Commit Graph

394 Commits

Author SHA1 Message Date
Linus Torvalds
15303ba5d1 KVM changes for 4.16
ARM:
 - Include icache invalidation optimizations, improving VM startup time
 
 - Support for forwarded level-triggered interrupts, improving
   performance for timers and passthrough platform devices
 
 - A small fix for power-management notifiers, and some cosmetic changes
 
 PPC:
 - Add MMIO emulation for vector loads and stores
 
 - Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
   requiring the complex thread synchronization of older CPU versions
 
 - Improve the handling of escalation interrupts with the XIVE interrupt
   controller
 
 - Support decrement register migration
 
 - Various cleanups and bugfixes.
 
 s390:
 - Cornelia Huck passed maintainership to Janosch Frank
 
 - Exitless interrupts for emulated devices
 
 - Cleanup of cpuflag handling
 
 - kvm_stat counter improvements
 
 - VSIE improvements
 
 - mm cleanup
 
 x86:
 - Hypervisor part of SEV
 
 - UMIP, RDPID, and MSR_SMI_COUNT emulation
 
 - Paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
 
 - Allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more AVX512
   features
 
 - Show vcpu id in its anonymous inode name
 
 - Many fixes and cleanups
 
 - Per-VCPU MSR bitmaps (already merged through x86/pti branch)
 
 - Stable KVM clock when nesting on Hyper-V (merged through x86/hyperv)
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJafvMtAAoJEED/6hsPKofo6YcH/Rzf2RmshrWaC3q82yfIV0Qz
 Z8N8yJHSaSdc3Jo6cmiVj0zelwAxdQcyjwlT7vxt5SL2yML+/Q0st9Hc3EgGGXPm
 Il99eJEl+2MYpZgYZqV8ff3mHS5s5Jms+7BITAeh6Rgt+DyNbykEAvzt+MCHK9cP
 xtsIZQlvRF7HIrpOlaRzOPp3sK2/MDZJ1RBE7wYItK3CUAmsHim/LVYKzZkRTij3
 /9b4LP1yMMbziG+Yxt1o682EwJB5YIat6fmDG9uFeEVI5rWWN7WFubqs8gCjYy/p
 FX+BjpOdgTRnX+1m9GIj0Jlc/HKMXryDfSZS07Zy4FbGEwSiI5SfKECub4mDhuE=
 =C/uD
 -----END PGP SIGNATURE-----

Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Radim Krčmář:
 "ARM:

   - icache invalidation optimizations, improving VM startup time

   - support for forwarded level-triggered interrupts, improving
     performance for timers and passthrough platform devices

   - a small fix for power-management notifiers, and some cosmetic
     changes

  PPC:

   - add MMIO emulation for vector loads and stores

   - allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
     requiring the complex thread synchronization of older CPU versions

   - improve the handling of escalation interrupts with the XIVE
     interrupt controller

   - support decrement register migration

   - various cleanups and bugfixes.

  s390:

   - Cornelia Huck passed maintainership to Janosch Frank

   - exitless interrupts for emulated devices

   - cleanup of cpuflag handling

   - kvm_stat counter improvements

   - VSIE improvements

   - mm cleanup

  x86:

   - hypervisor part of SEV

   - UMIP, RDPID, and MSR_SMI_COUNT emulation

   - paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit

   - allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
     AVX512 features

   - show vcpu id in its anonymous inode name

   - many fixes and cleanups

   - per-VCPU MSR bitmaps (already merged through x86/pti branch)

   - stable KVM clock when nesting on Hyper-V (merged through
     x86/hyperv)"

* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
  KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
  KVM: PPC: Book3S HV: Branch inside feature section
  KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
  KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
  KVM: PPC: Book3S PR: Fix broken select due to misspelling
  KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
  KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
  KVM: PPC: Book3S HV: Drop locks before reading guest memory
  kvm: x86: remove efer_reload entry in kvm_vcpu_stat
  KVM: x86: AMD Processor Topology Information
  x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
  kvm: embed vcpu id to dentry of vcpu anon inode
  kvm: Map PFN-type memory regions as writable (if possible)
  x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
  KVM: arm/arm64: Fixup userspace irqchip static key optimization
  KVM: arm/arm64: Fix userspace_irqchip_in_use counting
  KVM: arm/arm64: Fix incorrect timer_is_pending logic
  MAINTAINERS: update KVM/s390 maintainers
  MAINTAINERS: add Halil as additional vfio-ccw maintainer
  MAINTAINERS: add David as a reviewer for KVM/s390
  ...
2018-02-10 13:16:35 -08:00
Ingo Molnar
8284507916 Merge branch 'linus' into sched/urgent, to resolve conflicts
Conflicts:
	arch/arm64/kernel/entry.S
	arch/x86/Kconfig
	include/linux/sched/mm.h
	kernel/fork.c

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-06 21:12:31 +01:00
Mathieu Desnoyers
10bcc80e9d membarrier/x86: Provide core serializing command
There are two places where core serialization is needed by membarrier:

1) When returning from the membarrier IPI,
2) After scheduler updates curr to a thread with a different mm, before
   going back to user-space, since the curr->mm is used by membarrier to
   check whether it needs to send an IPI to that CPU.

x86-32 uses IRET as return from interrupt, and both IRET and SYSEXIT to go
back to user-space. The IRET instruction is core serializing, but not
SYSEXIT.

x86-64 uses IRET as return from interrupt, which takes care of the IPI.
However, it can return to user-space through either SYSRETL (compat
code), SYSRETQ, or IRET. Given that SYSRET{L,Q} is not core serializing,
we rely instead on write_cr3() performed by switch_mm() to provide core
serialization after changing the current mm, and deal with the special
case of kthread -> uthread (temporarily keeping current mm into
active_mm) by adding a sync_core() in that specific case.

Use the new sync_core_before_usermode() to guarantee this.

Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Andrew Hunter <ahh@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Avi Kivity <avi@scylladb.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: David Sehr <sehr@google.com>
Cc: Greg Hackmann <ghackmann@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Maged Michael <maged.michael@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Link: http://lkml.kernel.org/r/20180129202020.8515-10-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-05 21:35:11 +01:00
Linus Torvalds
35277995e1 Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull spectre/meltdown updates from Thomas Gleixner:
 "The next round of updates related to melted spectrum:

   - The initial set of spectre V1 mitigations:

       - Array index speculation blocker and its usage for syscall,
         fdtable and the n180211 driver.

       - Speculation barrier and its usage in user access functions

   - Make indirect calls in KVM speculation safe

   - Blacklisting of known to be broken microcodes so IPBP/IBSR are not
     touched.

   - The initial IBPB support and its usage in context switch

   - The exposure of the new speculation MSRs to KVM guests.

   - A fix for a regression in x86/32 related to the cpu entry area

   - Proper whitelisting for known to be safe CPUs from the mitigations.

   - objtool fixes to deal proper with retpolines and alternatives

   - Exclude __init functions from retpolines which speeds up the boot
     process.

   - Removal of the syscall64 fast path and related cleanups and
     simplifications

   - Removal of the unpatched paravirt mode which is yet another source
     of indirect unproteced calls.

   - A new and undisputed version of the module mismatch warning

   - A couple of cleanup and correctness fixes all over the place

  Yet another step towards full mitigation. There are a few things still
  missing like the RBS underflow mitigation for Skylake and other small
  details, but that's being worked on.

  That said, I'm taking a belated christmas vacation for a week and hope
  that everything is magically solved when I'm back on Feb 12th"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
  KVM/SVM: Allow direct access to MSR_IA32_SPEC_CTRL
  KVM/VMX: Allow direct access to MSR_IA32_SPEC_CTRL
  KVM/VMX: Emulate MSR_IA32_ARCH_CAPABILITIES
  KVM/x86: Add IBPB support
  KVM/x86: Update the reverse_cpuid list to include CPUID_7_EDX
  x86/speculation: Fix typo IBRS_ATT, which should be IBRS_ALL
  x86/pti: Mark constant arrays as __initconst
  x86/spectre: Simplify spectre_v2 command line parsing
  x86/retpoline: Avoid retpolines for built-in __init functions
  x86/kvm: Update spectre-v1 mitigation
  KVM: VMX: make MSR bitmaps per-VCPU
  x86/paravirt: Remove 'noreplace-paravirt' cmdline option
  x86/speculation: Use Indirect Branch Prediction Barrier in context switch
  x86/cpuid: Fix up "virtual" IBRS/IBPB/STIBP feature bits on Intel
  x86/spectre: Fix spelling mistake: "vunerable"-> "vulnerable"
  x86/spectre: Report get_user mitigation for spectre_v1
  nl80211: Sanitize array index in parse_txq_params
  vfs, fdtable: Prevent bounds-check bypass via speculative execution
  x86/syscall: Sanitize syscall table de-references under speculation
  x86/get_user: Use pointer masking to limit speculation
  ...
2018-02-04 11:45:55 -08:00
Linus Torvalds
e1c70f3238 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching
Pull livepatching updates from Jiri Kosina:

 - handle 'infinitely'-long sleeping tasks, from Miroslav Benes

 - remove 'immediate' feature, as it turns out it doesn't provide the
   originally expected semantics, and brings more issues than value

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching:
  livepatch: add locking to force and signal functions
  livepatch: Remove immediate feature
  livepatch: force transition to finish
  livepatch: send a fake signal to all blocking tasks
2018-01-31 13:02:18 -08:00
Vitaly Kuznetsov
93286261de x86/hyperv: Reenlightenment notifications support
Hyper-V supports Live Migration notification. This is supposed to be used
in conjunction with TSC emulation: when a VM is migrated to a host with
different TSC frequency for some short period the host emulates the
accesses to TSC and sends an interrupt to notify about the event. When the
guest is done updating everything it can disable TSC emulation and
everything will start working fast again.

These notifications weren't required until now as Hyper-V guests are not
supposed to use TSC as a clocksource: in Linux the TSC is even marked as
unstable on boot. Guests normally use 'tsc page' clocksource and host
updates its values on migrations automatically.

Things change when with nested virtualization: even when the PV
clocksources (kvm-clock or tsc page) are passed through to the nested
guests the TSC frequency and frequency changes need to be know..

Hyper-V Top Level Functional Specification (as of v5.0b) wrongly specifies
EAX:BIT(12) of CPUID:0x40000009 as the feature identification bit. The
right one to check is EAX:BIT(13) of CPUID:0x40000003. I was assured that
the fix in on the way.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: kvm@vger.kernel.org
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "Michael Kelley (EOSG)" <Michael.H.Kelley@microsoft.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: devel@linuxdriverproject.org
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Cathy Avery <cavery@redhat.com>
Cc: Mohammed Gamal <mmorsy@redhat.com>
Link: https://lkml.kernel.org/r/20180124132337.30138-4-vkuznets@redhat.com
2018-01-30 23:55:32 +01:00
Dan Williams
2fbd7af5af x86/syscall: Sanitize syscall table de-references under speculation
The syscall table base is a user controlled function pointer in kernel
space. Use array_index_nospec() to prevent any out of bounds speculation.

While retpoline prevents speculating into a userspace directed target it
does not stop the pointer de-reference, the concern is leaking memory
relative to the syscall table base, by observing instruction cache
behavior.

Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: kernel-hardening@lists.openwall.com
Cc: gregkh@linuxfoundation.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: alan@linux.intel.com
Link: https://lkml.kernel.org/r/151727417984.33451.1216731042505722161.stgit@dwillia2-desk3.amr.corp.intel.com
2018-01-30 21:54:31 +01:00
Andy Lutomirski
37a8f7c383 x86/asm: Move 'status' from thread_struct to thread_info
The TS_COMPAT bit is very hot and is accessed from code paths that mostly
also touch thread_info::flags.  Move it into struct thread_info to improve
cache locality.

The only reason it was in thread_struct is that there was a brief period
during which arch-specific fields were not allowed in struct thread_info.

Linus suggested further changing:

  ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED);

to:

  if (unlikely(ti->status & (TS_COMPAT|TS_I386_REGS_POKED)))
          ti->status &= ~(TS_COMPAT|TS_I386_REGS_POKED);

on the theory that frequently dirtying the cacheline even in pure 64-bit
code that never needs to modify status hurts performance.  That could be a
reasonable followup patch, but I suspect it matters less on top of this
patch.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kernel Hardening <kernel-hardening@lists.openwall.com>
Link: https://lkml.kernel.org/r/03148bcc1b217100e6e8ecf6a5468c45cf4304b6.1517164461.git.luto@kernel.org
2018-01-30 15:30:36 +01:00
Andy Lutomirski
d1f7732009 x86/entry/64: Push extra regs right away
With the fast path removed there is no point in splitting the push of the
normal and the extra register set. Just push the extra regs right away.

[ tglx: Split out from 'x86/entry/64: Remove the SYSCALL64 fast path' ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kernel Hardening <kernel-hardening@lists.openwall.com>
Link: https://lkml.kernel.org/r/462dff8d4d64dfbfc851fbf3130641809d980ecd.1517164461.git.luto@kernel.org
2018-01-30 15:30:36 +01:00
Andy Lutomirski
21d375b6b3 x86/entry/64: Remove the SYSCALL64 fast path
The SYCALLL64 fast path was a nice, if small, optimization back in the good
old days when syscalls were actually reasonably fast.  Now there is PTI to
slow everything down, and indirect branches are verboten, making everything
messier.  The retpoline code in the fast path is particularly nasty.

Just get rid of the fast path. The slow path is barely slower.

[ tglx: Split out the 'push all extra regs' part ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kernel Hardening <kernel-hardening@lists.openwall.com>
Link: https://lkml.kernel.org/r/462dff8d4d64dfbfc851fbf3130641809d980ecd.1517164461.git.luto@kernel.org
2018-01-30 15:30:36 +01:00
Ingo Molnar
7e86548e2c Linux 4.15
-----BEGIN PGP SIGNATURE-----
 
 iQEcBAABAgAGBQJabj6pAAoJEHm+PkMAQRiGs8cIAJQFkCWnbz86e3vG4DuWhyA8
 CMGHCQdUOxxFGa/ixhIiuetbC0x+JVHAjV2FwVYbAQfaZB3pfw2iR1ncQxpAP1AI
 oLU9vBEqTmwKMPc9CM5rRfnLFWpGcGwUNzgPdxD5yYqGDtcM8K840mF6NdkYe5AN
 xU8rv1wlcFPF4A5pvHCH0pvVmK4VxlVFk/2H67TFdxBs4PyJOnSBnf+bcGWgsKO6
 hC8XIVtcKCH2GfFxt5d0Vgc5QXJEpX1zn2mtCa1MwYRjN2plgYfD84ha0xE7J0B0
 oqV/wnjKXDsmrgVpncr3txd4+zKJFNkdNRE4eLAIupHo2XHTG4HvDJ5dBY2NhGU=
 =sOml
 -----END PGP SIGNATURE-----

Merge tag 'v4.15' into x86/pti, to be able to merge dependent changes

Time has come to switch PTI development over to a v4.15 base - we'll still
try to make sure that all PTI fixes backport cleanly to v4.14 and earlier.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-30 15:08:27 +01:00
Linus Torvalds
6304672b7f Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/pti updates from Thomas Gleixner:
 "Another set of melted spectrum related changes:

   - Code simplifications and cleanups for RSB and retpolines.

   - Make the indirect calls in KVM speculation safe.

   - Whitelist CPUs which are known not to speculate from Meltdown and
     prepare for the new CPUID flag which tells the kernel that a CPU is
     not affected.

   - A less rigorous variant of the module retpoline check which merily
     warns when a non-retpoline protected module is loaded and reflects
     that fact in the sysfs file.

   - Prepare for Indirect Branch Prediction Barrier support.

   - Prepare for exposure of the Speculation Control MSRs to guests, so
     guest OSes which depend on those "features" can use them. Includes
     a blacklist of the broken microcodes. The actual exposure of the
     MSRs through KVM is still being worked on"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/speculation: Simplify indirect_branch_prediction_barrier()
  x86/retpoline: Simplify vmexit_fill_RSB()
  x86/cpufeatures: Clean up Spectre v2 related CPUID flags
  x86/cpu/bugs: Make retpoline module warning conditional
  x86/bugs: Drop one "mitigation" from dmesg
  x86/nospec: Fix header guards names
  x86/alternative: Print unadorned pointers
  x86/speculation: Add basic IBPB (Indirect Branch Prediction Barrier) support
  x86/cpufeature: Blacklist SPEC_CTRL/PRED_CMD on early Spectre v2 microcodes
  x86/pti: Do not enable PTI on CPUs which are not vulnerable to Meltdown
  x86/msr: Add definitions for new speculation control MSRs
  x86/cpufeatures: Add AMD feature bits for Speculation Control
  x86/cpufeatures: Add Intel feature bits for Speculation Control
  x86/cpufeatures: Add CPUID_7_EDX CPUID leaf
  module/retpoline: Warn about missing retpoline in module
  KVM: VMX: Make indirect call speculation safe
  KVM: x86: Make indirect calls in emulator speculation safe
2018-01-29 19:08:02 -08:00
Borislav Petkov
1dde7415e9 x86/retpoline: Simplify vmexit_fill_RSB()
Simplify it to call an asm-function instead of pasting 41 insn bytes at
every call site. Also, add alignment to the macro as suggested here:

  https://support.google.com/faqs/answer/7625886

[dwmw2: Clean up comments, let it clobber %ebx and just tell the compiler]

Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ak@linux.intel.com
Cc: dave.hansen@intel.com
Cc: karahmed@amazon.de
Cc: arjan@linux.intel.com
Cc: torvalds@linux-foundation.org
Cc: peterz@infradead.org
Cc: bp@alien8.de
Cc: pbonzini@redhat.com
Cc: tim.c.chen@linux.intel.com
Cc: gregkh@linux-foundation.org
Link: https://lkml.kernel.org/r/1517070274-12128-3-git-send-email-dwmw@amazon.co.uk
2018-01-27 19:10:45 +01:00
Linus Torvalds
5515114211 Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti fixes from Thomas Gleixner:
 "A small set of fixes for the meltdown/spectre mitigations:

   - Make kprobes aware of retpolines to prevent probes in the retpoline
     thunks.

   - Make the machine check exception speculation protected. MCE used to
     issue an indirect call directly from the ASM entry code. Convert
     that to a direct call into a C-function and issue the indirect call
     from there so the compiler can add the retpoline protection,

   - Make the vmexit_fill_RSB() assembly less stupid

   - Fix a typo in the PTI documentation"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/retpoline: Optimize inline assembler for vmexit_fill_RSB
  x86/pti: Document fix wrong index
  kprobes/x86: Disable optimizing on the function jumps to indirect thunk
  kprobes/x86: Blacklist indirect thunk functions for kprobes
  retpoline: Introduce start/end markers of indirect thunk
  x86/mce: Make machine check speculation protected
2018-01-21 10:48:35 -08:00
Thomas Gleixner
6f41c34d69 x86/mce: Make machine check speculation protected
The machine check idtentry uses an indirect branch directly from the low
level code. This evades the speculation protection.

Replace it by a direct call into C code and issue the indirect call there
so the compiler can apply the proper speculation protection.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by:Borislav Petkov <bp@alien8.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Niced-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801181626290.1847@nanos
2018-01-19 16:31:28 +01:00
Linus Torvalds
88dc7fca18 Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti bits and fixes from Thomas Gleixner:
 "This last update contains:

   - An objtool fix to prevent a segfault with the gold linker by
     changing the invocation order. That's not just for gold, it's a
     general robustness improvement.

   - An improved error message for objtool which spares tearing hairs.

   - Make KASAN fail loudly if there is not enough memory instead of
     oopsing at some random place later

   - RSB fill on context switch to prevent RSB underflow and speculation
     through other units.

   - Make the retpoline/RSB functionality work reliably for both Intel
     and AMD

   - Add retpoline to the module version magic so mismatch can be
     detected

   - A small (non-fix) update for cpufeatures which prevents cpu feature
     clashing for the upcoming extra mitigation bits to ease
     backporting"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  module: Add retpoline tag to VERMAGIC
  x86/cpufeature: Move processor tracing out of scattered features
  objtool: Improve error message for bad file argument
  objtool: Fix seg fault with gold linker
  x86/retpoline: Add LFENCE to the retpoline/RSB filling RSB macros
  x86/retpoline: Fill RSB on context switch for affected CPUs
  x86/kasan: Panic if there is not enough memory to boot
2018-01-17 11:54:56 -08:00
David Woodhouse
c995efd5a7 x86/retpoline: Fill RSB on context switch for affected CPUs
On context switch from a shallow call stack to a deeper one, as the CPU
does 'ret' up the deeper side it may encounter RSB entries (predictions for
where the 'ret' goes to) which were populated in userspace.

This is problematic if neither SMEP nor KPTI (the latter of which marks
userspace pages as NX for the kernel) are active, as malicious code in
userspace may then be executed speculatively.

Overwrite the CPU's return prediction stack with calls which are predicted
to return to an infinite loop, to "capture" speculation if this
happens. This is required both for retpoline, and also in conjunction with
IBRS for !SMEP && !KPTI.

On Skylake+ the problem is slightly different, and an *underflow* of the
RSB may cause errant branch predictions to occur. So there it's not so much
overwrite, as *filling* the RSB to attempt to prevent it getting
empty. This is only a partial solution for Skylake+ since there are many
other conditions which may result in the RSB becoming empty. The full
solution on Skylake+ is to use IBRS, which will prevent the problem even
when the RSB becomes empty. With IBRS, the RSB-stuffing will not be
required on context switch.

[ tglx: Added missing vendor check and slighty massaged comments and
  	changelog ]

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515779365-9032-1-git-send-email-dwmw@amazon.co.uk
2018-01-15 00:32:44 +01:00
Linus Torvalds
40548c6b6c Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti updates from Thomas Gleixner:
 "This contains:

   - a PTI bugfix to avoid setting reserved CR3 bits when PCID is
     disabled. This seems to cause issues on a virtual machine at least
     and is incorrect according to the AMD manual.

   - a PTI bugfix which disables the perf BTS facility if PTI is
     enabled. The BTS AUX buffer is not globally visible and causes the
     CPU to fault when the mapping disappears on switching CR3 to user
     space. A full fix which restores BTS on PTI is non trivial and will
     be worked on.

   - PTI bugfixes for EFI and trusted boot which make sure that the user
     space visible page table entries have the NX bit cleared

   - removal of dead code in the PTI pagetable setup functions

   - add PTI documentation

   - add a selftest for vsyscall to verify that the kernel actually
     implements what it advertises.

   - a sysfs interface to expose vulnerability and mitigation
     information so there is a coherent way for users to retrieve the
     status.

   - the initial spectre_v2 mitigations, aka retpoline:

      + The necessary ASM thunk and compiler support

      + The ASM variants of retpoline and the conversion of affected ASM
        code

      + Make LFENCE serializing on AMD so it can be used as speculation
        trap

      + The RSB fill after vmexit

   - initial objtool support for retpoline

  As I said in the status mail this is the most of the set of patches
  which should go into 4.15 except two straight forward patches still on
  hold:

   - the retpoline add on of LFENCE which waits for ACKs

   - the RSB fill after context switch

  Both should be ready to go early next week and with that we'll have
  covered the major holes of spectre_v2 and go back to normality"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
  x86,perf: Disable intel_bts when PTI
  security/Kconfig: Correct the Documentation reference for PTI
  x86/pti: Fix !PCID and sanitize defines
  selftests/x86: Add test_vsyscall
  x86/retpoline: Fill return stack buffer on vmexit
  x86/retpoline/irq32: Convert assembler indirect jumps
  x86/retpoline/checksum32: Convert assembler indirect jumps
  x86/retpoline/xen: Convert Xen hypercall indirect jumps
  x86/retpoline/hyperv: Convert assembler indirect jumps
  x86/retpoline/ftrace: Convert ftrace assembler indirect jumps
  x86/retpoline/entry: Convert entry assembler indirect jumps
  x86/retpoline/crypto: Convert crypto assembler indirect jumps
  x86/spectre: Add boot time option to select Spectre v2 mitigation
  x86/retpoline: Add initial retpoline support
  objtool: Allow alternatives to be ignored
  objtool: Detect jumps to retpoline thunks
  x86/pti: Make unpoison of pgd for trusted boot work for real
  x86/alternatives: Fix optimize_nops() checking
  sysfs/cpu: Fix typos in vulnerability documentation
  x86/cpu/AMD: Use LFENCE_RDTSC in preference to MFENCE_RDTSC
  ...
2018-01-14 09:51:25 -08:00
Thomas Gleixner
f10ee3dcc9 x86/pti: Fix !PCID and sanitize defines
The switch to the user space page tables in the low level ASM code sets
unconditionally bit 12 and bit 11 of CR3. Bit 12 is switching the base
address of the page directory to the user part, bit 11 is switching the
PCID to the PCID associated with the user page tables.

This fails on a machine which lacks PCID support because bit 11 is set in
CR3. Bit 11 is reserved when PCID is inactive.

While the Intel SDM claims that the reserved bits are ignored when PCID is
disabled, the AMD APM states that they should be cleared.

This went unnoticed as the AMD APM was not checked when the code was
developed and reviewed and test systems with Intel CPUs never failed to
boot. The report is against a Centos 6 host where the guest fails to boot,
so it's not yet clear whether this is a virt issue or can happen on real
hardware too, but thats irrelevant as the AMD APM clearly ask for clearing
the reserved bits.

Make sure that on non PCID machines bit 11 is not set by the page table
switching code.

Andy suggested to rename the related bits and masks so they are clearly
describing what they should be used for, which is done as well for clarity.

That split could have been done with alternatives but the macro hell is
horrible and ugly. This can be done on top if someone cares to remove the
extra orq. For now it's a straight forward fix.

Fixes: 6fd166aae7 ("x86/mm: Use/Fix PCID to optimize user/kernel switches")
Reported-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable <stable@vger.kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801140009150.2371@nanos
2018-01-14 10:45:53 +01:00
David Woodhouse
2641f08bb7 x86/retpoline/entry: Convert entry assembler indirect jumps
Convert indirect jumps in core 32/64bit entry assembler code to use
non-speculative sequences when CONFIG_RETPOLINE is enabled.

Don't use CALL_NOSPEC in entry_SYSCALL_64_fastpath because the return
address after the 'call' instruction must be *precisely* at the
.Lentry_SYSCALL_64_after_fastpath label for stub_ptregs_64 to work,
and the use of alternatives will mess that up unless we play horrid
games to prepend with NOPs and make the variants the same length. It's
not worth it; in the case where we ALTERNATIVE out the retpoline, the
first instruction at __x86.indirect_thunk.rax is going to be a bare
jmp *%rax anyway.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: gnomes@lxorguk.ukuu.org.uk
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: https://lkml.kernel.org/r/1515707194-20531-7-git-send-email-dwmw@amazon.co.uk
2018-01-12 00:14:29 +01:00
Linus Torvalds
00a5ae218d Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 page table isolation fixes from Thomas Gleixner:
 "A couple of urgent fixes for PTI:

   - Fix a PTE mismatch between user and kernel visible mapping of the
     cpu entry area (differs vs. the GLB bit) and causes a TLB mismatch
     MCE on older AMD K8 machines

   - Fix the misplaced CR3 switch in the SYSCALL compat entry code which
     causes access to unmapped kernel memory resulting in double faults.

   - Fix the section mismatch of the cpu_tss_rw percpu storage caused by
     using a different mechanism for declaration and definition.

   - Two fixes for dumpstack which help to decode entry stack issues
     better

   - Enable PTI by default in Kconfig. We should have done that earlier,
     but it slipped through the cracks.

   - Exclude AMD from the PTI enforcement. Not necessarily a fix, but if
     AMD is so confident that they are not affected, then we should not
     burden users with the overhead"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/process: Define cpu_tss_rw in same section as declaration
  x86/pti: Switch to kernel CR3 at early in entry_SYSCALL_compat()
  x86/dumpstack: Print registers for first stack frame
  x86/dumpstack: Fix partial register dumps
  x86/pti: Make sure the user/kernel PTEs match
  x86/cpu, x86/pti: Do not enable PTI on AMD processors
  x86/pti: Enable PTI by default
2018-01-03 16:41:07 -08:00
Thomas Gleixner
d7732ba55c x86/pti: Switch to kernel CR3 at early in entry_SYSCALL_compat()
The preparation for PTI which added CR3 switching to the entry code
misplaced the CR3 switch in entry_SYSCALL_compat().

With PTI enabled the entry code tries to access a per cpu variable after
switching to kernel GS. This fails because that variable is not mapped to
user space. This results in a double fault and in the worst case a kernel
crash.

Move the switch ahead of the access and clobber RSP which has been saved
already.

Fixes: 8a09317b89 ("x86/mm/pti: Prepare the x86/entry assembly code for entry/exit CR3 switching")
Reported-by: Lars Wendler <wendler.lars@web.de>
Reported-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>, 
Cc: Dave Hansen <dave.hansen@linux.intel.com>, 
Cc: Peter Zijlstra <peterz@infradead.org>, 
Cc: Greg KH <gregkh@linuxfoundation.org>, , 
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>, 
Cc: Juergen Gross <jgross@suse.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801031949200.1957@nanos
2018-01-03 23:19:32 +01:00
Linus Torvalds
5aa90a8458 Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 page table isolation updates from Thomas Gleixner:
 "This is the final set of enabling page table isolation on x86:

   - Infrastructure patches for handling the extra page tables.

   - Patches which map the various bits and pieces which are required to
     get in and out of user space into the user space visible page
     tables.

   - The required changes to have CR3 switching in the entry/exit code.

   - Optimizations for the CR3 switching along with documentation how
     the ASID/PCID mechanism works.

   - Updates to dump pagetables to cover the user space page tables for
     W+X scans and extra debugfs files to analyze both the kernel and
     the user space visible page tables

  The whole functionality is compile time controlled via a config switch
  and can be turned on/off on the command line as well"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
  x86/ldt: Make the LDT mapping RO
  x86/mm/dump_pagetables: Allow dumping current pagetables
  x86/mm/dump_pagetables: Check user space page table for WX pages
  x86/mm/dump_pagetables: Add page table directory to the debugfs VFS hierarchy
  x86/mm/pti: Add Kconfig
  x86/dumpstack: Indicate in Oops whether PTI is configured and enabled
  x86/mm: Clarify the whole ASID/kernel PCID/user PCID naming
  x86/mm: Use INVPCID for __native_flush_tlb_single()
  x86/mm: Optimize RESTORE_CR3
  x86/mm: Use/Fix PCID to optimize user/kernel switches
  x86/mm: Abstract switching CR3
  x86/mm: Allow flushing for future ASID switches
  x86/pti: Map the vsyscall page if needed
  x86/pti: Put the LDT in its own PGD if PTI is on
  x86/mm/64: Make a full PGD-entry size hole in the memory map
  x86/events/intel/ds: Map debug buffers in cpu_entry_area
  x86/cpu_entry_area: Add debugstore entries to cpu_entry_area
  x86/mm/pti: Map ESPFIX into user space
  x86/mm/pti: Share entry text PMD
  x86/entry: Align entry text section to PMD boundary
  ...
2017-12-29 17:02:49 -08:00
Peter Zijlstra
21e9445911 x86/mm: Optimize RESTORE_CR3
Most NMI/paranoid exceptions will not in fact change pagetables and would
thus not require TLB flushing, however RESTORE_CR3 uses flushing CR3
writes.

Restores to kernel PCIDs can be NOFLUSH, because we explicitly flush the
kernel mappings and now that we track which user PCIDs need flushing we can
avoid those too when possible.

This does mean RESTORE_CR3 needs an additional scratch_reg, luckily both
sites have plenty available.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-23 21:13:00 +01:00
Peter Zijlstra
6fd166aae7 x86/mm: Use/Fix PCID to optimize user/kernel switches
We can use PCID to retain the TLBs across CR3 switches; including those now
part of the user/kernel switch. This increases performance of kernel
entry/exit at the cost of more expensive/complicated TLB flushing.

Now that we have two address spaces, one for kernel and one for user space,
we need two PCIDs per mm. We use the top PCID bit to indicate a user PCID
(just like we use the PFN LSB for the PGD). Since we do TLB invalidation
from kernel space, the existing code will only invalidate the kernel PCID,
we augment that by marking the corresponding user PCID invalid, and upon
switching back to userspace, use a flushing CR3 write for the switch.

In order to access the user_pcid_flush_mask we use PER_CPU storage, which
means the previously established SWAPGS vs CR3 ordering is now mandatory
and required.

Having to do this memory access does require additional registers, most
sites have a functioning stack and we can spill one (RAX), sites without
functional stack need to otherwise provide the second scratch register.

Note: PCID is generally available on Intel Sandybridge and later CPUs.
Note: Up until this point TLB flushing was broken in this series.

Based-on-code-from: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-23 21:13:00 +01:00
Andy Lutomirski
85900ea515 x86/pti: Map the vsyscall page if needed
Make VSYSCALLs work fully in PTI mode by mapping them properly to the user
space visible page tables.

[ tglx: Hide unused functions (Patch by Arnd Bergmann) ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-23 21:13:00 +01:00
Thomas Gleixner
aa8c6248f8 x86/mm/pti: Add infrastructure for page table isolation
Add the initial files for kernel page table isolation, with a minimal init
function and the boot time detection for this misfeature.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-23 21:12:59 +01:00
Dave Hansen
8a09317b89 x86/mm/pti: Prepare the x86/entry assembly code for entry/exit CR3 switching
PAGE_TABLE_ISOLATION needs to switch to a different CR3 value when it
enters the kernel and switch back when it exits.  This essentially needs to
be done before leaving assembly code.

This is extra challenging because the switching context is tricky: the
registers that can be clobbered can vary.  It is also hard to store things
on the stack because there is an established ABI (ptregs) or the stack is
entirely unsafe to use.

Establish a set of macros that allow changing to the user and kernel CR3
values.

Interactions with SWAPGS:

  Previous versions of the PAGE_TABLE_ISOLATION code relied on having
  per-CPU scratch space to save/restore a register that can be used for the
  CR3 MOV.  The %GS register is used to index into our per-CPU space, so
  SWAPGS *had* to be done before the CR3 switch.  That scratch space is gone
  now, but the semantic that SWAPGS must be done before the CR3 MOV is
  retained.  This is good to keep because it is not that hard to do and it
  allows to do things like add per-CPU debugging information.

What this does in the NMI code is worth pointing out.  NMIs can interrupt
*any* context and they can also be nested with NMIs interrupting other
NMIs.  The comments below ".Lnmi_from_kernel" explain the format of the
stack during this situation.  Changing the format of this stack is hard.
Instead of storing the old CR3 value on the stack, this depends on the
*regular* register save/restore mechanism and then uses %r14 to keep CR3
during the NMI.  It is callee-saved and will not be clobbered by the C NMI
handlers that get called.

[ PeterZ: ESPFIX optimization ]

Based-on-code-from: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-23 21:12:59 +01:00
Linus Torvalds
caf9a82657 Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 PTI preparatory patches from Thomas Gleixner:
 "Todays Advent calendar window contains twentyfour easy to digest
  patches. The original plan was to have twenty three matching the date,
  but a late fixup made that moot.

   - Move the cpu_entry_area mapping out of the fixmap into a separate
     address space. That's necessary because the fixmap becomes too big
     with NRCPUS=8192 and this caused already subtle and hard to
     diagnose failures.

     The top most patch is fresh from today and cures a brain slip of
     that tall grumpy german greybeard, who ignored the intricacies of
     32bit wraparounds.

   - Limit the number of CPUs on 32bit to 64. That's insane big already,
     but at least it's small enough to prevent address space issues with
     the cpu_entry_area map, which have been observed and debugged with
     the fixmap code

   - A few TLB flush fixes in various places plus documentation which of
     the TLB functions should be used for what.

   - Rename the SYSENTER stack to CPU_ENTRY_AREA stack as it is used for
     more than sysenter now and keeping the name makes backtraces
     confusing.

   - Prevent LDT inheritance on exec() by moving it to arch_dup_mmap(),
     which is only invoked on fork().

   - Make vysycall more robust.

   - A few fixes and cleanups of the debug_pagetables code. Check
     PAGE_PRESENT instead of checking the PTE for 0 and a cleanup of the
     C89 initialization of the address hint array which already was out
     of sync with the index enums.

   - Move the ESPFIX init to a different place to prepare for PTI.

   - Several code moves with no functional change to make PTI
     integration simpler and header files less convoluted.

   - Documentation fixes and clarifications"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
  x86/cpu_entry_area: Prevent wraparound in setup_cpu_entry_area_ptes() on 32bit
  init: Invoke init_espfix_bsp() from mm_init()
  x86/cpu_entry_area: Move it out of the fixmap
  x86/cpu_entry_area: Move it to a separate unit
  x86/mm: Create asm/invpcid.h
  x86/mm: Put MMU to hardware ASID translation in one place
  x86/mm: Remove hard-coded ASID limit checks
  x86/mm: Move the CR3 construction functions to tlbflush.h
  x86/mm: Add comments to clarify which TLB-flush functions are supposed to flush what
  x86/mm: Remove superfluous barriers
  x86/mm: Use __flush_tlb_one() for kernel memory
  x86/microcode: Dont abuse the TLB-flush interface
  x86/uv: Use the right TLB-flush API
  x86/entry: Rename SYSENTER_stack to CPU_ENTRY_AREA_entry_stack
  x86/doc: Remove obvious weirdnesses from the x86 MM layout documentation
  x86/mm/64: Improve the memory map documentation
  x86/ldt: Prevent LDT inheritance on exec
  x86/ldt: Rework locking
  arch, mm: Allow arch_dup_mmap() to fail
  x86/vsyscall/64: Warn and fail vsyscall emulation in NATIVE mode
  ...
2017-12-23 11:53:04 -08:00
Dave Hansen
4fe2d8b11a x86/entry: Rename SYSENTER_stack to CPU_ENTRY_AREA_entry_stack
If the kernel oopses while on the trampoline stack, it will print
"<SYSENTER>" even if SYSENTER is not involved.  That is rather confusing.

The "SYSENTER" stack is used for a lot more than SYSENTER now.  Give it a
better string to display in stack dumps, and rename the kernel code to
match.

Also move the 32-bit code over to the new naming even though it still uses
the entry stack only for SYSENTER.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-22 20:13:02 +01:00
Andy Lutomirski
4831b77940 x86/vsyscall/64: Warn and fail vsyscall emulation in NATIVE mode
If something goes wrong with pagetable setup, vsyscall=native will
accidentally fall back to emulation.  Make it warn and fail so that we
notice.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-22 20:13:01 +01:00
Andy Lutomirski
49275fef98 x86/vsyscall/64: Explicitly set _PAGE_USER in the pagetable hierarchy
The kernel is very erratic as to which pagetables have _PAGE_USER set.  The
vsyscall page gets lucky: it seems that all of the relevant pagetables are
among the apparently arbitrary ones that set _PAGE_USER.  Rather than
relying on chance, just explicitly set _PAGE_USER.

This will let us clean up pagetable setup to stop setting _PAGE_USER.  The
added code can also be reused by pagetable isolation to manage the
_PAGE_USER bit in the usermode tables.

[ tglx: Folded paravirt fix from Juergen Gross ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-22 20:13:01 +01:00
Linus Torvalds
64a48099b3 Merge branch 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 syscall entry code changes for PTI from Ingo Molnar:
 "The main changes here are Andy Lutomirski's changes to switch the
  x86-64 entry code to use the 'per CPU entry trampoline stack'. This,
  besides helping fix KASLR leaks (the pending Page Table Isolation
  (PTI) work), also robustifies the x86 entry code"

* 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits)
  x86/cpufeatures: Make CPU bugs sticky
  x86/paravirt: Provide a way to check for hypervisors
  x86/paravirt: Dont patch flush_tlb_single
  x86/entry/64: Make cpu_entry_area.tss read-only
  x86/entry: Clean up the SYSENTER_stack code
  x86/entry/64: Remove the SYSENTER stack canary
  x86/entry/64: Move the IST stacks into struct cpu_entry_area
  x86/entry/64: Create a per-CPU SYSCALL entry trampoline
  x86/entry/64: Return to userspace from the trampoline stack
  x86/entry/64: Use a per-CPU trampoline stack for IDT entries
  x86/espfix/64: Stop assuming that pt_regs is on the entry stack
  x86/entry/64: Separate cpu_current_top_of_stack from TSS.sp0
  x86/entry: Remap the TSS into the CPU entry area
  x86/entry: Move SYSENTER_stack to the beginning of struct tss_struct
  x86/dumpstack: Handle stack overflow on all stacks
  x86/entry: Fix assumptions that the HW TSS is at the beginning of cpu_tss
  x86/kasan/64: Teach KASAN about the cpu_entry_area
  x86/mm/fixmap: Generalize the GDT fixmap mechanism, introduce struct cpu_entry_area
  x86/entry/gdt: Put per-CPU GDT remaps in ascending order
  x86/dumpstack: Add get_stack_info() support for the SYSENTER stack
  ...
2017-12-18 08:59:15 -08:00
Andy Lutomirski
c482feefe1 x86/entry/64: Make cpu_entry_area.tss read-only
The TSS is a fairly juicy target for exploits, and, now that the TSS
is in the cpu_entry_area, it's no longer protected by kASLR.  Make it
read-only on x86_64.

On x86_32, it can't be RO because it's written by the CPU during task
switches, and we use a task gate for double faults.  I'd also be
nervous about errata if we tried to make it RO even on configurations
without double fault handling.

[ tglx: AMD confirmed that there is no problem on 64-bit with TSS RO.  So
  	it's probably safe to assume that it's a non issue, though Intel
  	might have been creative in that area. Still waiting for
  	confirmation. ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.733700132@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17 14:27:52 +01:00
Andy Lutomirski
0f9a48100f x86/entry: Clean up the SYSENTER_stack code
The existing code was a mess, mainly because C arrays are nasty.  Turn
SYSENTER_stack into a struct, add a helper to find it, and do all the
obvious cleanups this enables.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.653244723@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17 14:27:51 +01:00
Andy Lutomirski
3386bc8aed x86/entry/64: Create a per-CPU SYSCALL entry trampoline
Handling SYSCALL is tricky: the SYSCALL handler is entered with every
single register (except FLAGS), including RSP, live.  It somehow needs
to set RSP to point to a valid stack, which means it needs to save the
user RSP somewhere and find its own stack pointer.  The canonical way
to do this is with SWAPGS, which lets us access percpu data using the
%gs prefix.

With PAGE_TABLE_ISOLATION-like pagetable switching, this is
problematic.  Without a scratch register, switching CR3 is impossible, so
%gs-based percpu memory would need to be mapped in the user pagetables.
Doing that without information leaks is difficult or impossible.

Instead, use a different sneaky trick.  Map a copy of the first part
of the SYSCALL asm at a different address for each CPU.  Now RIP
varies depending on the CPU, so we can use RIP-relative memory access
to access percpu memory.  By putting the relevant information (one
scratch slot and the stack address) at a constant offset relative to
RIP, we can make SYSCALL work without relying on %gs.

A nice thing about this approach is that we can easily switch it on
and off if we want pagetable switching to be configurable.

The compat variant of SYSCALL doesn't have this problem in the first
place -- there are plenty of scratch registers, since we don't care
about preserving r8-r15.  This patch therefore doesn't touch SYSCALL32
at all.

This patch actually seems to be a small speedup.  With this patch,
SYSCALL touches an extra cache line and an extra virtual page, but
the pipeline no longer stalls waiting for SWAPGS.  It seems that, at
least in a tight loop, the latter outweights the former.

Thanks to David Laight for an optimization tip.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.403607157@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17 14:27:50 +01:00
Andy Lutomirski
3e3b9293d3 x86/entry/64: Return to userspace from the trampoline stack
By itself, this is useless.  It gives us the ability to run some final code
before exit that cannnot run on the kernel stack.  This could include a CR3
switch a la PAGE_TABLE_ISOLATION or some kernel stack erasing, for
example.  (Or even weird things like *changing* which kernel stack gets
used as an ASLR-strengthening mechanism.)

The SYSRET32 path is not covered yet.  It could be in the future or
we could just ignore it and force the slow path if needed.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.306546484@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17 14:27:50 +01:00
Andy Lutomirski
7f2590a110 x86/entry/64: Use a per-CPU trampoline stack for IDT entries
Historically, IDT entries from usermode have always gone directly
to the running task's kernel stack.  Rearrange it so that we enter on
a per-CPU trampoline stack and then manually switch to the task's stack.
This touches a couple of extra cachelines, but it gives us a chance
to run some code before we touch the kernel stack.

The asm isn't exactly beautiful, but I think that fully refactoring
it can wait.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.225330557@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17 14:27:38 +01:00
Andy Lutomirski
72f5e08dbb x86/entry: Remap the TSS into the CPU entry area
This has a secondary purpose: it puts the entry stack into a region
with a well-controlled layout.  A subsequent patch will take
advantage of this to streamline the SYSCALL entry code to be able to
find it more easily.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.962042855@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17 13:59:56 +01:00
Andy Lutomirski
1a79797b58 x86/entry/64: Allocate and enable the SYSENTER stack
This will simplify future changes that want scratch variables early in
the SYSENTER handler -- they'll be able to spill registers to the
stack.  It also lets us get rid of a SWAPGS_UNSAFE_STACK user.

This does not depend on CONFIG_IA32_EMULATION=y because we'll want the
stack space even without IA32 emulation.

As far as I can tell, the reason that this wasn't done from day 1 is
that we use IST for #DB and #BP, which is IMO rather nasty and causes
a lot more problems than it solves.  But, since #DB uses IST, we don't
actually need a real stack for SYSENTER (because SYSENTER with TF set
will invoke #DB on the IST stack rather than the SYSENTER stack).

I want to remove IST usage from these vectors some day, and this patch
is a prerequisite for that as well.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150605.312726423@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17 13:59:53 +01:00
Boris Ostrovsky
e17f823453 x86/entry/64/paravirt: Use paravirt-safe macro to access eflags
Commit 1d3e53e862 ("x86/entry/64: Refactor IRQ stacks and make them
NMI-safe") added DEBUG_ENTRY_ASSERT_IRQS_OFF macro that acceses eflags
using 'pushfq' instruction when testing for IF bit. On PV Xen guests
looking at IF flag directly will always see it set, resulting in 'ud2'.

Introduce SAVE_FLAGS() macro that will use appropriate save_fl pv op when
running paravirt.

Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20171204150604.899457242@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-17 13:59:52 +01:00
Linus Torvalds
dd53a4214d Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 fixes from Ingo Molnar:

 - make CR4 handling irq-safe, which bug vmware guests ran into

 - don't crash on early IRQs in Xen guests

 - don't crash secondary CPU bringup if #UD assisted WARN()ings are
   triggered

 - make X86_BUG_FXSAVE_LEAK optional on newer AMD CPUs that have the fix

 - fix AMD Fam17h microcode loading

 - fix broadcom_postcore_init() if ACPI is disabled

 - fix resume regression in __restore_processor_context()

 - fix Sparse warnings

 - fix a GCC-8 warning

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/vdso: Change time() prototype to match __vdso_time()
  x86: Fix Sparse warnings about non-static functions
  x86/power: Fix some ordering bugs in __restore_processor_context()
  x86/PCI: Make broadcom_postcore_init() check acpi_disabled
  x86/microcode/AMD: Add support for fam17h microcode loading
  x86/cpufeatures: Make X86_BUG_FXSAVE_LEAK detectable in CPUID on AMD
  x86/idt: Load idt early in start_secondary
  x86/xen: Support early interrupts in xen pv guests
  x86/tlb: Disable interrupts when changing CR4
  x86/tlb: Refactor CR4 setting and shadow write
2017-12-06 17:47:29 -08:00
Arnd Bergmann
88edb57d1e x86/vdso: Change time() prototype to match __vdso_time()
gcc-8 warns that time() is an alias for __vdso_time() but the two
have different prototypes:

  arch/x86/entry/vdso/vclock_gettime.c:327:5: error: 'time' alias between functions of incompatible types 'int(time_t *)' {aka 'int(long int *)'} and 'time_t(time_t *)' {aka 'long int(long int *)'} [-Werror=attribute-alias]
   int time(time_t *t)
       ^~~~
  arch/x86/entry/vdso/vclock_gettime.c:318:16: note: aliased declaration here

I could not figure out whether this is intentional, but I see that
changing it to return time_t avoids the warning.

Returning 'int' from time() is also a bit questionable, as it causes an
overflow in y2038 even on 64-bit architectures that use a 64-bit time_t
type. On 32-bit architecture with 64-bit time_t, time() should always
be implement by the C library by calling a (to be added) clock_gettime()
variant that takes a sufficiently wide argument.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: http://lkml.kernel.org/r/20171204150203.852959-1-arnd@arndb.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-12-06 21:31:46 +01:00
Miroslav Benes
43347d56c8 livepatch: send a fake signal to all blocking tasks
Live patching consistency model is of LEAVE_PATCHED_SET and
SWITCH_THREAD. This means that all tasks in the system have to be marked
one by one as safe to call a new patched function. Safe means when a
task is not (sleeping) in a set of patched functions. That is, no
patched function is on the task's stack. Another clearly safe place is
the boundary between kernel and userspace. The patching waits for all
tasks to get outside of the patched set or to cross the boundary. The
transition is completed afterwards.

The problem is that a task can block the transition for quite a long
time, if not forever. It could sleep in a set of patched functions, for
example.  Luckily we can force the task to leave the set by sending it a
fake signal, that is a signal with no data in signal pending structures
(no handler, no sign of proper signal delivered). Suspend/freezer use
this to freeze the tasks as well. The task gets TIF_SIGPENDING set and
is woken up (if it has been sleeping in the kernel before) or kicked by
rescheduling IPI (if it was running on other CPU). This causes the task
to go to kernel/userspace boundary where the signal would be handled and
the task would be marked as safe in terms of live patching.

There are tasks which are not affected by this technique though. The
fake signal is not sent to kthreads. They should be handled differently.
They can be woken up so they leave the patched set and their
TIF_PATCH_PENDING can be cleared thanks to stack checking.

For the sake of completeness, if the task is in TASK_RUNNING state but
not currently running on some CPU it doesn't get the IPI, but it would
eventually handle the signal anyway. Second, if the task runs in the
kernel (in TASK_RUNNING state) it gets the IPI, but the signal is not
handled on return from the interrupt. It would be handled on return to
the userspace in the future when the fake signal is sent again. Stack
checking deals with these cases in a better way.

If the task was sleeping in a syscall it would be woken by our fake
signal, it would check if TIF_SIGPENDING is set (by calling
signal_pending() predicate) and return ERESTART* or EINTR. Syscalls with
ERESTART* return values are restarted in case of the fake signal (see
do_signal()). EINTR is propagated back to the userspace program. This
could disturb the program, but...

* each process dealing with signals should react accordingly to EINTR
  return values.
* syscalls returning EINTR happen to be quite common situation in the
  system even if no fake signal is sent.
* freezer sends the fake signal and does not deal with EINTR anyhow.
  Thus EINTR values are returned when the system is resumed.

The very safe marking is done in architectures' "entry" on syscall and
interrupt/exception exit paths, and in a stack checking functions of
livepatch.  TIF_PATCH_PENDING is cleared and the next
recalc_sigpending() drops TIF_SIGPENDING. In connection with this, also
call klp_update_patch_state() before do_signal(), so that
recalc_sigpending() in dequeue_signal() can clear TIF_PATCH_PENDING
immediately and thus prevent a double call of do_signal().

Note that the fake signal is not sent to stopped/traced tasks. Such task
prevents the patching to finish till it continues again (is not traced
anymore).

Last, sending the fake signal is not automatic. It is done only when
admin requests it by writing 1 to signal sysfs attribute in livepatch
sysfs directory.

Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: x86@kernel.org
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2017-12-04 22:34:57 +01:00
Linus Torvalds
02fc87b117 Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 fixes from Ingo Molnar:
 - topology enumeration fixes
 - KASAN fix
 - two entry fixes (not yet the big series related to KASLR)
 - remove obsolete code
 - instruction decoder fix
 - better /dev/mem sanity checks, hopefully working better this time
 - pkeys fixes
 - two ACPI fixes
 - 5-level paging related fixes
 - UMIP fixes that should make application visible faults more debuggable
 - boot fix for weird virtualization environment

* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
  x86/decoder: Add new TEST instruction pattern
  x86/PCI: Remove unused HyperTransport interrupt support
  x86/umip: Fix insn_get_code_seg_params()'s return value
  x86/boot/KASLR: Remove unused variable
  x86/entry/64: Add missing irqflags tracing to native_load_gs_index()
  x86/mm/kasan: Don't use vmemmap_populate() to initialize shadow
  x86/entry/64: Fix entry_SYSCALL_64_after_hwframe() IRQ tracing
  x86/pkeys/selftests: Fix protection keys write() warning
  x86/pkeys/selftests: Rename 'si_pkey' to 'siginfo_pkey'
  x86/mpx/selftests: Fix up weird arrays
  x86/pkeys: Update documentation about availability
  x86/umip: Print a warning into the syslog if UMIP-protected instructions are used
  x86/smpboot: Fix __max_logical_packages estimate
  x86/topology: Avoid wasting 128k for package id array
  perf/x86/intel/uncore: Cache logical pkg id in uncore driver
  x86/acpi: Reduce code duplication in mp_override_legacy_irq()
  x86/acpi: Handle SCI interrupts above legacy space gracefully
  x86/boot: Fix boot failure when SMP MP-table is based at 0
  x86/mm: Limit mmap() of /dev/mem to valid physical addresses
  x86/selftests: Add test for mapping placement for 5-level paging
  ...
2017-11-26 14:11:54 -08:00
Andy Lutomirski
ca37e57bbe x86/entry/64: Add missing irqflags tracing to native_load_gs_index()
Running this code with IRQs enabled (where dummy_lock is a spinlock):

static void check_load_gs_index(void)
{
	/* This will fail. */
	load_gs_index(0xffff);

	spin_lock(&dummy_lock);
	spin_unlock(&dummy_lock);
}

Will generate a lockdep warning.  The issue is that the actual write
to %gs would cause an exception with IRQs disabled, and the exception
handler would, as an inadvertent side effect, update irqflag tracing
to reflect the IRQs-off status.  native_load_gs_index() would then
turn IRQs back on and return with irqflag tracing still thinking that
IRQs were off.  The dummy lock-and-unlock causes lockdep to notice the
error and warn.

Fix it by adding the missing tracing.

Apparently nothing did this in a context where it mattered.  I haven't
tried to find a code path that would actually exhibit the warning if
appropriately nasty user code were running.

I suspect that the security impact of this bug is very, very low --
production systems don't run with lockdep enabled, and the warning is
mostly harmless anyway.

Found during a quick audit of the entry code to try to track down an
unrelated bug that Ingo found in some still-in-development code.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/e1aeb0e6ba8dd430ec36c8a35e63b429698b4132.1511411918.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-23 07:54:25 +01:00
Andy Lutomirski
548c3050ea x86/entry/64: Fix entry_SYSCALL_64_after_hwframe() IRQ tracing
When I added entry_SYSCALL_64_after_hwframe(), I left TRACE_IRQS_OFF
before it.  This means that users of entry_SYSCALL_64_after_hwframe()
were responsible for invoking TRACE_IRQS_OFF, and the one and only
user (Xen, added in the same commit) got it wrong.

I think this would manifest as a warning if a Xen PV guest with
CONFIG_DEBUG_LOCKDEP=y were used with context tracking.  (The
context tracking bit is to cause lockdep to get invoked before we
turn IRQs back on.)  I haven't tested that for real yet because I
can't get a kernel configured like that to boot at all on Xen PV.

Move TRACE_IRQS_OFF below the label.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 8a9949bc71 ("x86/xen/64: Rearrange the SYSCALL entries")
Link: http://lkml.kernel.org/r/9150aac013b7b95d62c2336751d5b6e91d2722aa.1511325444.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-22 06:35:48 +01:00
Linus Torvalds
09bd7c75e5 Kbuild updates for v4.15
One of the most remarkable improvements in this cycle is, Kbuild is
 now able to cache the result of shell commands.  Some variables are
 expensive to compute, for example, $(call cc-option,...) invokes the
 compiler.  It is not efficient to redo this computation every time,
 even when we are not actually building anything.  Kbuild creates a
 hidden file ".cache.mk" that contains invoked shell commands and
 their results.  The speed-up should be noticeable.
 
 Summary:
 
 - Fix arch build issues (hexagon, sh)
 
 - Clean up various Makefiles and scripts
 
 - Fix wrong usage of {CFLAGS,LDFLAGS}_MODULE in arch Makefiles
 
 - Cache variables that are expensive to compute
 
 - Improve cc-ldopton and ld-option for Clang
 
 - Optimize output directory creation
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJaDxaLAAoJED2LAQed4NsGIHQP/isMxxaIxIAWU56+ZcII74k7
 639VgrKi9n5y25d1dBRTQg+vReHE6E2JbkCqpVOu11t7m0LT7yUK8v3WwyLf1qTN
 GxnqZ/WMQU5/AYVqIWo8jN4FGHpivHJ6qbeiNJM9qN4RAkzG0sZUq746VaFZYmIR
 Lu0Gf4m4qjifkkhXsQdWT5i7yNTidPqaL6GNb+FcFkEHlVre8jma0kJlgfHxru84
 WmETpjQXvHAZ/R61vY6ekAWpqFhw3ecJY96A9npnx+SQVQdSNAdpaU0SK29jB0ON
 /SAfpHg9oa/gD0LFOKV6zkjnAkd4TEjrJEiHHhz5gjT/SbS3T1llBIGZ1oV4X7Y0
 Vlh9KWlm1FJJI4SIzc9qUaQMp6JtLfEfHKJCc45xVaN3fNrDnR8jl80x5+95ELga
 dCkZgnq5u82MtTysCbHBESwDYQaVPyIrh7In+mduglaCqhqj9KoDjoLoiGfCg7SA
 3tPflYVd629w5l5GrazJ40jWn1+ggMtgMOVooJNJ+dINCP+GxsUpH84Ww2Pdic+/
 qLdud6TeqxrZDGzWXqKNLu8alM8NGgSr101l9gIf1oqSyy63duBpMrxGDoIJS3FU
 rFDoFFUhlfkAXNbQHtVGNzKtcpCjURh992j9Fa1+NfMwSce5IHkMwTvPmNSRowi8
 0llLjXhD/bxK6FpdvlV8
 =zIdO
 -----END PGP SIGNATURE-----

Merge tag 'kbuild-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild

Pull Kbuild updates from Masahiro Yamada:
 "One of the most remarkable improvements in this cycle is, Kbuild is
  now able to cache the result of shell commands. Some variables are
  expensive to compute, for example, $(call cc-option,...) invokes the
  compiler. It is not efficient to redo this computation every time,
  even when we are not actually building anything. Kbuild creates a
  hidden file ".cache.mk" that contains invoked shell commands and their
  results. The speed-up should be noticeable.

  Summary:

   - Fix arch build issues (hexagon, sh)

   - Clean up various Makefiles and scripts

   - Fix wrong usage of {CFLAGS,LDFLAGS}_MODULE in arch Makefiles

   - Cache variables that are expensive to compute

   - Improve cc-ldopton and ld-option for Clang

   - Optimize output directory creation"

* tag 'kbuild-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (30 commits)
  kbuild: move coccicheck help from scripts/Makefile.help to top Makefile
  sh: decompressor: add shipped files to .gitignore
  frv: .gitignore: ignore vmlinux.lds
  selinux: remove unnecessary assignment to subdir-
  kbuild: specify FORCE in Makefile.headersinst as .PHONY target
  kbuild: remove redundant mkdir from ./Kbuild
  kbuild: optimize object directory creation for incremental build
  kbuild: create object directories simpler and faster
  kbuild: filter-out PHONY targets from "targets"
  kbuild: remove redundant $(wildcard ...) for cmd_files calculation
  kbuild: create directory for make cache only when necessary
  sh: select KBUILD_DEFCONFIG depending on ARCH
  kbuild: fix linker feature test macros when cross compiling with Clang
  kbuild: shrink .cache.mk when it exceeds 1000 lines
  kbuild: do not call cc-option before KBUILD_CFLAGS initialization
  kbuild: Cache a few more calls to the compiler
  kbuild: Add a cache for generated variables
  kbuild: add forward declaration of default target to Makefile.asm-generic
  kbuild: remove KBUILD_SUBDIR_ASFLAGS and KBUILD_SUBDIR_CCFLAGS
  hexagon/kbuild: replace CFLAGS_MODULE with KBUILD_CFLAGS_MODULE
  ...
2017-11-17 17:45:29 -08:00
Linus Torvalds
051089a2ee xen: features and fixes for v4.15-rc1
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQEcBAABAgAGBQJaDdh4AAoJELDendYovxMvPFAH/2QjTys2ydIAdmwke4odpJ7U
 xuy7HOQCzOeZ5YsZthzCBsN90VmnDM7X7CcB8weSdjcKlXMSAWD+J1RgkL2iAJhI
 8tzIEXECrlNuz4V5mX9TmMgtPCr4qzU3fsts0pZy4fYDq1PVWDefqOwEtbpbWabb
 wRSMq/nTb9iASTMgheSC0WfhJneqtJ+J20zrzkGPCBPRFcwfppeP8/7vpkmJslBi
 eH/pfchICM4w093T/BfavnsPvhLdjgRuwVzn6+e46s4tLnZAxnLRVQ7SXZXzBORq
 /dL/qC0XH3YXdU+XfIs//giZsmLns6SxZaMr4vs6TxFtuzZBKpLtkOKo9zndvxk=
 =sZY5
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-4.15-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip

Pull xen updates from Juergen Gross:
 "Xen features and fixes for v4.15-rc1

  Apart from several small fixes it contains the following features:

   - a series by Joao Martins to add vdso support of the pv clock
     interface

   - a series by Juergen Gross to add support for Xen pv guests to be
     able to run on 5 level paging hosts

   - a series by Stefano Stabellini adding the Xen pvcalls frontend
     driver using a paravirtualized socket interface"

* tag 'for-linus-4.15-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (34 commits)
  xen/pvcalls: fix potential endless loop in pvcalls-front.c
  xen/pvcalls: Add MODULE_LICENSE()
  MAINTAINERS: xen, kvm: track pvclock-abi.h changes
  x86/xen/time: setup vcpu 0 time info page
  x86/xen/time: set pvclock flags on xen_time_init()
  x86/pvclock: add setter for pvclock_pvti_cpu0_va
  ptp_kvm: probe for kvm guest availability
  xen/privcmd: remove unused variable pageidx
  xen: select grant interface version
  xen: update arch/x86/include/asm/xen/cpuid.h
  xen: add grant interface version dependent constants to gnttab_ops
  xen: limit grant v2 interface to the v1 functionality
  xen: re-introduce support for grant v2 interface
  xen: support priv-mapping in an HVM tools domain
  xen/pvcalls: remove redundant check for irq >= 0
  xen/pvcalls: fix unsigned less than zero error check
  xen/time: Return -ENODEV from xen_get_wallclock()
  xen/pvcalls-front: mark expected switch fall-through
  xen: xenbus_probe_frontend: mark expected switch fall-throughs
  xen/time: do not decrease steal time after live migration on xen
  ...
2017-11-16 13:06:27 -08:00
Masahiro Yamada
8a78756eb5 kbuild: create object directories simpler and faster
For the out-of-tree build, scripts/Makefile.build creates output
directories, but this operation is not efficient.

scripts/Makefile.lib calculates obj-dirs as follows:

  obj-dirs := $(dir $(multi-objs) $(obj-y))

Please notice $(sort ...) is not used here.  Usually the result is
as many "./" as objects here.

For a lot of duplicated paths, the following command is invoked.

  _dummy := $(foreach d,$(obj-dirs), $(shell [ -d $(d) ] || mkdir -p $(d)))

Then, the costly shell command is run over and over again.

I see many points for optimization:

[1] Use $(sort ...) to cut down duplicated paths before passing them
    to system call
[2] Use single $(shell ...) instead of repeating it with $(foreach ...)
    This will reduce forking.
[3] We can calculate obj-dirs more simply.  Most of objects are already
    accumulated in $(targets).  So, $(dir $(targets)) is fine and more
    comprehensive.

I also removed ugly code in arch/x86/entry/vdso/Makefile.  This is now
really unnecessary.

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Douglas Anderson <dianders@chromium.org>
2017-11-16 09:07:35 +09:00