hang due to incorrect error returns in rpcrdma_convert_iovs()
- Revert an incorrect change to the NFSv4.1 callback channel
- Fix a bug in the NFSv4.1 sequence error handling
Features and optimisations:
- Support for piggybacking a LAYOUTGET operation to the OPEN compound
- RDMA performance enhancements to deal with transport congestion
- Add proper SPDX tags for NetApp-contributed RDMA source
- Do not request delegated file attributes (size+change) from the server
- Optimise away a GETATTR in the lookup revalidate code when doing NFSv4 OPEN
- Optimise away unnecessary lookups for rename targets
- Misc performance improvements when freeing NFSv4 delegations
Bugfixes and cleanups:
- Try to fail quickly if proto=rdma
- Clean up RDMA receive trace points
- Fix sillyrename to return the delegation when appropriate
- Misc attribute revalidation fixes
- Immediately clear the pNFS layout on a file when the server returns ESTALE
- Return NFS4ERR_DELAY when delegation/layout recalls fail due to igrab()
- Fix the client behaviour on NFS4ERR_SEQ_FALSE_RETRY
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJbH8gIAAoJEA4mA3inWBJcpzYQAJYY3ykt9oLQgm/2b/D/weDe
6890M9W5nIeuZq5soWSpYsZTxqIFbGV4laG/eCTW1gUN1TitSZsoOp7kqhRHXOjq
Rv3ZvjlZsP2qv2SnzsEmhJsynfyB46d19smSTJhgQ8dnXhaZv04Wsd4krLHx0z6p
uUUis5Q1m+vL7HsFPp3iUareO/DFKeSkw2cQ2V5ksTIEiAzX7GC+Ex/KKWf82nrJ
hm7+Nq7rLf1QHJkQvsc3fYCMR4gIzEwUu6F8RyxCoAVgD6O90Hx6NbxnINaHDD4N
U0nRP5LwCyN9hbPWvwcH7Sn4ePDTos2yj2tFO5NP9btTLDVLFSGYZ2a74d9PRdAf
9jn6f6juSDwI7T6NXvkHzzkJG6Or9ABAUZo+yX5JoD6lmgOcPUJpLRy6fu7UxAuN
a5OZ7d9edYpOi0Kys8sDSIlLlxZtFkvybOMVuI3dSHsI+c0g39w8oarpqT2wXWMs
/ZtFz0FCreHhKkNtz7Z49z1UQHDv/XYM0WkcO+eaeK58RLIEE0pZHoMvPKP63lkI
nbbgHvBRAu38Jtvvu65Hpb/VpBcqNGM5hjN1cfW/BOqAPKW23s4vWVj+/1silfW/
uw0MkNrDC9endoALp/YMCcMwPvEw9Awt9y4KjMgfVgSnKwXd0HaSZ2zE6aJU3Wry
Fy2Tv0e0OH3z9Bi/LNuJ
=YWSl
-----END PGP SIGNATURE-----
Merge tag 'nfs-for-4.18-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
Pull NFS client updates from Trond Myklebust:
"Highlights include:
Stable fixes:
- Fix a 1-byte stack overflow in nfs_idmap_read_and_verify_message
- Fix a hang due to incorrect error returns in rpcrdma_convert_iovs()
- Revert an incorrect change to the NFSv4.1 callback channel
- Fix a bug in the NFSv4.1 sequence error handling
Features and optimisations:
- Support for piggybacking a LAYOUTGET operation to the OPEN compound
- RDMA performance enhancements to deal with transport congestion
- Add proper SPDX tags for NetApp-contributed RDMA source
- Do not request delegated file attributes (size+change) from the
server
- Optimise away a GETATTR in the lookup revalidate code when doing
NFSv4 OPEN
- Optimise away unnecessary lookups for rename targets
- Misc performance improvements when freeing NFSv4 delegations
Bugfixes and cleanups:
- Try to fail quickly if proto=rdma
- Clean up RDMA receive trace points
- Fix sillyrename to return the delegation when appropriate
- Misc attribute revalidation fixes
- Immediately clear the pNFS layout on a file when the server returns
ESTALE
- Return NFS4ERR_DELAY when delegation/layout recalls fail due to
igrab()
- Fix the client behaviour on NFS4ERR_SEQ_FALSE_RETRY"
* tag 'nfs-for-4.18-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs: (80 commits)
skip LAYOUTRETURN if layout is invalid
NFSv4.1: Fix the client behaviour on NFS4ERR_SEQ_FALSE_RETRY
NFSv4: Fix a typo in nfs41_sequence_process
NFSv4: Revert commit 5f83d86cf5 ("NFSv4.x: Fix wraparound issues..")
NFSv4: Return NFS4ERR_DELAY when a layout recall fails due to igrab()
NFSv4: Return NFS4ERR_DELAY when a delegation recall fails due to igrab()
NFSv4.0: Remove transport protocol name from non-UCS client ID
NFSv4.0: Remove cl_ipaddr from non-UCS client ID
NFSv4: Fix a compiler warning when CONFIG_NFS_V4_1 is undefined
NFS: Filter cache invalidation when holding a delegation
NFS: Ignore NFS_INO_REVAL_FORCED in nfs_check_inode_attributes()
NFS: Improve caching while holding a delegation
NFS: Fix attribute revalidation
NFS: fix up nfs_setattr_update_inode
NFSv4: Ensure the inode is clean when we set a delegation
NFSv4: Ignore NFS_INO_REVAL_FORCED in nfs4_proc_access
NFSv4: Don't ask for delegated attributes when adding a hard link
NFSv4: Don't ask for delegated attributes when revalidating the inode
NFS: Pass the inode down to the getattr() callback
NFSv4: Don't request size+change attribute if they are delegated to us
...
This includes:
* Posting on the Send and Receive queues
* Send, Receive, Read, and Write completion
* Connect upcalls
* QP errors
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
This includes:
* Transport accept and tear-down
* Decisions about using Write and Reply chunks
* Each RDMA segment that is handled
* Whenever an RDMA_ERR is sent
As a clean-up, I've standardized the order of the includes, and
removed some now redundant dprintk call sites.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Clean up: These functions are no longer used.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Receive completion and Reply handling are done by a BOUND
workqueue, meaning they run on only one CPU.
Posting receives is currently done in the send_request path, which
on large systems is typically done on a different CPU than the one
handling Receive completions. This results in movement of
Receive-related cachelines between the sending and receiving CPUs.
More importantly, it means that currently Receives are posted while
the transport's write lock is held, which is unnecessary and costly.
Finally, allocation of Receive buffers is performed on-demand in
the Receive completion handler. This helps guarantee that they are
allocated on the same NUMA node as the CPU that handles Receive
completions.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
For clarity, report the posting and completion of Receive CQEs.
Also, the wc->byte_len field contains garbage if wc->status is
non-zero, and the vendor error field contains garbage if wc->status
is zero. For readability, don't save those fields in those cases.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
This includes decoding Write and Reply chunks, and fixing up inline
payloads.
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>