mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-16 07:07:34 +07:00
powerpc/mm: Don't have generic headers introduce functions touching pte bits
We are going to drop pte_common.h in the later patch. The idea is to enable hash code not require to define all PTE bits. Having PTE bits defined in pte_common.h made the code unnecessarily complex. Acked-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This commit is contained in:
parent
cbbb8683fb
commit
ee4889c7bc
@ -8,4 +8,180 @@
|
||||
#endif
|
||||
|
||||
#define FIRST_USER_ADDRESS 0UL
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
/* Generic accessors to PTE bits */
|
||||
static inline int pte_write(pte_t pte)
|
||||
{
|
||||
return (pte_val(pte) & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO;
|
||||
}
|
||||
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
||||
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
||||
static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
|
||||
static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
|
||||
static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
|
||||
|
||||
#ifdef CONFIG_NUMA_BALANCING
|
||||
/*
|
||||
* These work without NUMA balancing but the kernel does not care. See the
|
||||
* comment in include/asm-generic/pgtable.h . On powerpc, this will only
|
||||
* work for user pages and always return true for kernel pages.
|
||||
*/
|
||||
static inline int pte_protnone(pte_t pte)
|
||||
{
|
||||
return (pte_val(pte) &
|
||||
(_PAGE_PRESENT | _PAGE_USER)) == _PAGE_PRESENT;
|
||||
}
|
||||
|
||||
static inline int pmd_protnone(pmd_t pmd)
|
||||
{
|
||||
return pte_protnone(pmd_pte(pmd));
|
||||
}
|
||||
#endif /* CONFIG_NUMA_BALANCING */
|
||||
|
||||
static inline int pte_present(pte_t pte)
|
||||
{
|
||||
return pte_val(pte) & _PAGE_PRESENT;
|
||||
}
|
||||
|
||||
/* Conversion functions: convert a page and protection to a page entry,
|
||||
* and a page entry and page directory to the page they refer to.
|
||||
*
|
||||
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
|
||||
* long for now.
|
||||
*/
|
||||
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
|
||||
return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
|
||||
pgprot_val(pgprot)); }
|
||||
static inline unsigned long pte_pfn(pte_t pte) {
|
||||
return pte_val(pte) >> PTE_RPN_SHIFT; }
|
||||
|
||||
/* Generic modifiers for PTE bits */
|
||||
static inline pte_t pte_wrprotect(pte_t pte) {
|
||||
pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE);
|
||||
pte_val(pte) |= _PAGE_RO; return pte; }
|
||||
static inline pte_t pte_mkclean(pte_t pte) {
|
||||
pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
|
||||
static inline pte_t pte_mkold(pte_t pte) {
|
||||
pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
|
||||
static inline pte_t pte_mkwrite(pte_t pte) {
|
||||
pte_val(pte) &= ~_PAGE_RO;
|
||||
pte_val(pte) |= _PAGE_RW; return pte; }
|
||||
static inline pte_t pte_mkdirty(pte_t pte) {
|
||||
pte_val(pte) |= _PAGE_DIRTY; return pte; }
|
||||
static inline pte_t pte_mkyoung(pte_t pte) {
|
||||
pte_val(pte) |= _PAGE_ACCESSED; return pte; }
|
||||
static inline pte_t pte_mkspecial(pte_t pte) {
|
||||
pte_val(pte) |= _PAGE_SPECIAL; return pte; }
|
||||
static inline pte_t pte_mkhuge(pte_t pte) {
|
||||
return pte; }
|
||||
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
||||
{
|
||||
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
|
||||
return pte;
|
||||
}
|
||||
|
||||
|
||||
/* Insert a PTE, top-level function is out of line. It uses an inline
|
||||
* low level function in the respective pgtable-* files
|
||||
*/
|
||||
extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
|
||||
pte_t pte);
|
||||
|
||||
/* This low level function performs the actual PTE insertion
|
||||
* Setting the PTE depends on the MMU type and other factors. It's
|
||||
* an horrible mess that I'm not going to try to clean up now but
|
||||
* I'm keeping it in one place rather than spread around
|
||||
*/
|
||||
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
|
||||
pte_t *ptep, pte_t pte, int percpu)
|
||||
{
|
||||
#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
|
||||
/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
|
||||
* helper pte_update() which does an atomic update. We need to do that
|
||||
* because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
|
||||
* per-CPU PTE such as a kmap_atomic, we do a simple update preserving
|
||||
* the hash bits instead (ie, same as the non-SMP case)
|
||||
*/
|
||||
if (percpu)
|
||||
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
|
||||
| (pte_val(pte) & ~_PAGE_HASHPTE));
|
||||
else
|
||||
pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
|
||||
|
||||
#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
|
||||
/* Second case is 32-bit with 64-bit PTE. In this case, we
|
||||
* can just store as long as we do the two halves in the right order
|
||||
* with a barrier in between. This is possible because we take care,
|
||||
* in the hash code, to pre-invalidate if the PTE was already hashed,
|
||||
* which synchronizes us with any concurrent invalidation.
|
||||
* In the percpu case, we also fallback to the simple update preserving
|
||||
* the hash bits
|
||||
*/
|
||||
if (percpu) {
|
||||
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
|
||||
| (pte_val(pte) & ~_PAGE_HASHPTE));
|
||||
return;
|
||||
}
|
||||
if (pte_val(*ptep) & _PAGE_HASHPTE)
|
||||
flush_hash_entry(mm, ptep, addr);
|
||||
__asm__ __volatile__("\
|
||||
stw%U0%X0 %2,%0\n\
|
||||
eieio\n\
|
||||
stw%U0%X0 %L2,%1"
|
||||
: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
|
||||
: "r" (pte) : "memory");
|
||||
|
||||
#elif defined(CONFIG_PPC_STD_MMU_32)
|
||||
/* Third case is 32-bit hash table in UP mode, we need to preserve
|
||||
* the _PAGE_HASHPTE bit since we may not have invalidated the previous
|
||||
* translation in the hash yet (done in a subsequent flush_tlb_xxx())
|
||||
* and see we need to keep track that this PTE needs invalidating
|
||||
*/
|
||||
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
|
||||
| (pte_val(pte) & ~_PAGE_HASHPTE));
|
||||
|
||||
#else
|
||||
/* Anything else just stores the PTE normally. That covers all 64-bit
|
||||
* cases, and 32-bit non-hash with 32-bit PTEs.
|
||||
*/
|
||||
*ptep = pte;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
||||
extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
|
||||
pte_t *ptep, pte_t entry, int dirty);
|
||||
|
||||
/*
|
||||
* Macro to mark a page protection value as "uncacheable".
|
||||
*/
|
||||
|
||||
#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
|
||||
_PAGE_WRITETHRU)
|
||||
|
||||
#define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||||
_PAGE_NO_CACHE | _PAGE_GUARDED))
|
||||
|
||||
#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||||
_PAGE_NO_CACHE))
|
||||
|
||||
#define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||||
_PAGE_COHERENT))
|
||||
|
||||
#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||||
_PAGE_COHERENT | _PAGE_WRITETHRU))
|
||||
|
||||
#define pgprot_cached_noncoherent(prot) \
|
||||
(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
|
||||
|
||||
#define pgprot_writecombine pgprot_noncached_wc
|
||||
|
||||
struct file;
|
||||
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
||||
unsigned long size, pgprot_t vma_prot);
|
||||
#define __HAVE_PHYS_MEM_ACCESS_PROT
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
#endif
|
||||
|
199
arch/powerpc/include/asm/pgtable-book3e.h
Normal file
199
arch/powerpc/include/asm/pgtable-book3e.h
Normal file
@ -0,0 +1,199 @@
|
||||
#ifndef _ASM_POWERPC_PGTABLE_BOOK3E_H
|
||||
#define _ASM_POWERPC_PGTABLE_BOOK3E_H
|
||||
|
||||
#if defined(CONFIG_PPC64)
|
||||
#include <asm/pgtable-ppc64.h>
|
||||
#else
|
||||
#include <asm/pgtable-ppc32.h>
|
||||
#endif
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
/* Generic accessors to PTE bits */
|
||||
static inline int pte_write(pte_t pte)
|
||||
{
|
||||
return (pte_val(pte) & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO;
|
||||
}
|
||||
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
||||
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
||||
static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
|
||||
static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
|
||||
static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
|
||||
|
||||
#ifdef CONFIG_NUMA_BALANCING
|
||||
/*
|
||||
* These work without NUMA balancing but the kernel does not care. See the
|
||||
* comment in include/asm-generic/pgtable.h . On powerpc, this will only
|
||||
* work for user pages and always return true for kernel pages.
|
||||
*/
|
||||
static inline int pte_protnone(pte_t pte)
|
||||
{
|
||||
return (pte_val(pte) &
|
||||
(_PAGE_PRESENT | _PAGE_USER)) == _PAGE_PRESENT;
|
||||
}
|
||||
|
||||
static inline int pmd_protnone(pmd_t pmd)
|
||||
{
|
||||
return pte_protnone(pmd_pte(pmd));
|
||||
}
|
||||
#endif /* CONFIG_NUMA_BALANCING */
|
||||
|
||||
static inline int pte_present(pte_t pte)
|
||||
{
|
||||
return pte_val(pte) & _PAGE_PRESENT;
|
||||
}
|
||||
|
||||
/* Conversion functions: convert a page and protection to a page entry,
|
||||
* and a page entry and page directory to the page they refer to.
|
||||
*
|
||||
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
|
||||
* long for now.
|
||||
*/
|
||||
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
|
||||
return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
|
||||
pgprot_val(pgprot)); }
|
||||
static inline unsigned long pte_pfn(pte_t pte) {
|
||||
return pte_val(pte) >> PTE_RPN_SHIFT; }
|
||||
|
||||
/* Generic modifiers for PTE bits */
|
||||
static inline pte_t pte_wrprotect(pte_t pte) {
|
||||
pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE);
|
||||
pte_val(pte) |= _PAGE_RO; return pte; }
|
||||
static inline pte_t pte_mkclean(pte_t pte) {
|
||||
pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
|
||||
static inline pte_t pte_mkold(pte_t pte) {
|
||||
pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
|
||||
static inline pte_t pte_mkwrite(pte_t pte) {
|
||||
pte_val(pte) &= ~_PAGE_RO;
|
||||
pte_val(pte) |= _PAGE_RW; return pte; }
|
||||
static inline pte_t pte_mkdirty(pte_t pte) {
|
||||
pte_val(pte) |= _PAGE_DIRTY; return pte; }
|
||||
static inline pte_t pte_mkyoung(pte_t pte) {
|
||||
pte_val(pte) |= _PAGE_ACCESSED; return pte; }
|
||||
static inline pte_t pte_mkspecial(pte_t pte) {
|
||||
pte_val(pte) |= _PAGE_SPECIAL; return pte; }
|
||||
static inline pte_t pte_mkhuge(pte_t pte) {
|
||||
return pte; }
|
||||
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
||||
{
|
||||
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
|
||||
return pte;
|
||||
}
|
||||
|
||||
|
||||
/* Insert a PTE, top-level function is out of line. It uses an inline
|
||||
* low level function in the respective pgtable-* files
|
||||
*/
|
||||
extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
|
||||
pte_t pte);
|
||||
|
||||
/* This low level function performs the actual PTE insertion
|
||||
* Setting the PTE depends on the MMU type and other factors. It's
|
||||
* an horrible mess that I'm not going to try to clean up now but
|
||||
* I'm keeping it in one place rather than spread around
|
||||
*/
|
||||
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
|
||||
pte_t *ptep, pte_t pte, int percpu)
|
||||
{
|
||||
#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
|
||||
/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
|
||||
* helper pte_update() which does an atomic update. We need to do that
|
||||
* because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
|
||||
* per-CPU PTE such as a kmap_atomic, we do a simple update preserving
|
||||
* the hash bits instead (ie, same as the non-SMP case)
|
||||
*/
|
||||
if (percpu)
|
||||
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
|
||||
| (pte_val(pte) & ~_PAGE_HASHPTE));
|
||||
else
|
||||
pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
|
||||
|
||||
#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
|
||||
/* Second case is 32-bit with 64-bit PTE. In this case, we
|
||||
* can just store as long as we do the two halves in the right order
|
||||
* with a barrier in between. This is possible because we take care,
|
||||
* in the hash code, to pre-invalidate if the PTE was already hashed,
|
||||
* which synchronizes us with any concurrent invalidation.
|
||||
* In the percpu case, we also fallback to the simple update preserving
|
||||
* the hash bits
|
||||
*/
|
||||
if (percpu) {
|
||||
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
|
||||
| (pte_val(pte) & ~_PAGE_HASHPTE));
|
||||
return;
|
||||
}
|
||||
#if _PAGE_HASHPTE != 0
|
||||
if (pte_val(*ptep) & _PAGE_HASHPTE)
|
||||
flush_hash_entry(mm, ptep, addr);
|
||||
#endif
|
||||
__asm__ __volatile__("\
|
||||
stw%U0%X0 %2,%0\n\
|
||||
eieio\n\
|
||||
stw%U0%X0 %L2,%1"
|
||||
: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
|
||||
: "r" (pte) : "memory");
|
||||
|
||||
#elif defined(CONFIG_PPC_STD_MMU_32)
|
||||
/* Third case is 32-bit hash table in UP mode, we need to preserve
|
||||
* the _PAGE_HASHPTE bit since we may not have invalidated the previous
|
||||
* translation in the hash yet (done in a subsequent flush_tlb_xxx())
|
||||
* and see we need to keep track that this PTE needs invalidating
|
||||
*/
|
||||
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
|
||||
| (pte_val(pte) & ~_PAGE_HASHPTE));
|
||||
|
||||
#else
|
||||
/* Anything else just stores the PTE normally. That covers all 64-bit
|
||||
* cases, and 32-bit non-hash with 32-bit PTEs.
|
||||
*/
|
||||
*ptep = pte;
|
||||
|
||||
#ifdef CONFIG_PPC_BOOK3E_64
|
||||
/*
|
||||
* With hardware tablewalk, a sync is needed to ensure that
|
||||
* subsequent accesses see the PTE we just wrote. Unlike userspace
|
||||
* mappings, we can't tolerate spurious faults, so make sure
|
||||
* the new PTE will be seen the first time.
|
||||
*/
|
||||
if (is_kernel_addr(addr))
|
||||
mb();
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
||||
extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
|
||||
pte_t *ptep, pte_t entry, int dirty);
|
||||
|
||||
/*
|
||||
* Macro to mark a page protection value as "uncacheable".
|
||||
*/
|
||||
|
||||
#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
|
||||
_PAGE_WRITETHRU)
|
||||
|
||||
#define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||||
_PAGE_NO_CACHE | _PAGE_GUARDED))
|
||||
|
||||
#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||||
_PAGE_NO_CACHE))
|
||||
|
||||
#define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||||
_PAGE_COHERENT))
|
||||
|
||||
#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||||
_PAGE_COHERENT | _PAGE_WRITETHRU))
|
||||
|
||||
#define pgprot_cached_noncoherent(prot) \
|
||||
(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
|
||||
|
||||
#define pgprot_writecombine pgprot_noncached_wc
|
||||
|
||||
struct file;
|
||||
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
||||
unsigned long size, pgprot_t vma_prot);
|
||||
#define __HAVE_PHYS_MEM_ACCESS_PROT
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
#endif
|
@ -1,6 +1,5 @@
|
||||
#ifndef _ASM_POWERPC_PGTABLE_H
|
||||
#define _ASM_POWERPC_PGTABLE_H
|
||||
#ifdef __KERNEL__
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
#include <linux/mmdebug.h>
|
||||
@ -16,11 +15,7 @@ struct mm_struct;
|
||||
#ifdef CONFIG_PPC_BOOK3S
|
||||
#include <asm/book3s/pgtable.h>
|
||||
#else
|
||||
#if defined(CONFIG_PPC64)
|
||||
# include <asm/pgtable-ppc64.h>
|
||||
#else
|
||||
# include <asm/pgtable-ppc32.h>
|
||||
#endif
|
||||
#include <asm/pgtable-book3e.h>
|
||||
#endif /* !CONFIG_PPC_BOOK3S */
|
||||
|
||||
/*
|
||||
@ -33,194 +28,10 @@ struct mm_struct;
|
||||
|
||||
#include <asm/tlbflush.h>
|
||||
|
||||
/* Generic accessors to PTE bits */
|
||||
static inline int pte_write(pte_t pte)
|
||||
{ return (pte_val(pte) & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO; }
|
||||
static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
|
||||
static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
|
||||
static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
|
||||
static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
|
||||
static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
|
||||
|
||||
#ifdef CONFIG_NUMA_BALANCING
|
||||
/*
|
||||
* These work without NUMA balancing but the kernel does not care. See the
|
||||
* comment in include/asm-generic/pgtable.h . On powerpc, this will only
|
||||
* work for user pages and always return true for kernel pages.
|
||||
*/
|
||||
static inline int pte_protnone(pte_t pte)
|
||||
{
|
||||
return (pte_val(pte) &
|
||||
(_PAGE_PRESENT | _PAGE_USER)) == _PAGE_PRESENT;
|
||||
}
|
||||
|
||||
static inline int pmd_protnone(pmd_t pmd)
|
||||
{
|
||||
return pte_protnone(pmd_pte(pmd));
|
||||
}
|
||||
#endif /* CONFIG_NUMA_BALANCING */
|
||||
|
||||
static inline int pte_present(pte_t pte)
|
||||
{
|
||||
return pte_val(pte) & _PAGE_PRESENT;
|
||||
}
|
||||
|
||||
/* Conversion functions: convert a page and protection to a page entry,
|
||||
* and a page entry and page directory to the page they refer to.
|
||||
*
|
||||
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
|
||||
* long for now.
|
||||
*/
|
||||
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
|
||||
return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
|
||||
pgprot_val(pgprot)); }
|
||||
static inline unsigned long pte_pfn(pte_t pte) {
|
||||
return pte_val(pte) >> PTE_RPN_SHIFT; }
|
||||
|
||||
/* Keep these as a macros to avoid include dependency mess */
|
||||
#define pte_page(x) pfn_to_page(pte_pfn(x))
|
||||
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
|
||||
|
||||
/* Generic modifiers for PTE bits */
|
||||
static inline pte_t pte_wrprotect(pte_t pte) {
|
||||
pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE);
|
||||
pte_val(pte) |= _PAGE_RO; return pte; }
|
||||
static inline pte_t pte_mkclean(pte_t pte) {
|
||||
pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
|
||||
static inline pte_t pte_mkold(pte_t pte) {
|
||||
pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
|
||||
static inline pte_t pte_mkwrite(pte_t pte) {
|
||||
pte_val(pte) &= ~_PAGE_RO;
|
||||
pte_val(pte) |= _PAGE_RW; return pte; }
|
||||
static inline pte_t pte_mkdirty(pte_t pte) {
|
||||
pte_val(pte) |= _PAGE_DIRTY; return pte; }
|
||||
static inline pte_t pte_mkyoung(pte_t pte) {
|
||||
pte_val(pte) |= _PAGE_ACCESSED; return pte; }
|
||||
static inline pte_t pte_mkspecial(pte_t pte) {
|
||||
pte_val(pte) |= _PAGE_SPECIAL; return pte; }
|
||||
static inline pte_t pte_mkhuge(pte_t pte) {
|
||||
return pte; }
|
||||
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
||||
{
|
||||
pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
|
||||
return pte;
|
||||
}
|
||||
|
||||
|
||||
/* Insert a PTE, top-level function is out of line. It uses an inline
|
||||
* low level function in the respective pgtable-* files
|
||||
*/
|
||||
extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
|
||||
pte_t pte);
|
||||
|
||||
/* This low level function performs the actual PTE insertion
|
||||
* Setting the PTE depends on the MMU type and other factors. It's
|
||||
* an horrible mess that I'm not going to try to clean up now but
|
||||
* I'm keeping it in one place rather than spread around
|
||||
*/
|
||||
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
|
||||
pte_t *ptep, pte_t pte, int percpu)
|
||||
{
|
||||
#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
|
||||
/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
|
||||
* helper pte_update() which does an atomic update. We need to do that
|
||||
* because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
|
||||
* per-CPU PTE such as a kmap_atomic, we do a simple update preserving
|
||||
* the hash bits instead (ie, same as the non-SMP case)
|
||||
*/
|
||||
if (percpu)
|
||||
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
|
||||
| (pte_val(pte) & ~_PAGE_HASHPTE));
|
||||
else
|
||||
pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
|
||||
|
||||
#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
|
||||
/* Second case is 32-bit with 64-bit PTE. In this case, we
|
||||
* can just store as long as we do the two halves in the right order
|
||||
* with a barrier in between. This is possible because we take care,
|
||||
* in the hash code, to pre-invalidate if the PTE was already hashed,
|
||||
* which synchronizes us with any concurrent invalidation.
|
||||
* In the percpu case, we also fallback to the simple update preserving
|
||||
* the hash bits
|
||||
*/
|
||||
if (percpu) {
|
||||
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
|
||||
| (pte_val(pte) & ~_PAGE_HASHPTE));
|
||||
return;
|
||||
}
|
||||
#if _PAGE_HASHPTE != 0
|
||||
if (pte_val(*ptep) & _PAGE_HASHPTE)
|
||||
flush_hash_entry(mm, ptep, addr);
|
||||
#endif
|
||||
__asm__ __volatile__("\
|
||||
stw%U0%X0 %2,%0\n\
|
||||
eieio\n\
|
||||
stw%U0%X0 %L2,%1"
|
||||
: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
|
||||
: "r" (pte) : "memory");
|
||||
|
||||
#elif defined(CONFIG_PPC_STD_MMU_32)
|
||||
/* Third case is 32-bit hash table in UP mode, we need to preserve
|
||||
* the _PAGE_HASHPTE bit since we may not have invalidated the previous
|
||||
* translation in the hash yet (done in a subsequent flush_tlb_xxx())
|
||||
* and see we need to keep track that this PTE needs invalidating
|
||||
*/
|
||||
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
|
||||
| (pte_val(pte) & ~_PAGE_HASHPTE));
|
||||
|
||||
#else
|
||||
/* Anything else just stores the PTE normally. That covers all 64-bit
|
||||
* cases, and 32-bit non-hash with 32-bit PTEs.
|
||||
*/
|
||||
*ptep = pte;
|
||||
|
||||
#ifdef CONFIG_PPC_BOOK3E_64
|
||||
/*
|
||||
* With hardware tablewalk, a sync is needed to ensure that
|
||||
* subsequent accesses see the PTE we just wrote. Unlike userspace
|
||||
* mappings, we can't tolerate spurious faults, so make sure
|
||||
* the new PTE will be seen the first time.
|
||||
*/
|
||||
if (is_kernel_addr(addr))
|
||||
mb();
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
||||
extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
|
||||
pte_t *ptep, pte_t entry, int dirty);
|
||||
|
||||
/*
|
||||
* Macro to mark a page protection value as "uncacheable".
|
||||
*/
|
||||
|
||||
#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
|
||||
_PAGE_WRITETHRU)
|
||||
|
||||
#define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||||
_PAGE_NO_CACHE | _PAGE_GUARDED))
|
||||
|
||||
#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||||
_PAGE_NO_CACHE))
|
||||
|
||||
#define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||||
_PAGE_COHERENT))
|
||||
|
||||
#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
|
||||
_PAGE_COHERENT | _PAGE_WRITETHRU))
|
||||
|
||||
#define pgprot_cached_noncoherent(prot) \
|
||||
(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
|
||||
|
||||
#define pgprot_writecombine pgprot_noncached_wc
|
||||
|
||||
struct file;
|
||||
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
||||
unsigned long size, pgprot_t vma_prot);
|
||||
#define __HAVE_PHYS_MEM_ACCESS_PROT
|
||||
|
||||
/*
|
||||
* ZERO_PAGE is a global shared page that is always zero: used
|
||||
* for zero-mapped memory areas etc..
|
||||
@ -275,5 +86,4 @@ static inline pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
|
||||
}
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
#endif /* __KERNEL__ */
|
||||
#endif /* _ASM_POWERPC_PGTABLE_H */
|
||||
|
Loading…
Reference in New Issue
Block a user