powerpc/book3s64/pkeys: Simplify the key initialization

Add documentation explaining the execute_only_key. The reservation and initialization mask
details are also explained in this patch.

No functional change in this patch.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200709032946.881753-7-aneesh.kumar@linux.ibm.com
This commit is contained in:
Aneesh Kumar K.V 2020-07-09 08:59:29 +05:30 committed by Michael Ellerman
parent 1f404058e2
commit f491fe3fb4

View File

@ -15,48 +15,80 @@
DEFINE_STATIC_KEY_TRUE(pkey_disabled);
int pkeys_total; /* Total pkeys as per device tree */
u32 initial_allocation_mask; /* Bits set for the initially allocated keys */
u32 reserved_allocation_mask; /* Bits set for reserved keys */
/*
* Keys marked in the reservation list cannot be allocated by userspace
*/
u32 reserved_allocation_mask;
static bool pkey_execute_disable_supported;
static bool pkeys_devtree_defined; /* property exported by device tree */
static u64 pkey_amr_mask; /* Bits in AMR not to be touched */
static u64 pkey_iamr_mask; /* Bits in AMR not to be touched */
static u64 pkey_uamor_mask; /* Bits in UMOR not to be touched */
/*
* Even if we allocate keys with sys_pkey_alloc(), we need to make sure
* other thread still find the access denied using the same keys.
*/
static u64 default_amr = ~0x0UL;
static u64 default_iamr = 0x5555555555555555UL;
/* Allow all keys to be modified by default */
static u64 default_uamor = ~0x0UL;
/*
* Key used to implement PROT_EXEC mmap. Denies READ/WRITE
* We pick key 2 because 0 is special key and 1 is reserved as per ISA.
*/
static int execute_only_key = 2;
#define AMR_BITS_PER_PKEY 2
#define AMR_RD_BIT 0x1UL
#define AMR_WR_BIT 0x2UL
#define IAMR_EX_BIT 0x1UL
#define PKEY_REG_BITS (sizeof(u64)*8)
#define PKEY_REG_BITS (sizeof(u64) * 8)
#define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
static void scan_pkey_feature(void)
static int scan_pkey_feature(void)
{
u32 vals[2];
int pkeys_total = 0;
struct device_node *cpu;
/*
* Pkey is not supported with Radix translation.
*/
if (radix_enabled())
return 0;
cpu = of_find_node_by_type(NULL, "cpu");
if (!cpu)
return;
return 0;
if (of_property_read_u32_array(cpu,
"ibm,processor-storage-keys", vals, 2))
return;
"ibm,processor-storage-keys", vals, 2) == 0) {
/*
* Since any pkey can be used for data or execute, we will
* just treat all keys as equal and track them as one entity.
*/
pkeys_total = vals[0];
} else {
/*
* Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device
* tree. We make this exception since some version of skiboot forgot to
* expose this property on power8/9.
*/
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
unsigned long pvr = mfspr(SPRN_PVR);
if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E ||
PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9)
pkeys_total = 32;
}
}
/*
* Since any pkey can be used for data or execute, we will just treat
* all keys as equal and track them as one entity.
* Adjust the upper limit, based on the number of bits supported by
* arch-neutral code.
*/
pkeys_total = vals[0];
pkeys_devtree_defined = true;
}
static inline bool pkey_mmu_enabled(void)
{
if (firmware_has_feature(FW_FEATURE_LPAR))
return pkeys_total;
else
return cpu_has_feature(CPU_FTR_PKEY);
pkeys_total = min_t(int, pkeys_total,
((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + 1));
return pkeys_total;
}
static int pkey_initialize(void)
@ -80,35 +112,13 @@ static int pkey_initialize(void)
!= (sizeof(u64) * BITS_PER_BYTE));
/* scan the device tree for pkey feature */
scan_pkey_feature();
/*
* Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device
* tree. We make this exception since some version of skiboot forgot to
* expose this property on power8/9.
*/
if (!pkeys_devtree_defined && !firmware_has_feature(FW_FEATURE_LPAR)) {
unsigned long pvr = mfspr(SPRN_PVR);
if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E ||
PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9)
pkeys_total = 32;
}
/*
* Adjust the upper limit, based on the number of bits supported by
* arch-neutral code.
*/
pkeys_total = min_t(int, pkeys_total,
((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)+1));
if (!pkey_mmu_enabled() || radix_enabled() || !pkeys_total)
static_branch_enable(&pkey_disabled);
else
pkeys_total = scan_pkey_feature();
if (pkeys_total)
static_branch_disable(&pkey_disabled);
if (static_branch_likely(&pkey_disabled))
else {
static_branch_enable(&pkey_disabled);
return 0;
}
/*
* The device tree cannot be relied to indicate support for
@ -122,48 +132,71 @@ static int pkey_initialize(void)
#ifdef CONFIG_PPC_4K_PAGES
/*
* The OS can manage only 8 pkeys due to its inability to represent them
* in the Linux 4K PTE.
* in the Linux 4K PTE. Mark all other keys reserved.
*/
os_reserved = pkeys_total - 8;
#else
os_reserved = 0;
#endif
/*
* key 1 is recommended not to be used. PowerISA(3.0) page 1015,
* programming note.
*/
reserved_allocation_mask = (0x1 << 1) | (0x1 << execute_only_key);
/* register mask is in BE format */
pkey_amr_mask = ~0x0ul;
pkey_amr_mask &= ~(0x3ul << pkeyshift(0));
pkey_iamr_mask = ~0x0ul;
pkey_iamr_mask &= ~(0x3ul << pkeyshift(0));
pkey_iamr_mask &= ~(0x3ul << pkeyshift(execute_only_key));
pkey_uamor_mask = ~0x0ul;
pkey_uamor_mask &= ~(0x3ul << pkeyshift(0));
pkey_uamor_mask &= ~(0x3ul << pkeyshift(execute_only_key));
/* mark the rest of the keys as reserved and hence unavailable */
for (i = (pkeys_total - os_reserved); i < pkeys_total; i++) {
reserved_allocation_mask |= (0x1 << i);
pkey_uamor_mask &= ~(0x3ul << pkeyshift(i));
}
initial_allocation_mask = reserved_allocation_mask | (0x1 << 0);
if (unlikely((pkeys_total - os_reserved) <= execute_only_key)) {
/*
* Insufficient number of keys to support
* execute only key. Mark it unavailable.
* Any AMR, UAMOR, IAMR bit set for
* this key is irrelevant since this key
* can never be allocated.
*/
execute_only_key = -1;
} else {
/*
* Mark the execute_only_pkey as not available for
* user allocation via pkey_alloc.
*/
reserved_allocation_mask |= (0x1 << execute_only_key);
/*
* Deny READ/WRITE for execute_only_key.
* Allow execute in IAMR.
*/
default_amr |= (0x3ul << pkeyshift(execute_only_key));
default_iamr &= ~(0x1ul << pkeyshift(execute_only_key));
/*
* Clear the uamor bits for this key.
*/
default_uamor &= ~(0x3ul << pkeyshift(execute_only_key));
}
/*
* Allow access for only key 0. And prevent any other modification.
*/
default_amr &= ~(0x3ul << pkeyshift(0));
default_iamr &= ~(0x1ul << pkeyshift(0));
default_uamor &= ~(0x3ul << pkeyshift(0));
/*
* key 0 is special in that we want to consider it an allocated
* key which is preallocated. We don't allow changing AMR bits
* w.r.t key 0. But one can pkey_free(key0)
*/
initial_allocation_mask |= (0x1 << 0);
/*
* key 1 is recommended not to be used. PowerISA(3.0) page 1015,
* programming note.
*/
reserved_allocation_mask |= (0x1 << 1);
/*
* Prevent the usage of OS reserved the keys. Update UAMOR
* for those keys.
*/
for (i = (pkeys_total - os_reserved); i < pkeys_total; i++) {
reserved_allocation_mask |= (0x1 << i);
default_uamor &= ~(0x3ul << pkeyshift(i));
}
/*
* Prevent the allocation of reserved keys too.
*/
initial_allocation_mask |= reserved_allocation_mask;
return 0;
}
@ -305,13 +338,13 @@ void thread_pkey_regs_init(struct thread_struct *thread)
if (static_branch_likely(&pkey_disabled))
return;
thread->amr = pkey_amr_mask;
thread->iamr = pkey_iamr_mask;
thread->uamor = pkey_uamor_mask;
thread->amr = default_amr;
thread->iamr = default_iamr;
thread->uamor = default_uamor;
write_uamor(pkey_uamor_mask);
write_amr(pkey_amr_mask);
write_iamr(pkey_iamr_mask);
write_amr(default_amr);
write_iamr(default_iamr);
write_uamor(default_uamor);
}
int __execute_only_pkey(struct mm_struct *mm)