mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-26 18:10:51 +07:00
[DCCP] ccid3: Simplify calculation for reverse lookup of p
This simplifies the calculation of a value p for a given fval when the first loss interval is computed (RFC 3448, 6.3.1). It makes use of the two new functions scaled_div/scaled_div32 to provide overflow protection. Additionally, protection against divide-by-zero is extended - in this case the function will return the maximally possible value of p=100%. Background: The maximum fval, f(100%), is approximately 244, i.e. the scaled value of fval should never exceed 244E6, which fits easily into u32. The problem is the scaling by 10^6, since additionally R(TT) is in microseconds. This is resolved by breaking the division into two stages: the first stage computes fval=(s*10^6)/R, stores that into u64; the second stage computes fval = (fval*10^6)/X_recv and complains if overflow is reached for u32. This case is safe since the TFRC reverse-lookup routine then returns p=100%. Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk> Acked-by: Ian McDonald <ian.mcdonald@jandi.co.nz> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
This commit is contained in:
parent
b9039a2a8d
commit
bfe24a6cc2
@ -785,12 +785,12 @@ static u32 ccid3_hc_rx_calc_first_li(struct sock *sk)
|
||||
{
|
||||
struct ccid3_hc_rx_sock *hcrx = ccid3_hc_rx_sk(sk);
|
||||
struct dccp_rx_hist_entry *entry, *next, *tail = NULL;
|
||||
u32 rtt, delta, x_recv, fval, p, tmp2;
|
||||
u32 rtt, delta, x_recv, p;
|
||||
struct timeval tstamp = { 0, };
|
||||
int interval = 0;
|
||||
int win_count = 0;
|
||||
int step = 0;
|
||||
u64 tmp1;
|
||||
u64 fval;
|
||||
|
||||
list_for_each_entry_safe(entry, next, &hcrx->ccid3hcrx_hist,
|
||||
dccphrx_node) {
|
||||
@ -834,30 +834,35 @@ static u32 ccid3_hc_rx_calc_first_li(struct sock *sk)
|
||||
ccid3_pr_debug("%s, sk=%p, approximated RTT to %uus\n",
|
||||
dccp_role(sk), sk, rtt);
|
||||
|
||||
if (rtt == 0) {
|
||||
DCCP_WARN("RTT==0, setting to 1\n");
|
||||
rtt = 1;
|
||||
/*
|
||||
* Determine the length of the first loss interval via inverse lookup.
|
||||
* Assume that X_recv can be computed by the throughput equation
|
||||
* s
|
||||
* X_recv = --------
|
||||
* R * fval
|
||||
* Find some p such that f(p) = fval; return 1/p [RFC 3448, 6.3.1].
|
||||
*/
|
||||
if (rtt == 0) { /* would result in divide-by-zero */
|
||||
DCCP_WARN("RTT==0, returning 1/p = 1\n");
|
||||
return 1000000;
|
||||
}
|
||||
|
||||
dccp_timestamp(sk, &tstamp);
|
||||
delta = timeval_delta(&tstamp, &hcrx->ccid3hcrx_tstamp_last_feedback);
|
||||
x_recv = scaled_div32(hcrx->ccid3hcrx_bytes_recv, delta);
|
||||
|
||||
if (x_recv == 0)
|
||||
x_recv = hcrx->ccid3hcrx_x_recv;
|
||||
|
||||
tmp1 = (u64)x_recv * (u64)rtt;
|
||||
do_div(tmp1,10000000);
|
||||
tmp2 = (u32)tmp1;
|
||||
|
||||
if (!tmp2) {
|
||||
DCCP_CRIT("tmp2 = 0, x_recv = %u, rtt =%u\n", x_recv, rtt);
|
||||
return ~0;
|
||||
if (x_recv == 0) { /* would also trigger divide-by-zero */
|
||||
DCCP_WARN("X_recv==0\n");
|
||||
if ((x_recv = hcrx->ccid3hcrx_x_recv) == 0) {
|
||||
DCCP_BUG("stored value of X_recv is zero");
|
||||
return 1000000;
|
||||
}
|
||||
}
|
||||
|
||||
fval = (hcrx->ccid3hcrx_s * 100000) / tmp2;
|
||||
/* do not alter order above or you will get overflow on 32 bit */
|
||||
fval = scaled_div(hcrx->ccid3hcrx_s, rtt);
|
||||
fval = scaled_div32(fval, x_recv);
|
||||
p = tfrc_calc_x_reverse_lookup(fval);
|
||||
|
||||
ccid3_pr_debug("%s, sk=%p, receive rate=%u bytes/s, implied "
|
||||
"loss rate=%u\n", dccp_role(sk), sk, x_recv, p);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user