mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 13:51:00 +07:00
Merge branch 'slab/next' into for-linus
This commit is contained in:
commit
c53badd080
@ -105,7 +105,6 @@ void kmem_cache_destroy(struct kmem_cache *);
|
||||
int kmem_cache_shrink(struct kmem_cache *);
|
||||
void kmem_cache_free(struct kmem_cache *, void *);
|
||||
unsigned int kmem_cache_size(struct kmem_cache *);
|
||||
const char *kmem_cache_name(struct kmem_cache *);
|
||||
|
||||
/*
|
||||
* Please use this macro to create slab caches. Simply specify the
|
||||
|
@ -83,6 +83,7 @@ struct kmem_cache {
|
||||
void (*ctor)(void *);
|
||||
int inuse; /* Offset to metadata */
|
||||
int align; /* Alignment */
|
||||
int reserved; /* Reserved bytes at the end of slabs */
|
||||
unsigned long min_partial;
|
||||
const char *name; /* Name (only for display!) */
|
||||
struct list_head list; /* List of slab caches */
|
||||
|
55
mm/slab.c
55
mm/slab.c
@ -190,22 +190,6 @@ typedef unsigned int kmem_bufctl_t;
|
||||
#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
|
||||
#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
|
||||
|
||||
/*
|
||||
* struct slab
|
||||
*
|
||||
* Manages the objs in a slab. Placed either at the beginning of mem allocated
|
||||
* for a slab, or allocated from an general cache.
|
||||
* Slabs are chained into three list: fully used, partial, fully free slabs.
|
||||
*/
|
||||
struct slab {
|
||||
struct list_head list;
|
||||
unsigned long colouroff;
|
||||
void *s_mem; /* including colour offset */
|
||||
unsigned int inuse; /* num of objs active in slab */
|
||||
kmem_bufctl_t free;
|
||||
unsigned short nodeid;
|
||||
};
|
||||
|
||||
/*
|
||||
* struct slab_rcu
|
||||
*
|
||||
@ -219,8 +203,6 @@ struct slab {
|
||||
*
|
||||
* rcu_read_lock before reading the address, then rcu_read_unlock after
|
||||
* taking the spinlock within the structure expected at that address.
|
||||
*
|
||||
* We assume struct slab_rcu can overlay struct slab when destroying.
|
||||
*/
|
||||
struct slab_rcu {
|
||||
struct rcu_head head;
|
||||
@ -228,6 +210,27 @@ struct slab_rcu {
|
||||
void *addr;
|
||||
};
|
||||
|
||||
/*
|
||||
* struct slab
|
||||
*
|
||||
* Manages the objs in a slab. Placed either at the beginning of mem allocated
|
||||
* for a slab, or allocated from an general cache.
|
||||
* Slabs are chained into three list: fully used, partial, fully free slabs.
|
||||
*/
|
||||
struct slab {
|
||||
union {
|
||||
struct {
|
||||
struct list_head list;
|
||||
unsigned long colouroff;
|
||||
void *s_mem; /* including colour offset */
|
||||
unsigned int inuse; /* num of objs active in slab */
|
||||
kmem_bufctl_t free;
|
||||
unsigned short nodeid;
|
||||
};
|
||||
struct slab_rcu __slab_cover_slab_rcu;
|
||||
};
|
||||
};
|
||||
|
||||
/*
|
||||
* struct array_cache
|
||||
*
|
||||
@ -2147,8 +2150,6 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
|
||||
*
|
||||
* @name must be valid until the cache is destroyed. This implies that
|
||||
* the module calling this has to destroy the cache before getting unloaded.
|
||||
* Note that kmem_cache_name() is not guaranteed to return the same pointer,
|
||||
* therefore applications must manage it themselves.
|
||||
*
|
||||
* The flags are
|
||||
*
|
||||
@ -2288,8 +2289,8 @@ kmem_cache_create (const char *name, size_t size, size_t align,
|
||||
if (ralign < align) {
|
||||
ralign = align;
|
||||
}
|
||||
/* disable debug if not aligning with REDZONE_ALIGN */
|
||||
if (ralign & (__alignof__(unsigned long long) - 1))
|
||||
/* disable debug if necessary */
|
||||
if (ralign > __alignof__(unsigned long long))
|
||||
flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
|
||||
/*
|
||||
* 4) Store it.
|
||||
@ -2315,8 +2316,8 @@ kmem_cache_create (const char *name, size_t size, size_t align,
|
||||
*/
|
||||
if (flags & SLAB_RED_ZONE) {
|
||||
/* add space for red zone words */
|
||||
cachep->obj_offset += align;
|
||||
size += align + sizeof(unsigned long long);
|
||||
cachep->obj_offset += sizeof(unsigned long long);
|
||||
size += 2 * sizeof(unsigned long long);
|
||||
}
|
||||
if (flags & SLAB_STORE_USER) {
|
||||
/* user store requires one word storage behind the end of
|
||||
@ -3840,12 +3841,6 @@ unsigned int kmem_cache_size(struct kmem_cache *cachep)
|
||||
}
|
||||
EXPORT_SYMBOL(kmem_cache_size);
|
||||
|
||||
const char *kmem_cache_name(struct kmem_cache *cachep)
|
||||
{
|
||||
return cachep->name;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(kmem_cache_name);
|
||||
|
||||
/*
|
||||
* This initializes kmem_list3 or resizes various caches for all nodes.
|
||||
*/
|
||||
|
@ -666,12 +666,6 @@ unsigned int kmem_cache_size(struct kmem_cache *c)
|
||||
}
|
||||
EXPORT_SYMBOL(kmem_cache_size);
|
||||
|
||||
const char *kmem_cache_name(struct kmem_cache *c)
|
||||
{
|
||||
return c->name;
|
||||
}
|
||||
EXPORT_SYMBOL(kmem_cache_name);
|
||||
|
||||
int kmem_cache_shrink(struct kmem_cache *d)
|
||||
{
|
||||
return 0;
|
||||
|
132
mm/slub.c
132
mm/slub.c
@ -281,11 +281,40 @@ static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
|
||||
return (p - addr) / s->size;
|
||||
}
|
||||
|
||||
static inline size_t slab_ksize(const struct kmem_cache *s)
|
||||
{
|
||||
#ifdef CONFIG_SLUB_DEBUG
|
||||
/*
|
||||
* Debugging requires use of the padding between object
|
||||
* and whatever may come after it.
|
||||
*/
|
||||
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
|
||||
return s->objsize;
|
||||
|
||||
#endif
|
||||
/*
|
||||
* If we have the need to store the freelist pointer
|
||||
* back there or track user information then we can
|
||||
* only use the space before that information.
|
||||
*/
|
||||
if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
|
||||
return s->inuse;
|
||||
/*
|
||||
* Else we can use all the padding etc for the allocation
|
||||
*/
|
||||
return s->size;
|
||||
}
|
||||
|
||||
static inline int order_objects(int order, unsigned long size, int reserved)
|
||||
{
|
||||
return ((PAGE_SIZE << order) - reserved) / size;
|
||||
}
|
||||
|
||||
static inline struct kmem_cache_order_objects oo_make(int order,
|
||||
unsigned long size)
|
||||
unsigned long size, int reserved)
|
||||
{
|
||||
struct kmem_cache_order_objects x = {
|
||||
(order << OO_SHIFT) + (PAGE_SIZE << order) / size
|
||||
(order << OO_SHIFT) + order_objects(order, size, reserved)
|
||||
};
|
||||
|
||||
return x;
|
||||
@ -617,7 +646,7 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page)
|
||||
return 1;
|
||||
|
||||
start = page_address(page);
|
||||
length = (PAGE_SIZE << compound_order(page));
|
||||
length = (PAGE_SIZE << compound_order(page)) - s->reserved;
|
||||
end = start + length;
|
||||
remainder = length % s->size;
|
||||
if (!remainder)
|
||||
@ -698,7 +727,7 @@ static int check_slab(struct kmem_cache *s, struct page *page)
|
||||
return 0;
|
||||
}
|
||||
|
||||
maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
|
||||
maxobj = order_objects(compound_order(page), s->size, s->reserved);
|
||||
if (page->objects > maxobj) {
|
||||
slab_err(s, page, "objects %u > max %u",
|
||||
s->name, page->objects, maxobj);
|
||||
@ -748,7 +777,7 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
|
||||
nr++;
|
||||
}
|
||||
|
||||
max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
|
||||
max_objects = order_objects(compound_order(page), s->size, s->reserved);
|
||||
if (max_objects > MAX_OBJS_PER_PAGE)
|
||||
max_objects = MAX_OBJS_PER_PAGE;
|
||||
|
||||
@ -800,7 +829,7 @@ static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
|
||||
static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
|
||||
{
|
||||
flags &= gfp_allowed_mask;
|
||||
kmemcheck_slab_alloc(s, flags, object, s->objsize);
|
||||
kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
|
||||
kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
|
||||
}
|
||||
|
||||
@ -1249,21 +1278,38 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
|
||||
__free_pages(page, order);
|
||||
}
|
||||
|
||||
#define need_reserve_slab_rcu \
|
||||
(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
|
||||
|
||||
static void rcu_free_slab(struct rcu_head *h)
|
||||
{
|
||||
struct page *page;
|
||||
|
||||
page = container_of((struct list_head *)h, struct page, lru);
|
||||
if (need_reserve_slab_rcu)
|
||||
page = virt_to_head_page(h);
|
||||
else
|
||||
page = container_of((struct list_head *)h, struct page, lru);
|
||||
|
||||
__free_slab(page->slab, page);
|
||||
}
|
||||
|
||||
static void free_slab(struct kmem_cache *s, struct page *page)
|
||||
{
|
||||
if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
|
||||
/*
|
||||
* RCU free overloads the RCU head over the LRU
|
||||
*/
|
||||
struct rcu_head *head = (void *)&page->lru;
|
||||
struct rcu_head *head;
|
||||
|
||||
if (need_reserve_slab_rcu) {
|
||||
int order = compound_order(page);
|
||||
int offset = (PAGE_SIZE << order) - s->reserved;
|
||||
|
||||
VM_BUG_ON(s->reserved != sizeof(*head));
|
||||
head = page_address(page) + offset;
|
||||
} else {
|
||||
/*
|
||||
* RCU free overloads the RCU head over the LRU
|
||||
*/
|
||||
head = (void *)&page->lru;
|
||||
}
|
||||
|
||||
call_rcu(head, rcu_free_slab);
|
||||
} else
|
||||
@ -1988,13 +2034,13 @@ static int slub_nomerge;
|
||||
* the smallest order which will fit the object.
|
||||
*/
|
||||
static inline int slab_order(int size, int min_objects,
|
||||
int max_order, int fract_leftover)
|
||||
int max_order, int fract_leftover, int reserved)
|
||||
{
|
||||
int order;
|
||||
int rem;
|
||||
int min_order = slub_min_order;
|
||||
|
||||
if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
|
||||
if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
|
||||
return get_order(size * MAX_OBJS_PER_PAGE) - 1;
|
||||
|
||||
for (order = max(min_order,
|
||||
@ -2003,10 +2049,10 @@ static inline int slab_order(int size, int min_objects,
|
||||
|
||||
unsigned long slab_size = PAGE_SIZE << order;
|
||||
|
||||
if (slab_size < min_objects * size)
|
||||
if (slab_size < min_objects * size + reserved)
|
||||
continue;
|
||||
|
||||
rem = slab_size % size;
|
||||
rem = (slab_size - reserved) % size;
|
||||
|
||||
if (rem <= slab_size / fract_leftover)
|
||||
break;
|
||||
@ -2016,7 +2062,7 @@ static inline int slab_order(int size, int min_objects,
|
||||
return order;
|
||||
}
|
||||
|
||||
static inline int calculate_order(int size)
|
||||
static inline int calculate_order(int size, int reserved)
|
||||
{
|
||||
int order;
|
||||
int min_objects;
|
||||
@ -2034,14 +2080,14 @@ static inline int calculate_order(int size)
|
||||
min_objects = slub_min_objects;
|
||||
if (!min_objects)
|
||||
min_objects = 4 * (fls(nr_cpu_ids) + 1);
|
||||
max_objects = (PAGE_SIZE << slub_max_order)/size;
|
||||
max_objects = order_objects(slub_max_order, size, reserved);
|
||||
min_objects = min(min_objects, max_objects);
|
||||
|
||||
while (min_objects > 1) {
|
||||
fraction = 16;
|
||||
while (fraction >= 4) {
|
||||
order = slab_order(size, min_objects,
|
||||
slub_max_order, fraction);
|
||||
slub_max_order, fraction, reserved);
|
||||
if (order <= slub_max_order)
|
||||
return order;
|
||||
fraction /= 2;
|
||||
@ -2053,14 +2099,14 @@ static inline int calculate_order(int size)
|
||||
* We were unable to place multiple objects in a slab. Now
|
||||
* lets see if we can place a single object there.
|
||||
*/
|
||||
order = slab_order(size, 1, slub_max_order, 1);
|
||||
order = slab_order(size, 1, slub_max_order, 1, reserved);
|
||||
if (order <= slub_max_order)
|
||||
return order;
|
||||
|
||||
/*
|
||||
* Doh this slab cannot be placed using slub_max_order.
|
||||
*/
|
||||
order = slab_order(size, 1, MAX_ORDER, 1);
|
||||
order = slab_order(size, 1, MAX_ORDER, 1, reserved);
|
||||
if (order < MAX_ORDER)
|
||||
return order;
|
||||
return -ENOSYS;
|
||||
@ -2311,7 +2357,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
|
||||
if (forced_order >= 0)
|
||||
order = forced_order;
|
||||
else
|
||||
order = calculate_order(size);
|
||||
order = calculate_order(size, s->reserved);
|
||||
|
||||
if (order < 0)
|
||||
return 0;
|
||||
@ -2329,8 +2375,8 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
|
||||
/*
|
||||
* Determine the number of objects per slab
|
||||
*/
|
||||
s->oo = oo_make(order, size);
|
||||
s->min = oo_make(get_order(size), size);
|
||||
s->oo = oo_make(order, size, s->reserved);
|
||||
s->min = oo_make(get_order(size), size, s->reserved);
|
||||
if (oo_objects(s->oo) > oo_objects(s->max))
|
||||
s->max = s->oo;
|
||||
|
||||
@ -2349,6 +2395,10 @@ static int kmem_cache_open(struct kmem_cache *s,
|
||||
s->objsize = size;
|
||||
s->align = align;
|
||||
s->flags = kmem_cache_flags(size, flags, name, ctor);
|
||||
s->reserved = 0;
|
||||
|
||||
if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
|
||||
s->reserved = sizeof(struct rcu_head);
|
||||
|
||||
if (!calculate_sizes(s, -1))
|
||||
goto error;
|
||||
@ -2399,12 +2449,6 @@ unsigned int kmem_cache_size(struct kmem_cache *s)
|
||||
}
|
||||
EXPORT_SYMBOL(kmem_cache_size);
|
||||
|
||||
const char *kmem_cache_name(struct kmem_cache *s)
|
||||
{
|
||||
return s->name;
|
||||
}
|
||||
EXPORT_SYMBOL(kmem_cache_name);
|
||||
|
||||
static void list_slab_objects(struct kmem_cache *s, struct page *page,
|
||||
const char *text)
|
||||
{
|
||||
@ -2696,7 +2740,6 @@ EXPORT_SYMBOL(__kmalloc_node);
|
||||
size_t ksize(const void *object)
|
||||
{
|
||||
struct page *page;
|
||||
struct kmem_cache *s;
|
||||
|
||||
if (unlikely(object == ZERO_SIZE_PTR))
|
||||
return 0;
|
||||
@ -2707,28 +2750,8 @@ size_t ksize(const void *object)
|
||||
WARN_ON(!PageCompound(page));
|
||||
return PAGE_SIZE << compound_order(page);
|
||||
}
|
||||
s = page->slab;
|
||||
|
||||
#ifdef CONFIG_SLUB_DEBUG
|
||||
/*
|
||||
* Debugging requires use of the padding between object
|
||||
* and whatever may come after it.
|
||||
*/
|
||||
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
|
||||
return s->objsize;
|
||||
|
||||
#endif
|
||||
/*
|
||||
* If we have the need to store the freelist pointer
|
||||
* back there or track user information then we can
|
||||
* only use the space before that information.
|
||||
*/
|
||||
if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
|
||||
return s->inuse;
|
||||
/*
|
||||
* Else we can use all the padding etc for the allocation
|
||||
*/
|
||||
return s->size;
|
||||
return slab_ksize(page->slab);
|
||||
}
|
||||
EXPORT_SYMBOL(ksize);
|
||||
|
||||
@ -4017,6 +4040,12 @@ static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
|
||||
}
|
||||
SLAB_ATTR_RO(destroy_by_rcu);
|
||||
|
||||
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
return sprintf(buf, "%d\n", s->reserved);
|
||||
}
|
||||
SLAB_ATTR_RO(reserved);
|
||||
|
||||
#ifdef CONFIG_SLUB_DEBUG
|
||||
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
|
||||
{
|
||||
@ -4303,6 +4332,7 @@ static struct attribute *slab_attrs[] = {
|
||||
&reclaim_account_attr.attr,
|
||||
&destroy_by_rcu_attr.attr,
|
||||
&shrink_attr.attr,
|
||||
&reserved_attr.attr,
|
||||
#ifdef CONFIG_SLUB_DEBUG
|
||||
&total_objects_attr.attr,
|
||||
&slabs_attr.attr,
|
||||
|
Loading…
Reference in New Issue
Block a user