V4L/DVB (11394): cx88: Add support for stereo and sap detection for A2

The patch implements reliable stereo and sap detection for the A2 sound
standard.  This is achieved by processing the samples of the audio RDS fifo of
the cx2388x chip. A2M, EIAJ and BTSC stereo/sap detection is also possible with
this new approach, but it's not implemented yet. Stereo detection when alsa
handles the sound also does not work yet.

Signed-off-by: Marton Balint <cus@fazekas.hu>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
This commit is contained in:
Marton Balint 2009-03-31 19:01:51 -03:00 committed by Mauro Carvalho Chehab
parent 319afbf97f
commit e878cf3a47
5 changed files with 381 additions and 10 deletions

View File

@ -1,5 +1,5 @@
cx88xx-objs := cx88-cards.o cx88-core.o cx88-i2c.o cx88-tvaudio.o \
cx88-input.o
cx88-dsp.o cx88-input.o
cx8800-objs := cx88-video.o cx88-vbi.o
cx8802-objs := cx88-mpeg.o

View File

@ -231,7 +231,7 @@ cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
* can use the whole SDRAM for the DMA fifos. To simplify things, we
* use a static memory layout. That surely will waste memory in case
* we don't use all DMA channels at the same time (which will be the
* case most of the time). But that still gives us enougth FIFO space
* case most of the time). But that still gives us enough FIFO space
* to be able to deal with insane long pci latencies ...
*
* FIFO space allocations:
@ -241,6 +241,7 @@ cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
* channel 24 (vbi) - 4.0k
* channels 25+26 (audio) - 4.0k
* channel 28 (mpeg) - 4.0k
* channel 27 (audio rds)- 3.0k
* TOTAL = 29.0k
*
* Every channel has 160 bytes control data (64 bytes instruction
@ -337,6 +338,18 @@ struct sram_channel cx88_sram_channels[] = {
.cnt1_reg = MO_DMA28_CNT1,
.cnt2_reg = MO_DMA28_CNT2,
},
[SRAM_CH27] = {
.name = "audio rds",
.cmds_start = 0x1801C0,
.ctrl_start = 0x180860,
.cdt = 0x180860 + 64,
.fifo_start = 0x187400,
.fifo_size = 0x000C00,
.ptr1_reg = MO_DMA27_PTR1,
.ptr2_reg = MO_DMA27_PTR2,
.cnt1_reg = MO_DMA27_CNT1,
.cnt2_reg = MO_DMA27_CNT2,
},
};
int cx88_sram_channel_setup(struct cx88_core *core,
@ -598,6 +611,7 @@ int cx88_reset(struct cx88_core *core)
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27], 128, 0);
/* misc init ... */
cx_write(MO_INPUT_FORMAT, ((1 << 13) | // agc enable
@ -796,6 +810,8 @@ int cx88_start_audio_dma(struct cx88_core *core)
/* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4;
int rds_bpl = cx88_sram_channels[SRAM_CH27].fifo_size/AUD_RDS_LINES;
/* If downstream RISC is enabled, bail out; ALSA is managing DMA */
if (cx_read(MO_AUD_DMACNTRL) & 0x10)
return 0;
@ -803,12 +819,14 @@ int cx88_start_audio_dma(struct cx88_core *core)
/* setup fifo + format */
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH27],
rds_bpl, 0);
cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
cx_write(MO_AUDR_LNGTH, bpl); /* fifo bpl size */
cx_write(MO_AUDR_LNGTH, rds_bpl); /* fifo bpl size */
/* start dma */
cx_write(MO_AUD_DMACNTRL, 0x0003); /* Up and Down fifo enable */
/* enable Up, Down and Audio RDS fifo */
cx_write(MO_AUD_DMACNTRL, 0x0007);
return 0;
}

View File

@ -0,0 +1,299 @@
/*
*
* Stereo and SAP detection for cx88
*
* Copyright (c) 2009 Marton Balint <cus@fazekas.hu>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/jiffies.h>
#include "cx88.h"
#include "cx88-reg.h"
#define INT_PI ((s32)(3.141592653589 * 32768.0))
#define compat_remainder(a, b) \
((float)(((s32)((a)*100))%((s32)((b)*100)))/100.0)
#define baseband_freq(carrier, srate, tone) ((s32)( \
(compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
/* We calculate the baseband frequencies of the carrier and the pilot tones
* based on the the sampling rate of the audio rds fifo. */
#define FREQ_A2_CARRIER baseband_freq(54687.5, 2689.36, 0.0)
#define FREQ_A2_DUAL baseband_freq(54687.5, 2689.36, 274.1)
#define FREQ_A2_STEREO baseband_freq(54687.5, 2689.36, 117.5)
/* The frequencies below are from the reference driver. They probably need
* further adjustments, because they are not tested at all. You may even need
* to play a bit with the registers of the chip to select the proper signal
* for the input of the audio rds fifo, and measure it's sampling rate to
* calculate the proper baseband frequencies... */
#define FREQ_A2M_CARRIER ((s32)(2.114516 * 32768.0))
#define FREQ_A2M_DUAL ((s32)(2.754916 * 32768.0))
#define FREQ_A2M_STEREO ((s32)(2.462326 * 32768.0))
#define FREQ_EIAJ_CARRIER ((s32)(1.963495 * 32768.0)) /* 5pi/8 */
#define FREQ_EIAJ_DUAL ((s32)(2.562118 * 32768.0))
#define FREQ_EIAJ_STEREO ((s32)(2.601053 * 32768.0))
#define FREQ_BTSC_DUAL ((s32)(1.963495 * 32768.0)) /* 5pi/8 */
#define FREQ_BTSC_DUAL_REF ((s32)(1.374446 * 32768.0)) /* 7pi/16 */
#define FREQ_BTSC_SAP ((s32)(2.471532 * 32768.0))
#define FREQ_BTSC_SAP_REF ((s32)(1.730072 * 32768.0))
/* The spectrum of the signal should be empty between these frequencies. */
#define FREQ_NOISE_START ((s32)(0.100000 * 32768.0))
#define FREQ_NOISE_END ((s32)(1.200000 * 32768.0))
static unsigned int dsp_debug;
module_param(dsp_debug, int, 0644);
MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
#define dprintk(level, fmt, arg...) if (dsp_debug >= level) \
printk(KERN_DEBUG "%s/0: " fmt, core->name , ## arg)
static s32 int_cos(u32 x)
{
u32 t2, t4, t6, t8;
s32 ret;
u16 period = x / INT_PI;
if (period % 2)
return -int_cos(x - INT_PI);
x = x % INT_PI;
if (x > INT_PI/2)
return -int_cos(INT_PI/2 - (x % (INT_PI/2)));
/* Now x is between 0 and INT_PI/2.
* To calculate cos(x) we use it's Taylor polinom. */
t2 = x*x/32768/2;
t4 = t2*x/32768*x/32768/3/4;
t6 = t4*x/32768*x/32768/5/6;
t8 = t6*x/32768*x/32768/7/8;
ret = 32768-t2+t4-t6+t8;
return ret;
}
static u32 int_goertzel(s16 x[], u32 N, u32 freq)
{
/* We use the Goertzel algorithm to determine the power of the
* given frequency in the signal */
s32 s_prev = 0;
s32 s_prev2 = 0;
s32 coeff = 2*int_cos(freq);
u32 i;
for (i = 0; i < N; i++) {
s32 s = x[i] + ((s64)coeff*s_prev/32768) - s_prev2;
s_prev2 = s_prev;
s_prev = s;
}
return (u32)(((s64)s_prev2*s_prev2 + (s64)s_prev*s_prev -
(s64)coeff*s_prev2*s_prev/32768)/N/N);
}
static u32 freq_magnitude(s16 x[], u32 N, u32 freq)
{
u32 sum = int_goertzel(x, N, freq);
return (u32)int_sqrt(sum);
}
static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
{
int i;
u32 sum = 0;
u32 freq_step;
int samples = 5;
if (N > 192) {
/* The last 192 samples are enough for noise detection */
x += (N-192);
N = 192;
}
freq_step = (freq_end - freq_start) / (samples - 1);
for (i = 0; i < samples; i++) {
sum += int_goertzel(x, N, freq_start);
freq_start += freq_step;
}
return (u32)int_sqrt(sum / samples);
}
static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
{
s32 carrier, stereo, dual, noise;
s32 carrier_freq, stereo_freq, dual_freq;
s32 ret;
switch (core->tvaudio) {
case WW_BG:
case WW_DK:
carrier_freq = FREQ_A2_CARRIER;
stereo_freq = FREQ_A2_STEREO;
dual_freq = FREQ_A2_DUAL;
break;
case WW_M:
carrier_freq = FREQ_A2M_CARRIER;
stereo_freq = FREQ_A2M_STEREO;
dual_freq = FREQ_A2M_DUAL;
break;
case WW_EIAJ:
carrier_freq = FREQ_EIAJ_CARRIER;
stereo_freq = FREQ_EIAJ_STEREO;
dual_freq = FREQ_EIAJ_DUAL;
break;
default:
printk(KERN_WARNING "%s/0: unsupported audio mode %d for %s\n",
core->name, core->tvaudio, __func__);
return UNSET;
}
carrier = freq_magnitude(x, N, carrier_freq);
stereo = freq_magnitude(x, N, stereo_freq);
dual = freq_magnitude(x, N, dual_freq);
noise = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
dprintk(1, "detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, "
"noise=%d\n", carrier, stereo, dual, noise);
if (stereo > dual)
ret = V4L2_TUNER_SUB_STEREO;
else
ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
if (core->tvaudio == WW_EIAJ) {
/* EIAJ checks may need adjustments */
if ((carrier > max(stereo, dual)*2) &&
(carrier < max(stereo, dual)*6) &&
(carrier > 20 && carrier < 200) &&
(max(stereo, dual) > min(stereo, dual))) {
/* For EIAJ the carrier is always present,
so we probably don't need noise detection */
return ret;
}
} else {
if ((carrier > max(stereo, dual)*2) &&
(carrier < max(stereo, dual)*8) &&
(carrier > 20 && carrier < 200) &&
(noise < 10) &&
(max(stereo, dual) > min(stereo, dual)*2)) {
return ret;
}
}
return V4L2_TUNER_SUB_MONO;
}
static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
{
s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d"
"\n", dual_ref, dual, sap_ref, sap);
/* FIXME: Currently not supported */
return UNSET;
}
static s16 *read_rds_samples(struct cx88_core *core, u32 *N)
{
struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
s16 *samples;
unsigned int i;
unsigned int bpl = srch->fifo_size/AUD_RDS_LINES;
unsigned int spl = bpl/4;
unsigned int sample_count = spl*(AUD_RDS_LINES-1);
u32 current_address = cx_read(srch->ptr1_reg);
u32 offset = (current_address - srch->fifo_start + bpl);
dprintk(1, "read RDS samples: current_address=%08x (offset=%08x), "
"sample_count=%d, aud_intstat=%08x\n", current_address,
current_address - srch->fifo_start, sample_count,
cx_read(MO_AUD_INTSTAT));
samples = kmalloc(sizeof(s16)*sample_count, GFP_KERNEL);
if (!samples)
return NULL;
*N = sample_count;
for (i = 0; i < sample_count; i++) {
offset = offset % (AUD_RDS_LINES*bpl);
samples[i] = cx_read(srch->fifo_start + offset);
offset += 4;
}
if (dsp_debug >= 2) {
dprintk(2, "RDS samples dump: ");
for (i = 0; i < sample_count; i++)
printk("%hd ", samples[i]);
printk(".\n");
}
return samples;
}
s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
{
s16 *samples;
u32 N = 0;
s32 ret = UNSET;
/* If audio RDS fifo is disabled, we can't read the samples */
if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
return ret;
if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
return ret;
/* Wait at least 500 ms after an audio standard change */
if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
return ret;
samples = read_rds_samples(core, &N);
if (!samples)
return ret;
switch (core->tvaudio) {
case WW_BG:
case WW_DK:
ret = detect_a2_a2m_eiaj(core, samples, N);
break;
case WW_BTSC:
ret = detect_btsc(core, samples, N);
break;
}
kfree(samples);
if (UNSET != ret)
dprintk(1, "stereo/sap detection result:%s%s%s\n",
(ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
(ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
(ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
return ret;
}
EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);

View File

@ -163,6 +163,8 @@ static void set_audio_finish(struct cx88_core *core, u32 ctl)
/* unmute */
volume = cx_sread(SHADOW_AUD_VOL_CTL);
cx_swrite(SHADOW_AUD_VOL_CTL, AUD_VOL_CTL, volume);
core->last_change = jiffies;
}
/* ----------------------------------------------------------- */
@ -745,6 +747,7 @@ void cx88_set_tvaudio(struct cx88_core *core)
break;
case WW_BG:
case WW_DK:
case WW_M:
case WW_I:
case WW_L:
/* prepare all dsp registers */
@ -756,6 +759,7 @@ void cx88_set_tvaudio(struct cx88_core *core)
if (0 == cx88_detect_nicam(core)) {
/* fall back to fm / am mono */
set_audio_standard_A2(core, EN_A2_FORCE_MONO1);
core->audiomode_current = V4L2_TUNER_MODE_MONO;
core->use_nicam = 0;
} else {
core->use_nicam = 1;
@ -787,6 +791,7 @@ void cx88_set_tvaudio(struct cx88_core *core)
void cx88_newstation(struct cx88_core *core)
{
core->audiomode_manual = UNSET;
core->last_change = jiffies;
}
void cx88_get_stereo(struct cx88_core *core, struct v4l2_tuner *t)
@ -805,12 +810,50 @@ void cx88_get_stereo(struct cx88_core *core, struct v4l2_tuner *t)
aud_ctl_names[cx_read(AUD_CTL) & 63]);
core->astat = reg;
/* TODO
Reading from AUD_STATUS is not enough
for auto-detecting sap/dual-fm/nicam.
Add some code here later.
*/
t->capability = V4L2_TUNER_CAP_STEREO | V4L2_TUNER_CAP_SAP |
V4L2_TUNER_CAP_LANG1 | V4L2_TUNER_CAP_LANG2;
t->rxsubchans = UNSET;
t->audmode = V4L2_TUNER_MODE_MONO;
switch (mode) {
case 0:
t->audmode = V4L2_TUNER_MODE_STEREO;
break;
case 1:
t->audmode = V4L2_TUNER_MODE_LANG2;
break;
case 2:
t->audmode = V4L2_TUNER_MODE_MONO;
break;
case 3:
t->audmode = V4L2_TUNER_MODE_SAP;
break;
}
switch (core->tvaudio) {
case WW_BTSC:
case WW_BG:
case WW_DK:
case WW_M:
case WW_EIAJ:
if (!core->use_nicam) {
t->rxsubchans = cx88_dsp_detect_stereo_sap(core);
break;
}
break;
default:
/* nothing */
break;
}
/* If software stereo detection is not supported... */
if (UNSET == t->rxsubchans) {
t->rxsubchans = V4L2_TUNER_SUB_MONO;
/* If the hardware itself detected stereo, also return
stereo as an available subchannel */
if (V4L2_TUNER_MODE_STEREO == t->audmode)
t->rxsubchans |= V4L2_TUNER_SUB_STEREO;
}
return;
}
@ -847,6 +890,7 @@ void cx88_set_stereo(struct cx88_core *core, u32 mode, int manual)
break;
case WW_BG:
case WW_DK:
case WW_M:
case WW_I:
case WW_L:
if (1 == core->use_nicam) {

View File

@ -65,6 +65,8 @@
#define VBI_LINE_COUNT 17
#define VBI_LINE_LENGTH 2048
#define AUD_RDS_LINES 4
/* need "shadow" registers for some write-only ones ... */
#define SHADOW_AUD_VOL_CTL 1
#define SHADOW_AUD_BAL_CTL 2
@ -132,6 +134,7 @@ struct cx88_ctrl {
#define SRAM_CH25 4 /* audio */
#define SRAM_CH26 5
#define SRAM_CH28 6 /* mpeg */
#define SRAM_CH27 7 /* audio rds */
/* more */
struct sram_channel {
@ -352,6 +355,7 @@ struct cx88_core {
u32 input;
u32 astat;
u32 use_nicam;
unsigned long last_change;
/* IR remote control state */
struct cx88_IR *ir;
@ -654,6 +658,7 @@ extern void cx88_setup_xc3028(struct cx88_core *core, struct xc2028_ctrl *ctl);
#define WW_I2SPT 8
#define WW_FM 9
#define WW_I2SADC 10
#define WW_M 11
void cx88_set_tvaudio(struct cx88_core *core);
void cx88_newstation(struct cx88_core *core);
@ -666,6 +671,11 @@ int cx8802_unregister_driver(struct cx8802_driver *drv);
struct cx8802_dev *cx8802_get_device(int minor);
struct cx8802_driver * cx8802_get_driver(struct cx8802_dev *dev, enum cx88_board_type btype);
/* ----------------------------------------------------------- */
/* cx88-dsp.c */
s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core);
/* ----------------------------------------------------------- */
/* cx88-input.c */