mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 22:16:06 +07:00
ice: Add handler to configure SR-IOV
This patch implements parts of ice_sriov_configure and VF reset flow. To create virtual functions (VFs), the user sets a value in num_vfs through sysfs. This results in the kernel calling the handler for .sriov_configure which is ice_sriov_configure. VF setup first starts with a VF reset, followed by allocation of the VF VSI using ice_vf_vsi_setup. Once the VF setup is complete a state bit ICE_VF_STATE_INIT is set in the vf->states bitmap to indicate that the VF is ready to go. Also for VF reset to go into effect, it's necessary to issue a disable queue command (ice_aqc_opc_dis_txqs). So this patch updates multiple functions in the disable queue flow to take additional parameters that distinguish if queues are being disabled due to VF reset. Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com> Tested-by: Andrew Bowers <andrewx.bowers@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
This commit is contained in:
parent
75d2b25302
commit
ddf30f7ff8
@ -16,3 +16,4 @@ ice-y := ice_main.o \
|
||||
ice_lib.o \
|
||||
ice_txrx.o \
|
||||
ice_ethtool.o
|
||||
ice-$(CONFIG_PCI_IOV) += ice_virtchnl_pf.o
|
||||
|
@ -28,6 +28,7 @@
|
||||
#include <linux/ip.h>
|
||||
#include <linux/ipv6.h>
|
||||
#include <linux/if_bridge.h>
|
||||
#include <linux/avf/virtchnl.h>
|
||||
#include <net/ipv6.h>
|
||||
#include "ice_devids.h"
|
||||
#include "ice_type.h"
|
||||
@ -35,6 +36,7 @@
|
||||
#include "ice_switch.h"
|
||||
#include "ice_common.h"
|
||||
#include "ice_sched.h"
|
||||
#include "ice_virtchnl_pf.h"
|
||||
|
||||
extern const char ice_drv_ver[];
|
||||
#define ICE_BAR0 0
|
||||
@ -65,6 +67,12 @@ extern const char ice_drv_ver[];
|
||||
#define ICE_INVAL_Q_INDEX 0xffff
|
||||
#define ICE_INVAL_VFID 256
|
||||
#define ICE_MAX_VF_COUNT 256
|
||||
#define ICE_MAX_QS_PER_VF 256
|
||||
#define ICE_MIN_QS_PER_VF 1
|
||||
#define ICE_DFLT_QS_PER_VF 4
|
||||
#define ICE_MAX_INTR_PER_VF 65
|
||||
#define ICE_MIN_INTR_PER_VF (ICE_MIN_QS_PER_VF + 1)
|
||||
#define ICE_DFLT_INTR_PER_VF (ICE_DFLT_QS_PER_VF + 1)
|
||||
|
||||
#define ICE_VSIQF_HKEY_ARRAY_SIZE ((VSIQF_HKEY_MAX_INDEX + 1) * 4)
|
||||
|
||||
@ -135,10 +143,20 @@ enum ice_state {
|
||||
__ICE_EMPR_RECV, /* set by OICR handler */
|
||||
__ICE_SUSPENDED, /* set on module remove path */
|
||||
__ICE_RESET_FAILED, /* set by reset/rebuild */
|
||||
/* When checking for the PF to be in a nominal operating state, the
|
||||
* bits that are grouped at the beginning of the list need to be
|
||||
* checked. Bits occurring before __ICE_STATE_NOMINAL_CHECK_BITS will
|
||||
* be checked. If you need to add a bit into consideration for nominal
|
||||
* operating state, it must be added before
|
||||
* __ICE_STATE_NOMINAL_CHECK_BITS. Do not move this entry's position
|
||||
* without appropriate consideration.
|
||||
*/
|
||||
__ICE_STATE_NOMINAL_CHECK_BITS,
|
||||
__ICE_ADMINQ_EVENT_PENDING,
|
||||
__ICE_MAILBOXQ_EVENT_PENDING,
|
||||
__ICE_MDD_EVENT_PENDING,
|
||||
__ICE_FLTR_OVERFLOW_PROMISC,
|
||||
__ICE_VF_DIS,
|
||||
__ICE_CFG_BUSY,
|
||||
__ICE_SERVICE_SCHED,
|
||||
__ICE_SERVICE_DIS,
|
||||
@ -243,6 +261,7 @@ enum ice_pf_flags {
|
||||
ICE_FLAG_MSIX_ENA,
|
||||
ICE_FLAG_FLTR_SYNC,
|
||||
ICE_FLAG_RSS_ENA,
|
||||
ICE_FLAG_SRIOV_ENA,
|
||||
ICE_FLAG_SRIOV_CAPABLE,
|
||||
ICE_PF_FLAGS_NBITS /* must be last */
|
||||
};
|
||||
@ -259,7 +278,12 @@ struct ice_pf {
|
||||
|
||||
struct ice_vsi **vsi; /* VSIs created by the driver */
|
||||
struct ice_sw *first_sw; /* first switch created by firmware */
|
||||
/* Virtchnl/SR-IOV config info */
|
||||
struct ice_vf *vf;
|
||||
int num_alloc_vfs; /* actual number of VFs allocated */
|
||||
u16 num_vfs_supported; /* num VFs supported for this PF */
|
||||
u16 num_vf_qps; /* num queue pairs per VF */
|
||||
u16 num_vf_msix; /* num vectors per VF */
|
||||
DECLARE_BITMAP(state, __ICE_STATE_NBITS);
|
||||
DECLARE_BITMAP(avail_txqs, ICE_MAX_TXQS);
|
||||
DECLARE_BITMAP(avail_rxqs, ICE_MAX_RXQS);
|
||||
|
@ -2287,6 +2287,8 @@ ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
|
||||
* @num_qgrps: number of groups in the list
|
||||
* @qg_list: the list of groups to disable
|
||||
* @buf_size: the total size of the qg_list buffer in bytes
|
||||
* @rst_src: if called due to reset, specifies the RST source
|
||||
* @vmvf_num: the relative VM or VF number that is undergoing the reset
|
||||
* @cd: pointer to command details structure or NULL
|
||||
*
|
||||
* Disable LAN Tx queue (0x0C31)
|
||||
@ -2294,6 +2296,7 @@ ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
|
||||
static enum ice_status
|
||||
ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
|
||||
struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
|
||||
enum ice_disq_rst_src rst_src, u16 vmvf_num,
|
||||
struct ice_sq_cd *cd)
|
||||
{
|
||||
struct ice_aqc_dis_txqs *cmd;
|
||||
@ -2303,14 +2306,45 @@ ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
|
||||
cmd = &desc.params.dis_txqs;
|
||||
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
|
||||
|
||||
if (!qg_list)
|
||||
/* qg_list can be NULL only in VM/VF reset flow */
|
||||
if (!qg_list && !rst_src)
|
||||
return ICE_ERR_PARAM;
|
||||
|
||||
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
|
||||
return ICE_ERR_PARAM;
|
||||
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
||||
|
||||
cmd->num_entries = num_qgrps;
|
||||
|
||||
cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
|
||||
ICE_AQC_Q_DIS_TIMEOUT_M);
|
||||
|
||||
switch (rst_src) {
|
||||
case ICE_VM_RESET:
|
||||
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
|
||||
cmd->vmvf_and_timeout |=
|
||||
cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
|
||||
break;
|
||||
case ICE_VF_RESET:
|
||||
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
|
||||
/* In this case, FW expects vmvf_num to be absolute VF id */
|
||||
cmd->vmvf_and_timeout |=
|
||||
cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
|
||||
ICE_AQC_Q_DIS_VMVF_NUM_M);
|
||||
break;
|
||||
case ICE_NO_RESET:
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
/* If no queue group info, we are in a reset flow. Issue the AQ */
|
||||
if (!qg_list)
|
||||
goto do_aq;
|
||||
|
||||
/* set RD bit to indicate that command buffer is provided by the driver
|
||||
* and it needs to be read by the firmware
|
||||
*/
|
||||
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
|
||||
|
||||
for (i = 0; i < num_qgrps; ++i) {
|
||||
/* Calculate the size taken up by the queue IDs in this group */
|
||||
sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
|
||||
@ -2326,6 +2360,7 @@ ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
|
||||
if (buf_size != sz)
|
||||
return ICE_ERR_PARAM;
|
||||
|
||||
do_aq:
|
||||
return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
|
||||
}
|
||||
|
||||
@ -2632,13 +2667,16 @@ ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_qgrps,
|
||||
* @num_queues: number of queues
|
||||
* @q_ids: pointer to the q_id array
|
||||
* @q_teids: pointer to queue node teids
|
||||
* @rst_src: if called due to reset, specifies the RST source
|
||||
* @vmvf_num: the relative VM or VF number that is undergoing the reset
|
||||
* @cd: pointer to command details structure or NULL
|
||||
*
|
||||
* This function removes queues and their corresponding nodes in SW DB
|
||||
*/
|
||||
enum ice_status
|
||||
ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
|
||||
u32 *q_teids, struct ice_sq_cd *cd)
|
||||
u32 *q_teids, enum ice_disq_rst_src rst_src, u16 vmvf_num,
|
||||
struct ice_sq_cd *cd)
|
||||
{
|
||||
enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
|
||||
struct ice_aqc_dis_txq_item qg_list;
|
||||
@ -2647,6 +2685,15 @@ ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
|
||||
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
||||
return ICE_ERR_CFG;
|
||||
|
||||
/* if queue is disabled already yet the disable queue command has to be
|
||||
* sent to complete the VF reset, then call ice_aq_dis_lan_txq without
|
||||
* any queue information
|
||||
*/
|
||||
|
||||
if (!num_queues && rst_src)
|
||||
return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src, vmvf_num,
|
||||
NULL);
|
||||
|
||||
mutex_lock(&pi->sched_lock);
|
||||
|
||||
for (i = 0; i < num_queues; i++) {
|
||||
@ -2659,7 +2706,8 @@ ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
|
||||
qg_list.num_qs = 1;
|
||||
qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
|
||||
status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
|
||||
sizeof(qg_list), cd);
|
||||
sizeof(qg_list), rst_src, vmvf_num,
|
||||
cd);
|
||||
|
||||
if (status)
|
||||
break;
|
||||
|
@ -7,6 +7,7 @@
|
||||
#include "ice.h"
|
||||
#include "ice_type.h"
|
||||
#include "ice_switch.h"
|
||||
#include <linux/avf/virtchnl.h>
|
||||
|
||||
void ice_debug_cq(struct ice_hw *hw, u32 mask, void *desc, void *buf,
|
||||
u16 buf_len);
|
||||
@ -89,7 +90,8 @@ ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
|
||||
struct ice_sq_cd *cd);
|
||||
enum ice_status
|
||||
ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
|
||||
u32 *q_teids, struct ice_sq_cd *cmd_details);
|
||||
u32 *q_teids, enum ice_disq_rst_src rst_src, u16 vmvf_num,
|
||||
struct ice_sq_cd *cmd_details);
|
||||
enum ice_status
|
||||
ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
|
||||
u16 *max_lanqs);
|
||||
|
@ -90,10 +90,16 @@
|
||||
#define GLGEN_RTRIG_CORER_M BIT(0)
|
||||
#define GLGEN_RTRIG_GLOBR_M BIT(1)
|
||||
#define GLGEN_STAT 0x000B612C
|
||||
#define GLGEN_VFLRSTAT(_i) (0x00093A04 + ((_i) * 4))
|
||||
#define PFGEN_CTRL 0x00091000
|
||||
#define PFGEN_CTRL_PFSWR_M BIT(0)
|
||||
#define PFGEN_STATE 0x00088000
|
||||
#define PRTGEN_STATUS 0x000B8100
|
||||
#define VFGEN_RSTAT(_VF) (0x00074000 + ((_VF) * 4))
|
||||
#define VPGEN_VFRSTAT(_VF) (0x00090800 + ((_VF) * 4))
|
||||
#define VPGEN_VFRSTAT_VFRD_M BIT(0)
|
||||
#define VPGEN_VFRTRIG(_VF) (0x00090000 + ((_VF) * 4))
|
||||
#define VPGEN_VFRTRIG_VFSWR_M BIT(0)
|
||||
#define PFHMC_ERRORDATA 0x00520500
|
||||
#define PFHMC_ERRORINFO 0x00520400
|
||||
#define GLINT_DYN_CTL(_INT) (0x00160000 + ((_INT) * 4))
|
||||
@ -106,6 +112,13 @@
|
||||
#define GLINT_ITR(_i, _INT) (0x00154000 + ((_i) * 8192 + (_INT) * 4))
|
||||
#define GLINT_RATE(_INT) (0x0015A000 + ((_INT) * 4))
|
||||
#define GLINT_RATE_INTRL_ENA_M BIT(6)
|
||||
#define GLINT_VECT2FUNC(_INT) (0x00162000 + ((_INT) * 4))
|
||||
#define GLINT_VECT2FUNC_VF_NUM_S 0
|
||||
#define GLINT_VECT2FUNC_VF_NUM_M ICE_M(0xFF, 0)
|
||||
#define GLINT_VECT2FUNC_PF_NUM_S 12
|
||||
#define GLINT_VECT2FUNC_PF_NUM_M ICE_M(0x7, 12)
|
||||
#define GLINT_VECT2FUNC_IS_PF_S 16
|
||||
#define GLINT_VECT2FUNC_IS_PF_M BIT(16)
|
||||
#define PFINT_FW_CTL 0x0016C800
|
||||
#define PFINT_FW_CTL_MSIX_INDX_M ICE_M(0x7FF, 0)
|
||||
#define PFINT_FW_CTL_ITR_INDX_S 11
|
||||
@ -137,6 +150,12 @@
|
||||
#define QINT_TQCTL_MSIX_INDX_S 0
|
||||
#define QINT_TQCTL_ITR_INDX_S 11
|
||||
#define QINT_TQCTL_CAUSE_ENA_M BIT(30)
|
||||
#define VPINT_ALLOC(_VF) (0x001D1000 + ((_VF) * 4))
|
||||
#define VPINT_ALLOC_FIRST_S 0
|
||||
#define VPINT_ALLOC_FIRST_M ICE_M(0x7FF, 0)
|
||||
#define VPINT_ALLOC_LAST_S 12
|
||||
#define VPINT_ALLOC_LAST_M ICE_M(0x7FF, 12)
|
||||
#define VPINT_ALLOC_VALID_M BIT(31)
|
||||
#define QRX_CONTEXT(_i, _QRX) (0x00280000 + ((_i) * 8192 + (_QRX) * 4))
|
||||
#define QRX_CTRL(_QRX) (0x00120000 + ((_QRX) * 4))
|
||||
#define QRX_CTRL_MAX_INDEX 2047
|
||||
@ -149,6 +168,20 @@
|
||||
#define QRX_TAIL_MAX_INDEX 2047
|
||||
#define QRX_TAIL_TAIL_S 0
|
||||
#define QRX_TAIL_TAIL_M ICE_M(0x1FFF, 0)
|
||||
#define VPLAN_RX_QBASE(_VF) (0x00072000 + ((_VF) * 4))
|
||||
#define VPLAN_RX_QBASE_VFFIRSTQ_S 0
|
||||
#define VPLAN_RX_QBASE_VFFIRSTQ_M ICE_M(0x7FF, 0)
|
||||
#define VPLAN_RX_QBASE_VFNUMQ_S 16
|
||||
#define VPLAN_RX_QBASE_VFNUMQ_M ICE_M(0xFF, 16)
|
||||
#define VPLAN_RXQ_MAPENA(_VF) (0x00073000 + ((_VF) * 4))
|
||||
#define VPLAN_RXQ_MAPENA_RX_ENA_M BIT(0)
|
||||
#define VPLAN_TX_QBASE(_VF) (0x001D1800 + ((_VF) * 4))
|
||||
#define VPLAN_TX_QBASE_VFFIRSTQ_S 0
|
||||
#define VPLAN_TX_QBASE_VFFIRSTQ_M ICE_M(0x3FFF, 0)
|
||||
#define VPLAN_TX_QBASE_VFNUMQ_S 16
|
||||
#define VPLAN_TX_QBASE_VFNUMQ_M ICE_M(0xFF, 16)
|
||||
#define VPLAN_TXQ_MAPENA(_VF) (0x00073800 + ((_VF) * 4))
|
||||
#define VPLAN_TXQ_MAPENA_TX_ENA_M BIT(0)
|
||||
#define GL_MDET_RX 0x00294C00
|
||||
#define GL_MDET_RX_QNUM_S 0
|
||||
#define GL_MDET_RX_QNUM_M ICE_M(0x7FFF, 0)
|
||||
@ -196,6 +229,9 @@
|
||||
#define PF_FUNC_RID 0x0009E880
|
||||
#define PF_FUNC_RID_FUNC_NUM_S 0
|
||||
#define PF_FUNC_RID_FUNC_NUM_M ICE_M(0x7, 0)
|
||||
#define PF_PCI_CIAA 0x0009E580
|
||||
#define PF_PCI_CIAA_VF_NUM_S 12
|
||||
#define PF_PCI_CIAD 0x0009E500
|
||||
#define GL_PWR_MODE_CTL 0x000B820C
|
||||
#define GL_PWR_MODE_CTL_CAR_MAX_BW_S 30
|
||||
#define GL_PWR_MODE_CTL_CAR_MAX_BW_M ICE_M(0x3, 30)
|
||||
@ -276,5 +312,7 @@
|
||||
#define GLV_UPTCH(_i) (0x0030A004 + ((_i) * 8))
|
||||
#define GLV_UPTCL(_i) (0x0030A000 + ((_i) * 8))
|
||||
#define VSIQF_HKEY_MAX_INDEX 12
|
||||
#define VFINT_DYN_CTLN(_i) (0x00003800 + ((_i) * 4))
|
||||
#define VFINT_DYN_CTLN_CLEARPBA_M BIT(1)
|
||||
|
||||
#endif /* _ICE_HW_AUTOGEN_H_ */
|
||||
|
@ -1784,8 +1784,11 @@ int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
|
||||
/**
|
||||
* ice_vsi_stop_tx_rings - Disable Tx rings
|
||||
* @vsi: the VSI being configured
|
||||
* @rst_src: reset source
|
||||
* @rel_vmvf_num: Relative id of VF/VM
|
||||
*/
|
||||
int ice_vsi_stop_tx_rings(struct ice_vsi *vsi)
|
||||
int ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
|
||||
u16 rel_vmvf_num)
|
||||
{
|
||||
struct ice_pf *pf = vsi->back;
|
||||
struct ice_hw *hw = &pf->hw;
|
||||
@ -1837,7 +1840,7 @@ int ice_vsi_stop_tx_rings(struct ice_vsi *vsi)
|
||||
GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
|
||||
}
|
||||
status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids,
|
||||
NULL);
|
||||
rst_src, rel_vmvf_num, NULL);
|
||||
/* if the disable queue command was exercised during an active reset
|
||||
* flow, ICE_ERR_RESET_ONGOING is returned. This is not an error as
|
||||
* the reset operation disables queues at the hardware level anyway.
|
||||
|
@ -31,7 +31,8 @@ int ice_vsi_start_rx_rings(struct ice_vsi *vsi);
|
||||
|
||||
int ice_vsi_stop_rx_rings(struct ice_vsi *vsi);
|
||||
|
||||
int ice_vsi_stop_tx_rings(struct ice_vsi *vsi);
|
||||
int ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
|
||||
u16 rel_vmvf_num);
|
||||
|
||||
int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena);
|
||||
|
||||
|
@ -2185,6 +2185,8 @@ static void ice_remove(struct pci_dev *pdev)
|
||||
set_bit(__ICE_DOWN, pf->state);
|
||||
ice_service_task_stop(pf);
|
||||
|
||||
if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
|
||||
ice_free_vfs(pf);
|
||||
ice_vsi_release_all(pf);
|
||||
ice_free_irq_msix_misc(pf);
|
||||
ice_for_each_vsi(pf, i) {
|
||||
@ -2220,6 +2222,7 @@ static struct pci_driver ice_driver = {
|
||||
.id_table = ice_pci_tbl,
|
||||
.probe = ice_probe,
|
||||
.remove = ice_remove,
|
||||
.sriov_configure = ice_sriov_configure,
|
||||
};
|
||||
|
||||
/**
|
||||
@ -2955,7 +2958,7 @@ int ice_down(struct ice_vsi *vsi)
|
||||
}
|
||||
|
||||
ice_vsi_dis_irq(vsi);
|
||||
tx_err = ice_vsi_stop_tx_rings(vsi);
|
||||
tx_err = ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0);
|
||||
if (tx_err)
|
||||
netdev_err(vsi->netdev,
|
||||
"Failed stop Tx rings, VSI %d error %d\n",
|
||||
@ -3357,6 +3360,7 @@ static void ice_rebuild(struct ice_pf *pf)
|
||||
goto err_vsi_rebuild;
|
||||
}
|
||||
|
||||
ice_reset_all_vfs(pf, true);
|
||||
/* if we get here, reset flow is successful */
|
||||
clear_bit(__ICE_RESET_FAILED, pf->state);
|
||||
return;
|
||||
|
@ -104,6 +104,15 @@ struct ice_link_status {
|
||||
u8 module_type[ICE_MODULE_TYPE_TOTAL_BYTE];
|
||||
};
|
||||
|
||||
/* Different reset sources for which a disable queue AQ call has to be made in
|
||||
* order to clean the TX scheduler as a part of the reset
|
||||
*/
|
||||
enum ice_disq_rst_src {
|
||||
ICE_NO_RESET = 0,
|
||||
ICE_VM_RESET,
|
||||
ICE_VF_RESET,
|
||||
};
|
||||
|
||||
/* PHY info such as phy_type, etc... */
|
||||
struct ice_phy_info {
|
||||
struct ice_link_status link_info;
|
||||
@ -130,6 +139,7 @@ struct ice_hw_common_caps {
|
||||
|
||||
/* Virtualization support */
|
||||
u8 sr_iov_1_1; /* SR-IOV enabled */
|
||||
|
||||
/* RSS related capabilities */
|
||||
u16 rss_table_size; /* 512 for PFs and 64 for VFs */
|
||||
u8 rss_table_entry_width; /* RSS Entry width in bits */
|
||||
|
847
drivers/net/ethernet/intel/ice/ice_virtchnl_pf.c
Normal file
847
drivers/net/ethernet/intel/ice/ice_virtchnl_pf.c
Normal file
@ -0,0 +1,847 @@
|
||||
// SPDX-License-Identifier: GPL-2.0
|
||||
/* Copyright (c) 2018, Intel Corporation. */
|
||||
|
||||
#include "ice.h"
|
||||
#include "ice_lib.h"
|
||||
|
||||
/**
|
||||
* ice_get_vf_vector - get VF interrupt vector register offset
|
||||
* @vf_msix: number of MSIx vector per VF on a PF
|
||||
* @vf_id: VF identifier
|
||||
* @i: index of MSIx vector
|
||||
*/
|
||||
static u32 ice_get_vf_vector(int vf_msix, int vf_id, int i)
|
||||
{
|
||||
return ((i == 0) ? VFINT_DYN_CTLN(vf_id) :
|
||||
VFINT_DYN_CTLN(((vf_msix - 1) * (vf_id)) + (i - 1)));
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_free_vf_res - Free a VF's resources
|
||||
* @vf: pointer to the VF info
|
||||
*/
|
||||
static void ice_free_vf_res(struct ice_vf *vf)
|
||||
{
|
||||
struct ice_pf *pf = vf->pf;
|
||||
int i, pf_vf_msix;
|
||||
|
||||
/* First, disable VF's configuration API to prevent OS from
|
||||
* accessing the VF's VSI after it's freed or invalidated.
|
||||
*/
|
||||
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
|
||||
|
||||
/* free vsi & disconnect it from the parent uplink */
|
||||
if (vf->lan_vsi_idx) {
|
||||
ice_vsi_release(pf->vsi[vf->lan_vsi_idx]);
|
||||
vf->lan_vsi_idx = 0;
|
||||
vf->lan_vsi_num = 0;
|
||||
vf->num_mac = 0;
|
||||
}
|
||||
|
||||
pf_vf_msix = pf->num_vf_msix;
|
||||
/* Disable interrupts so that VF starts in a known state */
|
||||
for (i = 0; i < pf_vf_msix; i++) {
|
||||
u32 reg_idx;
|
||||
|
||||
reg_idx = ice_get_vf_vector(pf_vf_msix, vf->vf_id, i);
|
||||
wr32(&pf->hw, reg_idx, VFINT_DYN_CTLN_CLEARPBA_M);
|
||||
ice_flush(&pf->hw);
|
||||
}
|
||||
/* reset some of the state variables keeping track of the resources */
|
||||
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
|
||||
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
|
||||
}
|
||||
|
||||
/***********************enable_vf routines*****************************/
|
||||
|
||||
/**
|
||||
* ice_dis_vf_mappings
|
||||
* @vf: pointer to the VF structure
|
||||
*/
|
||||
static void ice_dis_vf_mappings(struct ice_vf *vf)
|
||||
{
|
||||
struct ice_pf *pf = vf->pf;
|
||||
struct ice_vsi *vsi;
|
||||
int first, last, v;
|
||||
struct ice_hw *hw;
|
||||
|
||||
hw = &pf->hw;
|
||||
vsi = pf->vsi[vf->lan_vsi_idx];
|
||||
|
||||
wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
|
||||
|
||||
first = vf->first_vector_idx;
|
||||
last = first + pf->num_vf_msix - 1;
|
||||
for (v = first; v <= last; v++) {
|
||||
u32 reg;
|
||||
|
||||
reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
|
||||
GLINT_VECT2FUNC_IS_PF_M) |
|
||||
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
|
||||
GLINT_VECT2FUNC_PF_NUM_M));
|
||||
wr32(hw, GLINT_VECT2FUNC(v), reg);
|
||||
}
|
||||
|
||||
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
|
||||
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
|
||||
else
|
||||
dev_err(&pf->pdev->dev,
|
||||
"Scattered mode for VF Tx queues is not yet implemented\n");
|
||||
|
||||
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
|
||||
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
|
||||
else
|
||||
dev_err(&pf->pdev->dev,
|
||||
"Scattered mode for VF Rx queues is not yet implemented\n");
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_free_vfs - Free all VFs
|
||||
* @pf: pointer to the PF structure
|
||||
*/
|
||||
void ice_free_vfs(struct ice_pf *pf)
|
||||
{
|
||||
struct ice_hw *hw = &pf->hw;
|
||||
int tmp, i;
|
||||
|
||||
if (!pf->vf)
|
||||
return;
|
||||
|
||||
while (test_and_set_bit(__ICE_VF_DIS, pf->state))
|
||||
usleep_range(1000, 2000);
|
||||
|
||||
/* Avoid wait time by stopping all VFs at the same time */
|
||||
for (i = 0; i < pf->num_alloc_vfs; i++) {
|
||||
if (!test_bit(ICE_VF_STATE_ENA, pf->vf[i].vf_states))
|
||||
continue;
|
||||
|
||||
/* stop rings without wait time */
|
||||
ice_vsi_stop_tx_rings(pf->vsi[pf->vf[i].lan_vsi_idx],
|
||||
ICE_NO_RESET, i);
|
||||
ice_vsi_stop_rx_rings(pf->vsi[pf->vf[i].lan_vsi_idx]);
|
||||
|
||||
clear_bit(ICE_VF_STATE_ENA, pf->vf[i].vf_states);
|
||||
}
|
||||
|
||||
/* Disable IOV before freeing resources. This lets any VF drivers
|
||||
* running in the host get themselves cleaned up before we yank
|
||||
* the carpet out from underneath their feet.
|
||||
*/
|
||||
if (!pci_vfs_assigned(pf->pdev))
|
||||
pci_disable_sriov(pf->pdev);
|
||||
else
|
||||
dev_warn(&pf->pdev->dev, "VFs are assigned - not disabling SR-IOV\n");
|
||||
|
||||
tmp = pf->num_alloc_vfs;
|
||||
pf->num_vf_qps = 0;
|
||||
pf->num_alloc_vfs = 0;
|
||||
for (i = 0; i < tmp; i++) {
|
||||
if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) {
|
||||
/* disable VF qp mappings */
|
||||
ice_dis_vf_mappings(&pf->vf[i]);
|
||||
|
||||
/* Set this state so that assigned VF vectors can be
|
||||
* reclaimed by PF for reuse in ice_vsi_release(). No
|
||||
* need to clear this bit since pf->vf array is being
|
||||
* freed anyways after this for loop
|
||||
*/
|
||||
set_bit(ICE_VF_STATE_CFG_INTR, pf->vf[i].vf_states);
|
||||
ice_free_vf_res(&pf->vf[i]);
|
||||
}
|
||||
}
|
||||
|
||||
devm_kfree(&pf->pdev->dev, pf->vf);
|
||||
pf->vf = NULL;
|
||||
|
||||
/* This check is for when the driver is unloaded while VFs are
|
||||
* assigned. Setting the number of VFs to 0 through sysfs is caught
|
||||
* before this function ever gets called.
|
||||
*/
|
||||
if (!pci_vfs_assigned(pf->pdev)) {
|
||||
int vf_id;
|
||||
|
||||
/* Acknowledge VFLR for all VFs. Without this, VFs will fail to
|
||||
* work correctly when SR-IOV gets re-enabled.
|
||||
*/
|
||||
for (vf_id = 0; vf_id < tmp; vf_id++) {
|
||||
u32 reg_idx, bit_idx;
|
||||
|
||||
reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
|
||||
bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
|
||||
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
|
||||
}
|
||||
}
|
||||
clear_bit(__ICE_VF_DIS, pf->state);
|
||||
clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_trigger_vf_reset - Reset a VF on HW
|
||||
* @vf: pointer to the VF structure
|
||||
* @is_vflr: true if VFLR was issued, false if not
|
||||
*
|
||||
* Trigger hardware to start a reset for a particular VF. Expects the caller
|
||||
* to wait the proper amount of time to allow hardware to reset the VF before
|
||||
* it cleans up and restores VF functionality.
|
||||
*/
|
||||
static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr)
|
||||
{
|
||||
struct ice_pf *pf = vf->pf;
|
||||
u32 reg, reg_idx, bit_idx;
|
||||
struct ice_hw *hw;
|
||||
int vf_abs_id, i;
|
||||
|
||||
hw = &pf->hw;
|
||||
vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
|
||||
|
||||
/* Inform VF that it is no longer active, as a warning */
|
||||
clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
|
||||
|
||||
/* Disable VF's configuration API during reset. The flag is re-enabled
|
||||
* in ice_alloc_vf_res(), when it's safe again to access VF's VSI.
|
||||
* It's normally disabled in ice_free_vf_res(), but it's safer
|
||||
* to do it earlier to give some time to finish to any VF config
|
||||
* functions that may still be running at this point.
|
||||
*/
|
||||
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
|
||||
|
||||
/* In the case of a VFLR, the HW has already reset the VF and we
|
||||
* just need to clean up, so don't hit the VFRTRIG register.
|
||||
*/
|
||||
if (!is_vflr) {
|
||||
/* reset VF using VPGEN_VFRTRIG reg */
|
||||
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
|
||||
reg |= VPGEN_VFRTRIG_VFSWR_M;
|
||||
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
|
||||
}
|
||||
/* clear the VFLR bit in GLGEN_VFLRSTAT */
|
||||
reg_idx = (vf_abs_id) / 32;
|
||||
bit_idx = (vf_abs_id) % 32;
|
||||
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
|
||||
ice_flush(hw);
|
||||
|
||||
wr32(hw, PF_PCI_CIAA,
|
||||
VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
|
||||
for (i = 0; i < 100; i++) {
|
||||
reg = rd32(hw, PF_PCI_CIAD);
|
||||
if ((reg & VF_TRANS_PENDING_M) != 0)
|
||||
dev_err(&pf->pdev->dev,
|
||||
"VF %d PCI transactions stuck\n", vf->vf_id);
|
||||
udelay(1);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_vsi_set_pvid - Set port VLAN id for the VSI
|
||||
* @vsi: the VSI being changed
|
||||
* @vid: the VLAN id to set as a PVID
|
||||
*/
|
||||
static int ice_vsi_set_pvid(struct ice_vsi *vsi, u16 vid)
|
||||
{
|
||||
struct device *dev = &vsi->back->pdev->dev;
|
||||
struct ice_hw *hw = &vsi->back->hw;
|
||||
struct ice_vsi_ctx ctxt = { 0 };
|
||||
enum ice_status status;
|
||||
|
||||
ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_TAGGED |
|
||||
ICE_AQ_VSI_PVLAN_INSERT_PVID |
|
||||
ICE_AQ_VSI_VLAN_EMOD_STR;
|
||||
ctxt.info.pvid = cpu_to_le16(vid);
|
||||
ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
|
||||
|
||||
status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
|
||||
if (status) {
|
||||
dev_info(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
|
||||
status, hw->adminq.sq_last_status);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
vsi->info.pvid = ctxt.info.pvid;
|
||||
vsi->info.vlan_flags = ctxt.info.vlan_flags;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_vf_vsi_setup - Set up a VF VSI
|
||||
* @pf: board private structure
|
||||
* @pi: pointer to the port_info instance
|
||||
* @vf_id: defines VF id to which this VSI connects.
|
||||
*
|
||||
* Returns pointer to the successfully allocated VSI struct on success,
|
||||
* otherwise returns NULL on failure.
|
||||
*/
|
||||
static struct ice_vsi *
|
||||
ice_vf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, u16 vf_id)
|
||||
{
|
||||
return ice_vsi_setup(pf, pi, ICE_VSI_VF, vf_id);
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_alloc_vsi_res - Setup VF VSI and its resources
|
||||
* @vf: pointer to the VF structure
|
||||
*
|
||||
* Returns 0 on success, negative value on failure
|
||||
*/
|
||||
static int ice_alloc_vsi_res(struct ice_vf *vf)
|
||||
{
|
||||
struct ice_pf *pf = vf->pf;
|
||||
LIST_HEAD(tmp_add_list);
|
||||
u8 broadcast[ETH_ALEN];
|
||||
struct ice_vsi *vsi;
|
||||
int status = 0;
|
||||
|
||||
vsi = ice_vf_vsi_setup(pf, pf->hw.port_info, vf->vf_id);
|
||||
|
||||
if (!vsi) {
|
||||
dev_err(&pf->pdev->dev, "Failed to create VF VSI\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
vf->lan_vsi_idx = vsi->idx;
|
||||
vf->lan_vsi_num = vsi->vsi_num;
|
||||
|
||||
/* first vector index is the VFs OICR index */
|
||||
vf->first_vector_idx = vsi->hw_base_vector;
|
||||
/* Since hw_base_vector holds the vector where data queue interrupts
|
||||
* starts, increment by 1 since VFs allocated vectors include OICR intr
|
||||
* as well.
|
||||
*/
|
||||
vsi->hw_base_vector += 1;
|
||||
|
||||
/* Check if port VLAN exist before, and restore it accordingly */
|
||||
if (vf->port_vlan_id)
|
||||
ice_vsi_set_pvid(vsi, vf->port_vlan_id);
|
||||
|
||||
eth_broadcast_addr(broadcast);
|
||||
|
||||
status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
|
||||
if (status)
|
||||
goto ice_alloc_vsi_res_exit;
|
||||
|
||||
if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) {
|
||||
status = ice_add_mac_to_list(vsi, &tmp_add_list,
|
||||
vf->dflt_lan_addr.addr);
|
||||
if (status)
|
||||
goto ice_alloc_vsi_res_exit;
|
||||
}
|
||||
|
||||
status = ice_add_mac(&pf->hw, &tmp_add_list);
|
||||
if (status)
|
||||
dev_err(&pf->pdev->dev, "could not add mac filters\n");
|
||||
|
||||
/* Clear this bit after VF initialization since we shouldn't reclaim
|
||||
* and reassign interrupts for synchronous or asynchronous VFR events.
|
||||
* We don't want to reconfigure interrupts since AVF driver doesn't
|
||||
* expect vector assignment to be changed unless there is a request for
|
||||
* more vectors.
|
||||
*/
|
||||
clear_bit(ICE_VF_STATE_CFG_INTR, vf->vf_states);
|
||||
ice_alloc_vsi_res_exit:
|
||||
ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_alloc_vf_res - Allocate VF resources
|
||||
* @vf: pointer to the VF structure
|
||||
*/
|
||||
static int ice_alloc_vf_res(struct ice_vf *vf)
|
||||
{
|
||||
int status;
|
||||
|
||||
/* setup VF VSI and necessary resources */
|
||||
status = ice_alloc_vsi_res(vf);
|
||||
if (status)
|
||||
goto ice_alloc_vf_res_exit;
|
||||
|
||||
if (vf->trusted)
|
||||
set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
|
||||
else
|
||||
clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
|
||||
|
||||
/* VF is now completely initialized */
|
||||
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
|
||||
|
||||
return status;
|
||||
|
||||
ice_alloc_vf_res_exit:
|
||||
ice_free_vf_res(vf);
|
||||
return status;
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_ena_vf_mappings
|
||||
* @vf: pointer to the VF structure
|
||||
*
|
||||
* Enable VF vectors and queues allocation by writing the details into
|
||||
* respective registers.
|
||||
*/
|
||||
static void ice_ena_vf_mappings(struct ice_vf *vf)
|
||||
{
|
||||
struct ice_pf *pf = vf->pf;
|
||||
struct ice_vsi *vsi;
|
||||
int first, last, v;
|
||||
struct ice_hw *hw;
|
||||
int abs_vf_id;
|
||||
u32 reg;
|
||||
|
||||
hw = &pf->hw;
|
||||
vsi = pf->vsi[vf->lan_vsi_idx];
|
||||
first = vf->first_vector_idx;
|
||||
last = (first + pf->num_vf_msix) - 1;
|
||||
abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
|
||||
|
||||
/* VF Vector allocation */
|
||||
reg = (((first << VPINT_ALLOC_FIRST_S) & VPINT_ALLOC_FIRST_M) |
|
||||
((last << VPINT_ALLOC_LAST_S) & VPINT_ALLOC_LAST_M) |
|
||||
VPINT_ALLOC_VALID_M);
|
||||
wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
|
||||
|
||||
/* map the interrupts to its functions */
|
||||
for (v = first; v <= last; v++) {
|
||||
reg = (((abs_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
|
||||
GLINT_VECT2FUNC_VF_NUM_M) |
|
||||
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
|
||||
GLINT_VECT2FUNC_PF_NUM_M));
|
||||
wr32(hw, GLINT_VECT2FUNC(v), reg);
|
||||
}
|
||||
|
||||
/* VF Tx queues allocation */
|
||||
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
|
||||
wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id),
|
||||
VPLAN_TXQ_MAPENA_TX_ENA_M);
|
||||
/* set the VF PF Tx queue range
|
||||
* VFNUMQ value should be set to (number of queues - 1). A value
|
||||
* of 0 means 1 queue and a value of 255 means 256 queues
|
||||
*/
|
||||
reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
|
||||
VPLAN_TX_QBASE_VFFIRSTQ_M) |
|
||||
(((vsi->alloc_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
|
||||
VPLAN_TX_QBASE_VFNUMQ_M));
|
||||
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
|
||||
} else {
|
||||
dev_err(&pf->pdev->dev,
|
||||
"Scattered mode for VF Tx queues is not yet implemented\n");
|
||||
}
|
||||
|
||||
/* VF Rx queues allocation */
|
||||
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
|
||||
wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id),
|
||||
VPLAN_RXQ_MAPENA_RX_ENA_M);
|
||||
/* set the VF PF Rx queue range
|
||||
* VFNUMQ value should be set to (number of queues - 1). A value
|
||||
* of 0 means 1 queue and a value of 255 means 256 queues
|
||||
*/
|
||||
reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
|
||||
VPLAN_RX_QBASE_VFFIRSTQ_M) |
|
||||
(((vsi->alloc_txq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
|
||||
VPLAN_RX_QBASE_VFNUMQ_M));
|
||||
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
|
||||
} else {
|
||||
dev_err(&pf->pdev->dev,
|
||||
"Scattered mode for VF Rx queues is not yet implemented\n");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_determine_res
|
||||
* @pf: pointer to the PF structure
|
||||
* @avail_res: available resources in the PF structure
|
||||
* @max_res: maximum resources that can be given per VF
|
||||
* @min_res: minimum resources that can be given per VF
|
||||
*
|
||||
* Returns non-zero value if resources (queues/vectors) are available or
|
||||
* returns zero if PF cannot accommodate for all num_alloc_vfs.
|
||||
*/
|
||||
static int
|
||||
ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res)
|
||||
{
|
||||
bool checked_min_res = false;
|
||||
int res;
|
||||
|
||||
/* start by checking if PF can assign max number of resources for
|
||||
* all num_alloc_vfs.
|
||||
* if yes, return number per VF
|
||||
* If no, divide by 2 and roundup, check again
|
||||
* repeat the loop till we reach a point where even minimum resources
|
||||
* are not available, in that case return 0
|
||||
*/
|
||||
res = max_res;
|
||||
while ((res >= min_res) && !checked_min_res) {
|
||||
int num_all_res;
|
||||
|
||||
num_all_res = pf->num_alloc_vfs * res;
|
||||
if (num_all_res <= avail_res)
|
||||
return res;
|
||||
|
||||
if (res == min_res)
|
||||
checked_min_res = true;
|
||||
|
||||
res = DIV_ROUND_UP(res, 2);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_check_avail_res - check if vectors and queues are available
|
||||
* @pf: pointer to the PF structure
|
||||
*
|
||||
* This function is where we calculate actual number of resources for VF VSIs,
|
||||
* we don't reserve ahead of time during probe. Returns success if vectors and
|
||||
* queues resources are available, otherwise returns error code
|
||||
*/
|
||||
static int ice_check_avail_res(struct ice_pf *pf)
|
||||
{
|
||||
u16 num_msix, num_txq, num_rxq;
|
||||
|
||||
if (!pf->num_alloc_vfs)
|
||||
return -EINVAL;
|
||||
|
||||
/* Grab from HW interrupts common pool
|
||||
* Note: By the time the user decides it needs more vectors in a VF
|
||||
* its already too late since one must decide this prior to creating the
|
||||
* VF interface. So the best we can do is take a guess as to what the
|
||||
* user might want.
|
||||
*
|
||||
* We have two policies for vector allocation:
|
||||
* 1. if num_alloc_vfs is from 1 to 16, then we consider this as small
|
||||
* number of NFV VFs used for NFV appliances, since this is a special
|
||||
* case, we try to assign maximum vectors per VF (65) as much as
|
||||
* possible, based on determine_resources algorithm.
|
||||
* 2. if num_alloc_vfs is from 17 to 256, then its large number of
|
||||
* regular VFs which are not used for any special purpose. Hence try to
|
||||
* grab default interrupt vectors (5 as supported by AVF driver).
|
||||
*/
|
||||
if (pf->num_alloc_vfs <= 16) {
|
||||
num_msix = ice_determine_res(pf, pf->num_avail_hw_msix,
|
||||
ICE_MAX_INTR_PER_VF,
|
||||
ICE_MIN_INTR_PER_VF);
|
||||
} else if (pf->num_alloc_vfs <= ICE_MAX_VF_COUNT) {
|
||||
num_msix = ice_determine_res(pf, pf->num_avail_hw_msix,
|
||||
ICE_DFLT_INTR_PER_VF,
|
||||
ICE_MIN_INTR_PER_VF);
|
||||
} else {
|
||||
dev_err(&pf->pdev->dev,
|
||||
"Number of VFs %d exceeds max VF count %d\n",
|
||||
pf->num_alloc_vfs, ICE_MAX_VF_COUNT);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
if (!num_msix)
|
||||
return -EIO;
|
||||
|
||||
/* Grab from the common pool
|
||||
* start by requesting Default queues (4 as supported by AVF driver),
|
||||
* Note that, the main difference between queues and vectors is, latter
|
||||
* can only be reserved at init time but queues can be requested by VF
|
||||
* at runtime through Virtchnl, that is the reason we start by reserving
|
||||
* few queues.
|
||||
*/
|
||||
num_txq = ice_determine_res(pf, pf->q_left_tx, ICE_DFLT_QS_PER_VF,
|
||||
ICE_MIN_QS_PER_VF);
|
||||
|
||||
num_rxq = ice_determine_res(pf, pf->q_left_rx, ICE_DFLT_QS_PER_VF,
|
||||
ICE_MIN_QS_PER_VF);
|
||||
|
||||
if (!num_txq || !num_rxq)
|
||||
return -EIO;
|
||||
|
||||
/* since AVF driver works with only queue pairs which means, it expects
|
||||
* to have equal number of Rx and Tx queues, so take the minimum of
|
||||
* available Tx or Rx queues
|
||||
*/
|
||||
pf->num_vf_qps = min_t(int, num_txq, num_rxq);
|
||||
pf->num_vf_msix = num_msix;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_cleanup_and_realloc_vf - Clean up VF and reallocate resources after reset
|
||||
* @vf: pointer to the VF structure
|
||||
*
|
||||
* Cleanup a VF after the hardware reset is finished. Expects the caller to
|
||||
* have verified whether the reset is finished properly, and ensure the
|
||||
* minimum amount of wait time has passed. Reallocate VF resources back to make
|
||||
* VF state active
|
||||
*/
|
||||
static void ice_cleanup_and_realloc_vf(struct ice_vf *vf)
|
||||
{
|
||||
struct ice_pf *pf = vf->pf;
|
||||
struct ice_hw *hw;
|
||||
u32 reg;
|
||||
|
||||
hw = &pf->hw;
|
||||
|
||||
/* PF software completes the flow by notifying VF that reset flow is
|
||||
* completed. This is done by enabling hardware by clearing the reset
|
||||
* bit in the VPGEN_VFRTRIG reg and setting VFR_STATE in the VFGEN_RSTAT
|
||||
* register to VFR completed (done at the end of this function)
|
||||
* By doing this we allow HW to access VF memory at any point. If we
|
||||
* did it any sooner, HW could access memory while it was being freed
|
||||
* in ice_free_vf_res(), causing an IOMMU fault.
|
||||
*
|
||||
* On the other hand, this needs to be done ASAP, because the VF driver
|
||||
* is waiting for this to happen and may report a timeout. It's
|
||||
* harmless, but it gets logged into Guest OS kernel log, so best avoid
|
||||
* it.
|
||||
*/
|
||||
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
|
||||
reg &= ~VPGEN_VFRTRIG_VFSWR_M;
|
||||
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
|
||||
|
||||
/* reallocate VF resources to finish resetting the VSI state */
|
||||
if (!ice_alloc_vf_res(vf)) {
|
||||
ice_ena_vf_mappings(vf);
|
||||
set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
|
||||
clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
|
||||
vf->num_vlan = 0;
|
||||
}
|
||||
|
||||
/* Tell the VF driver the reset is done. This needs to be done only
|
||||
* after VF has been fully initialized, because the VF driver may
|
||||
* request resources immediately after setting this flag.
|
||||
*/
|
||||
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_reset_all_vfs - reset all allocated VFs in one go
|
||||
* @pf: pointer to the PF structure
|
||||
* @is_vflr: true if VFLR was issued, false if not
|
||||
*
|
||||
* First, tell the hardware to reset each VF, then do all the waiting in one
|
||||
* chunk, and finally finish restoring each VF after the wait. This is useful
|
||||
* during PF routines which need to reset all VFs, as otherwise it must perform
|
||||
* these resets in a serialized fashion.
|
||||
*
|
||||
* Returns true if any VFs were reset, and false otherwise.
|
||||
*/
|
||||
bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
|
||||
{
|
||||
struct ice_hw *hw = &pf->hw;
|
||||
int v, i;
|
||||
|
||||
/* If we don't have any VFs, then there is nothing to reset */
|
||||
if (!pf->num_alloc_vfs)
|
||||
return false;
|
||||
|
||||
/* If VFs have been disabled, there is no need to reset */
|
||||
if (test_and_set_bit(__ICE_VF_DIS, pf->state))
|
||||
return false;
|
||||
|
||||
/* Begin reset on all VFs at once */
|
||||
for (v = 0; v < pf->num_alloc_vfs; v++)
|
||||
ice_trigger_vf_reset(&pf->vf[v], is_vflr);
|
||||
|
||||
/* Call Disable LAN Tx queue AQ call with VFR bit set and 0
|
||||
* queues to inform Firmware about VF reset.
|
||||
*/
|
||||
for (v = 0; v < pf->num_alloc_vfs; v++)
|
||||
ice_dis_vsi_txq(pf->vsi[0]->port_info, 0, NULL, NULL,
|
||||
ICE_VF_RESET, v, NULL);
|
||||
|
||||
/* HW requires some time to make sure it can flush the FIFO for a VF
|
||||
* when it resets it. Poll the VPGEN_VFRSTAT register for each VF in
|
||||
* sequence to make sure that it has completed. We'll keep track of
|
||||
* the VFs using a simple iterator that increments once that VF has
|
||||
* finished resetting.
|
||||
*/
|
||||
for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) {
|
||||
usleep_range(10000, 20000);
|
||||
|
||||
/* Check each VF in sequence */
|
||||
while (v < pf->num_alloc_vfs) {
|
||||
struct ice_vf *vf = &pf->vf[v];
|
||||
u32 reg;
|
||||
|
||||
reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
|
||||
if (!(reg & VPGEN_VFRSTAT_VFRD_M))
|
||||
break;
|
||||
|
||||
/* If the current VF has finished resetting, move on
|
||||
* to the next VF in sequence.
|
||||
*/
|
||||
v++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Display a warning if at least one VF didn't manage to reset in
|
||||
* time, but continue on with the operation.
|
||||
*/
|
||||
if (v < pf->num_alloc_vfs)
|
||||
dev_warn(&pf->pdev->dev, "VF reset check timeout\n");
|
||||
usleep_range(10000, 20000);
|
||||
|
||||
/* free VF resources to begin resetting the VSI state */
|
||||
for (v = 0; v < pf->num_alloc_vfs; v++)
|
||||
ice_free_vf_res(&pf->vf[v]);
|
||||
|
||||
if (ice_check_avail_res(pf)) {
|
||||
dev_err(&pf->pdev->dev,
|
||||
"Cannot allocate VF resources, try with fewer number of VFs\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Finish the reset on each VF */
|
||||
for (v = 0; v < pf->num_alloc_vfs; v++)
|
||||
ice_cleanup_and_realloc_vf(&pf->vf[v]);
|
||||
|
||||
ice_flush(hw);
|
||||
clear_bit(__ICE_VF_DIS, pf->state);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_alloc_vfs - Allocate and set up VFs resources
|
||||
* @pf: pointer to the PF structure
|
||||
* @num_alloc_vfs: number of VFs to allocate
|
||||
*/
|
||||
static int ice_alloc_vfs(struct ice_pf *pf, u16 num_alloc_vfs)
|
||||
{
|
||||
struct ice_hw *hw = &pf->hw;
|
||||
struct ice_vf *vfs;
|
||||
int i, ret;
|
||||
|
||||
/* Disable global interrupt 0 so we don't try to handle the VFLR. */
|
||||
wr32(hw, GLINT_DYN_CTL(pf->hw_oicr_idx),
|
||||
ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
|
||||
|
||||
ice_flush(hw);
|
||||
|
||||
ret = pci_enable_sriov(pf->pdev, num_alloc_vfs);
|
||||
if (ret) {
|
||||
pf->num_alloc_vfs = 0;
|
||||
goto err_unroll_intr;
|
||||
}
|
||||
/* allocate memory */
|
||||
vfs = devm_kcalloc(&pf->pdev->dev, num_alloc_vfs, sizeof(*vfs),
|
||||
GFP_KERNEL);
|
||||
if (!vfs) {
|
||||
ret = -ENOMEM;
|
||||
goto err_unroll_sriov;
|
||||
}
|
||||
pf->vf = vfs;
|
||||
|
||||
/* apply default profile */
|
||||
for (i = 0; i < num_alloc_vfs; i++) {
|
||||
vfs[i].pf = pf;
|
||||
vfs[i].vf_sw_id = pf->first_sw;
|
||||
vfs[i].vf_id = i;
|
||||
|
||||
/* assign default capabilities */
|
||||
set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vfs[i].vf_caps);
|
||||
vfs[i].spoofchk = true;
|
||||
|
||||
/* Set this state so that PF driver does VF vector assignment */
|
||||
set_bit(ICE_VF_STATE_CFG_INTR, vfs[i].vf_states);
|
||||
}
|
||||
pf->num_alloc_vfs = num_alloc_vfs;
|
||||
|
||||
/* VF resources get allocated during reset */
|
||||
if (!ice_reset_all_vfs(pf, false))
|
||||
goto err_unroll_sriov;
|
||||
|
||||
goto err_unroll_intr;
|
||||
|
||||
err_unroll_sriov:
|
||||
pci_disable_sriov(pf->pdev);
|
||||
err_unroll_intr:
|
||||
/* rearm interrupts here */
|
||||
ice_irq_dynamic_ena(hw, NULL, NULL);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_pf_state_is_nominal - checks the pf for nominal state
|
||||
* @pf: pointer to pf to check
|
||||
*
|
||||
* Check the PF's state for a collection of bits that would indicate
|
||||
* the PF is in a state that would inhibit normal operation for
|
||||
* driver functionality.
|
||||
*
|
||||
* Returns true if PF is in a nominal state.
|
||||
* Returns false otherwise
|
||||
*/
|
||||
static bool ice_pf_state_is_nominal(struct ice_pf *pf)
|
||||
{
|
||||
DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 };
|
||||
|
||||
if (!pf)
|
||||
return false;
|
||||
|
||||
bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS);
|
||||
if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_pci_sriov_ena - Enable or change number of VFs
|
||||
* @pf: pointer to the PF structure
|
||||
* @num_vfs: number of VFs to allocate
|
||||
*/
|
||||
static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
|
||||
{
|
||||
int pre_existing_vfs = pci_num_vf(pf->pdev);
|
||||
struct device *dev = &pf->pdev->dev;
|
||||
int err;
|
||||
|
||||
if (!ice_pf_state_is_nominal(pf)) {
|
||||
dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
|
||||
dev_err(dev, "This device is not capable of SR-IOV\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
if (pre_existing_vfs && pre_existing_vfs != num_vfs)
|
||||
ice_free_vfs(pf);
|
||||
else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
|
||||
return num_vfs;
|
||||
|
||||
if (num_vfs > pf->num_vfs_supported) {
|
||||
dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
|
||||
num_vfs, pf->num_vfs_supported);
|
||||
return -ENOTSUPP;
|
||||
}
|
||||
|
||||
dev_info(dev, "Allocating %d VFs\n", num_vfs);
|
||||
err = ice_alloc_vfs(pf, num_vfs);
|
||||
if (err) {
|
||||
dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
|
||||
return err;
|
||||
}
|
||||
|
||||
set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
|
||||
return num_vfs;
|
||||
}
|
||||
|
||||
/**
|
||||
* ice_sriov_configure - Enable or change number of VFs via sysfs
|
||||
* @pdev: pointer to a pci_dev structure
|
||||
* @num_vfs: number of VFs to allocate
|
||||
*
|
||||
* This function is called when the user updates the number of VFs in sysfs.
|
||||
*/
|
||||
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
|
||||
{
|
||||
struct ice_pf *pf = pci_get_drvdata(pdev);
|
||||
|
||||
if (num_vfs)
|
||||
return ice_pci_sriov_ena(pf, num_vfs);
|
||||
|
||||
if (!pci_vfs_assigned(pdev)) {
|
||||
ice_free_vfs(pf);
|
||||
} else {
|
||||
dev_err(&pf->pdev->dev,
|
||||
"can't free VFs because some are assigned to VMs.\n");
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
74
drivers/net/ethernet/intel/ice/ice_virtchnl_pf.h
Normal file
74
drivers/net/ethernet/intel/ice/ice_virtchnl_pf.h
Normal file
@ -0,0 +1,74 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
/* Copyright (c) 2018, Intel Corporation. */
|
||||
|
||||
#ifndef _ICE_VIRTCHNL_PF_H_
|
||||
#define _ICE_VIRTCHNL_PF_H_
|
||||
#include "ice.h"
|
||||
|
||||
/* Static VF transaction/status register def */
|
||||
#define VF_DEVICE_STATUS 0xAA
|
||||
#define VF_TRANS_PENDING_M 0x20
|
||||
|
||||
/* Specific VF states */
|
||||
enum ice_vf_states {
|
||||
ICE_VF_STATE_INIT = 0,
|
||||
ICE_VF_STATE_ACTIVE,
|
||||
ICE_VF_STATE_ENA,
|
||||
ICE_VF_STATE_DIS,
|
||||
ICE_VF_STATE_MC_PROMISC,
|
||||
ICE_VF_STATE_UC_PROMISC,
|
||||
/* state to indicate if PF needs to do vector assignment for VF.
|
||||
* This needs to be set during first time VF initialization or later
|
||||
* when VF asks for more Vectors through virtchnl OP.
|
||||
*/
|
||||
ICE_VF_STATE_CFG_INTR,
|
||||
ICE_VF_STATES_NBITS
|
||||
};
|
||||
|
||||
/* VF capabilities */
|
||||
enum ice_virtchnl_cap {
|
||||
ICE_VIRTCHNL_VF_CAP_L2 = 0,
|
||||
ICE_VIRTCHNL_VF_CAP_PRIVILEGE,
|
||||
};
|
||||
|
||||
/* VF information structure */
|
||||
struct ice_vf {
|
||||
struct ice_pf *pf;
|
||||
|
||||
s16 vf_id; /* VF id in the PF space */
|
||||
int first_vector_idx; /* first vector index of this VF */
|
||||
struct ice_sw *vf_sw_id; /* switch id the VF VSIs connect to */
|
||||
struct virtchnl_ether_addr dflt_lan_addr;
|
||||
u16 port_vlan_id;
|
||||
u8 trusted;
|
||||
u16 lan_vsi_idx; /* index into PF struct */
|
||||
u16 lan_vsi_num; /* ID as used by firmware */
|
||||
unsigned long vf_caps; /* vf's adv. capabilities */
|
||||
DECLARE_BITMAP(vf_states, ICE_VF_STATES_NBITS); /* VF runtime states */
|
||||
u8 spoofchk;
|
||||
u16 num_mac;
|
||||
u16 num_vlan;
|
||||
};
|
||||
|
||||
#ifdef CONFIG_PCI_IOV
|
||||
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs);
|
||||
void ice_free_vfs(struct ice_pf *pf);
|
||||
bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr);
|
||||
#else /* CONFIG_PCI_IOV */
|
||||
#define ice_free_vfs(pf) do {} while (0)
|
||||
|
||||
static inline bool
|
||||
ice_reset_all_vfs(struct ice_pf __always_unused *pf,
|
||||
bool __always_unused is_vflr)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline int
|
||||
ice_sriov_configure(struct pci_dev __always_unused *pdev,
|
||||
int __always_unused num_vfs)
|
||||
{
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
#endif /* CONFIG_PCI_IOV */
|
||||
#endif /* _ICE_VIRTCHNL_PF_H_ */
|
Loading…
Reference in New Issue
Block a user