fsldma: Add DMA_SLAVE support

Use the DMA_SLAVE capability of the DMAEngine API to copy/from a
scatterlist into an arbitrary list of hardware address/length pairs.

This allows a single DMA transaction to copy data from several different
devices into a scatterlist at the same time.

This also adds support to enable some controller-specific features such as
external start and external pause for a DMA transaction.

[dan.j.williams@intel.com: rebased on tx_list movement]
Signed-off-by: Ira W. Snyder <iws@ovro.caltech.edu>
Acked-by: Li Yang <leoli@freescale.com>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This commit is contained in:
Ira Snyder 2009-09-08 17:53:04 -07:00 committed by Dan Williams
parent e6c7ecb64e
commit bbea0b6e0d
2 changed files with 363 additions and 0 deletions

View File

@ -0,0 +1,136 @@
/*
* Freescale MPC83XX / MPC85XX DMA Controller
*
* Copyright (c) 2009 Ira W. Snyder <iws@ovro.caltech.edu>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#ifndef __ARCH_POWERPC_ASM_FSLDMA_H__
#define __ARCH_POWERPC_ASM_FSLDMA_H__
#include <linux/dmaengine.h>
/*
* Definitions for the Freescale DMA controller's DMA_SLAVE implemention
*
* The Freescale DMA_SLAVE implementation was designed to handle many-to-many
* transfers. An example usage would be an accelerated copy between two
* scatterlists. Another example use would be an accelerated copy from
* multiple non-contiguous device buffers into a single scatterlist.
*
* A DMA_SLAVE transaction is defined by a struct fsl_dma_slave. This
* structure contains a list of hardware addresses that should be copied
* to/from the scatterlist passed into device_prep_slave_sg(). The structure
* also has some fields to enable hardware-specific features.
*/
/**
* struct fsl_dma_hw_addr
* @entry: linked list entry
* @address: the hardware address
* @length: length to transfer
*
* Holds a single physical hardware address / length pair for use
* with the DMAEngine DMA_SLAVE API.
*/
struct fsl_dma_hw_addr {
struct list_head entry;
dma_addr_t address;
size_t length;
};
/**
* struct fsl_dma_slave
* @addresses: a linked list of struct fsl_dma_hw_addr structures
* @request_count: value for DMA request count
* @src_loop_size: setup and enable constant source-address DMA transfers
* @dst_loop_size: setup and enable constant destination address DMA transfers
* @external_start: enable externally started DMA transfers
* @external_pause: enable externally paused DMA transfers
*
* Holds a list of address / length pairs for use with the DMAEngine
* DMA_SLAVE API implementation for the Freescale DMA controller.
*/
struct fsl_dma_slave {
/* List of hardware address/length pairs */
struct list_head addresses;
/* Support for extra controller features */
unsigned int request_count;
unsigned int src_loop_size;
unsigned int dst_loop_size;
bool external_start;
bool external_pause;
};
/**
* fsl_dma_slave_append - add an address/length pair to a struct fsl_dma_slave
* @slave: the &struct fsl_dma_slave to add to
* @address: the hardware address to add
* @length: the length of bytes to transfer from @address
*
* Add a hardware address/length pair to a struct fsl_dma_slave. Returns 0 on
* success, -ERRNO otherwise.
*/
static inline int fsl_dma_slave_append(struct fsl_dma_slave *slave,
dma_addr_t address, size_t length)
{
struct fsl_dma_hw_addr *addr;
addr = kzalloc(sizeof(*addr), GFP_ATOMIC);
if (!addr)
return -ENOMEM;
INIT_LIST_HEAD(&addr->entry);
addr->address = address;
addr->length = length;
list_add_tail(&addr->entry, &slave->addresses);
return 0;
}
/**
* fsl_dma_slave_free - free a struct fsl_dma_slave
* @slave: the struct fsl_dma_slave to free
*
* Free a struct fsl_dma_slave and all associated address/length pairs
*/
static inline void fsl_dma_slave_free(struct fsl_dma_slave *slave)
{
struct fsl_dma_hw_addr *addr, *tmp;
if (slave) {
list_for_each_entry_safe(addr, tmp, &slave->addresses, entry) {
list_del(&addr->entry);
kfree(addr);
}
kfree(slave);
}
}
/**
* fsl_dma_slave_alloc - allocate a struct fsl_dma_slave
* @gfp: the flags to pass to kmalloc when allocating this structure
*
* Allocate a struct fsl_dma_slave for use by the DMA_SLAVE API. Returns a new
* struct fsl_dma_slave on success, or NULL on failure.
*/
static inline struct fsl_dma_slave *fsl_dma_slave_alloc(gfp_t gfp)
{
struct fsl_dma_slave *slave;
slave = kzalloc(sizeof(*slave), gfp);
if (!slave)
return NULL;
INIT_LIST_HEAD(&slave->addresses);
return slave;
}
#endif /* __ARCH_POWERPC_ASM_FSLDMA_H__ */

View File

@ -34,6 +34,7 @@
#include <linux/dmapool.h>
#include <linux/of_platform.h>
#include <asm/fsldma.h>
#include "fsldma.h"
static void dma_init(struct fsl_dma_chan *fsl_chan)
@ -551,6 +552,229 @@ static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
return NULL;
}
/**
* fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
* @chan: DMA channel
* @sgl: scatterlist to transfer to/from
* @sg_len: number of entries in @scatterlist
* @direction: DMA direction
* @flags: DMAEngine flags
*
* Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
* DMA_SLAVE API, this gets the device-specific information from the
* chan->private variable.
*/
static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
enum dma_data_direction direction, unsigned long flags)
{
struct fsl_dma_chan *fsl_chan;
struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
struct fsl_dma_slave *slave;
struct list_head *tx_list;
size_t copy;
int i;
struct scatterlist *sg;
size_t sg_used;
size_t hw_used;
struct fsl_dma_hw_addr *hw;
dma_addr_t dma_dst, dma_src;
if (!chan)
return NULL;
if (!chan->private)
return NULL;
fsl_chan = to_fsl_chan(chan);
slave = chan->private;
if (list_empty(&slave->addresses))
return NULL;
hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry);
hw_used = 0;
/*
* Build the hardware transaction to copy from the scatterlist to
* the hardware, or from the hardware to the scatterlist
*
* If you are copying from the hardware to the scatterlist and it
* takes two hardware entries to fill an entire page, then both
* hardware entries will be coalesced into the same page
*
* If you are copying from the scatterlist to the hardware and a
* single page can fill two hardware entries, then the data will
* be read out of the page into the first hardware entry, and so on
*/
for_each_sg(sgl, sg, sg_len, i) {
sg_used = 0;
/* Loop until the entire scatterlist entry is used */
while (sg_used < sg_dma_len(sg)) {
/*
* If we've used up the current hardware address/length
* pair, we need to load a new one
*
* This is done in a while loop so that descriptors with
* length == 0 will be skipped
*/
while (hw_used >= hw->length) {
/*
* If the current hardware entry is the last
* entry in the list, we're finished
*/
if (list_is_last(&hw->entry, &slave->addresses))
goto finished;
/* Get the next hardware address/length pair */
hw = list_entry(hw->entry.next,
struct fsl_dma_hw_addr, entry);
hw_used = 0;
}
/* Allocate the link descriptor from DMA pool */
new = fsl_dma_alloc_descriptor(fsl_chan);
if (!new) {
dev_err(fsl_chan->dev, "No free memory for "
"link descriptor\n");
goto fail;
}
#ifdef FSL_DMA_LD_DEBUG
dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
#endif
/*
* Calculate the maximum number of bytes to transfer,
* making sure it is less than the DMA controller limit
*/
copy = min_t(size_t, sg_dma_len(sg) - sg_used,
hw->length - hw_used);
copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT);
/*
* DMA_FROM_DEVICE
* from the hardware to the scatterlist
*
* DMA_TO_DEVICE
* from the scatterlist to the hardware
*/
if (direction == DMA_FROM_DEVICE) {
dma_src = hw->address + hw_used;
dma_dst = sg_dma_address(sg) + sg_used;
} else {
dma_src = sg_dma_address(sg) + sg_used;
dma_dst = hw->address + hw_used;
}
/* Fill in the descriptor */
set_desc_cnt(fsl_chan, &new->hw, copy);
set_desc_src(fsl_chan, &new->hw, dma_src);
set_desc_dest(fsl_chan, &new->hw, dma_dst);
/*
* If this is not the first descriptor, chain the
* current descriptor after the previous descriptor
*/
if (!first) {
first = new;
} else {
set_desc_next(fsl_chan, &prev->hw,
new->async_tx.phys);
}
new->async_tx.cookie = 0;
async_tx_ack(&new->async_tx);
prev = new;
sg_used += copy;
hw_used += copy;
/* Insert the link descriptor into the LD ring */
list_add_tail(&new->node, &first->tx_list);
}
}
finished:
/* All of the hardware address/length pairs had length == 0 */
if (!first || !new)
return NULL;
new->async_tx.flags = flags;
new->async_tx.cookie = -EBUSY;
/* Set End-of-link to the last link descriptor of new list */
set_ld_eol(fsl_chan, new);
/* Enable extra controller features */
if (fsl_chan->set_src_loop_size)
fsl_chan->set_src_loop_size(fsl_chan, slave->src_loop_size);
if (fsl_chan->set_dest_loop_size)
fsl_chan->set_dest_loop_size(fsl_chan, slave->dst_loop_size);
if (fsl_chan->toggle_ext_start)
fsl_chan->toggle_ext_start(fsl_chan, slave->external_start);
if (fsl_chan->toggle_ext_pause)
fsl_chan->toggle_ext_pause(fsl_chan, slave->external_pause);
if (fsl_chan->set_request_count)
fsl_chan->set_request_count(fsl_chan, slave->request_count);
return &first->async_tx;
fail:
/* If first was not set, then we failed to allocate the very first
* descriptor, and we're done */
if (!first)
return NULL;
/*
* First is set, so all of the descriptors we allocated have been added
* to first->tx_list, INCLUDING "first" itself. Therefore we
* must traverse the list backwards freeing each descriptor in turn
*
* We're re-using variables for the loop, oh well
*/
tx_list = &first->tx_list;
list_for_each_entry_safe_reverse(new, prev, tx_list, node) {
list_del_init(&new->node);
dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
}
return NULL;
}
static void fsl_dma_device_terminate_all(struct dma_chan *chan)
{
struct fsl_dma_chan *fsl_chan;
struct fsl_desc_sw *desc, *tmp;
unsigned long flags;
if (!chan)
return;
fsl_chan = to_fsl_chan(chan);
/* Halt the DMA engine */
dma_halt(fsl_chan);
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
/* Remove and free all of the descriptors in the LD queue */
list_for_each_entry_safe(desc, tmp, &fsl_chan->ld_queue, node) {
list_del(&desc->node);
dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
}
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
}
/**
* fsl_dma_update_completed_cookie - Update the completed cookie.
* @fsl_chan : Freescale DMA channel
@ -977,12 +1201,15 @@ static int __devinit of_fsl_dma_probe(struct of_device *dev,
dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
fdev->common.device_is_tx_complete = fsl_dma_is_complete;
fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
fdev->common.dev = &dev->dev;
fdev->irq = irq_of_parse_and_map(dev->node, 0);