x86/mm/pat: Harmonize 'struct memtype *' local variable and function parameter use

We have quite a zoo of 'struct memtype' variable nomenclature:

  new
  entry
  print_entry
  data
  match
  out
  memtype

Beyond the randomness, some of these are outright confusing, especially
when used in larger functions.

Standardize them:

  entry
  entry_new
  entry_old
  entry_print
  entry_match
  entry_out

Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
Ingo Molnar 2019-12-10 10:07:23 +01:00
parent 47553d42c5
commit baf65855ba
3 changed files with 75 additions and 73 deletions

View File

@ -576,7 +576,7 @@ static u64 sanitize_phys(u64 address)
int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
enum page_cache_mode *new_type)
{
struct memtype *new;
struct memtype *entry_new;
enum page_cache_mode actual_type;
int is_range_ram;
int err = 0;
@ -624,22 +624,22 @@ int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
return -EINVAL;
}
new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
if (!new)
entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
if (!entry_new)
return -ENOMEM;
new->start = start;
new->end = end;
new->type = actual_type;
entry_new->start = start;
entry_new->end = end;
entry_new->type = actual_type;
spin_lock(&memtype_lock);
err = memtype_check_insert(new, new_type);
err = memtype_check_insert(entry_new, new_type);
if (err) {
pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
start, end - 1,
cattr_name(new->type), cattr_name(req_type));
kfree(new);
cattr_name(entry_new->type), cattr_name(req_type));
kfree(entry_new);
spin_unlock(&memtype_lock);
return err;
@ -648,7 +648,7 @@ int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
spin_unlock(&memtype_lock);
dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
start, end - 1, cattr_name(new->type), cattr_name(req_type),
start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
new_type ? cattr_name(*new_type) : "-");
return err;
@ -657,7 +657,7 @@ int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
int free_memtype(u64 start, u64 end)
{
int is_range_ram;
struct memtype *entry;
struct memtype *entry_old;
if (!pat_enabled())
return 0;
@ -676,16 +676,16 @@ int free_memtype(u64 start, u64 end)
return -EINVAL;
spin_lock(&memtype_lock);
entry = memtype_erase(start, end);
entry_old = memtype_erase(start, end);
spin_unlock(&memtype_lock);
if (IS_ERR(entry)) {
if (IS_ERR(entry_old)) {
pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
current->comm, current->pid, start, end - 1);
return -EINVAL;
}
kfree(entry);
kfree(entry_old);
dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
@ -726,6 +726,7 @@ static enum page_cache_mode lookup_memtype(u64 paddr)
rettype = _PAGE_CACHE_MODE_UC_MINUS;
spin_unlock(&memtype_lock);
return rettype;
}
@ -1130,24 +1131,24 @@ EXPORT_SYMBOL_GPL(pgprot_writethrough);
*/
static struct memtype *memtype_get_idx(loff_t pos)
{
struct memtype *print_entry;
struct memtype *entry_print;
int ret;
print_entry = kzalloc(sizeof(struct memtype), GFP_KERNEL);
if (!print_entry)
entry_print = kzalloc(sizeof(struct memtype), GFP_KERNEL);
if (!entry_print)
return NULL;
spin_lock(&memtype_lock);
ret = memtype_copy_nth_element(print_entry, pos);
ret = memtype_copy_nth_element(entry_print, pos);
spin_unlock(&memtype_lock);
/* Free it on error: */
if (ret) {
kfree(print_entry);
kfree(entry_print);
return NULL;
}
return print_entry;
return entry_print;
}
static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
@ -1172,14 +1173,14 @@ static void memtype_seq_stop(struct seq_file *seq, void *v)
static int memtype_seq_show(struct seq_file *seq, void *v)
{
struct memtype *print_entry = (struct memtype *)v;
struct memtype *entry_print = (struct memtype *)v;
seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
print_entry->start,
print_entry->end,
cattr_name(print_entry->type));
entry_print->start,
entry_print->end,
cattr_name(entry_print->type));
kfree(print_entry);
kfree(entry_print);
return 0;
}

View File

@ -29,13 +29,13 @@ static inline char *cattr_name(enum page_cache_mode pcm)
}
#ifdef CONFIG_X86_PAT
extern int memtype_check_insert(struct memtype *new,
extern int memtype_check_insert(struct memtype *entry_new,
enum page_cache_mode *new_type);
extern struct memtype *memtype_erase(u64 start, u64 end);
extern struct memtype *memtype_lookup(u64 addr);
extern int memtype_copy_nth_element(struct memtype *out, loff_t pos);
extern int memtype_copy_nth_element(struct memtype *entry_out, loff_t pos);
#else
static inline int memtype_check_insert(struct memtype *new,
static inline int memtype_check_insert(struct memtype *entry_new,
enum page_cache_mode *new_type)
{ return 0; }
static inline struct memtype *memtype_erase(u64 start, u64 end)

View File

@ -33,14 +33,14 @@
* memtype_lock protects the rbtree.
*/
static inline u64 interval_start(struct memtype *memtype)
static inline u64 interval_start(struct memtype *entry)
{
return memtype->start;
return entry->start;
}
static inline u64 interval_end(struct memtype *memtype)
static inline u64 interval_end(struct memtype *entry)
{
return memtype->end - 1;
return entry->end - 1;
}
INTERVAL_TREE_DEFINE(struct memtype, rb, u64, subtree_max_end,
@ -56,19 +56,20 @@ enum {
static struct memtype *memtype_match(u64 start, u64 end, int match_type)
{
struct memtype *match;
struct memtype *entry_match;
match = interval_iter_first(&memtype_rbroot, start, end-1);
while (match != NULL && match->start < end) {
entry_match = interval_iter_first(&memtype_rbroot, start, end-1);
while (entry_match != NULL && entry_match->start < end) {
if ((match_type == MEMTYPE_EXACT_MATCH) &&
(match->start == start) && (match->end == end))
return match;
(entry_match->start == start) && (entry_match->end == end))
return entry_match;
if ((match_type == MEMTYPE_END_MATCH) &&
(match->start < start) && (match->end == end))
return match;
(entry_match->start < start) && (entry_match->end == end))
return entry_match;
match = interval_iter_next(match, start, end-1);
entry_match = interval_iter_next(entry_match, start, end-1);
}
return NULL; /* Returns NULL if there is no match */
@ -78,25 +79,25 @@ static int memtype_check_conflict(u64 start, u64 end,
enum page_cache_mode reqtype,
enum page_cache_mode *newtype)
{
struct memtype *match;
struct memtype *entry_match;
enum page_cache_mode found_type = reqtype;
match = interval_iter_first(&memtype_rbroot, start, end-1);
if (match == NULL)
entry_match = interval_iter_first(&memtype_rbroot, start, end-1);
if (entry_match == NULL)
goto success;
if (match->type != found_type && newtype == NULL)
if (entry_match->type != found_type && newtype == NULL)
goto failure;
dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
found_type = match->type;
dprintk("Overlap at 0x%Lx-0x%Lx\n", entry_match->start, entry_match->end);
found_type = entry_match->type;
match = interval_iter_next(match, start, end-1);
while (match) {
if (match->type != found_type)
entry_match = interval_iter_next(entry_match, start, end-1);
while (entry_match) {
if (entry_match->type != found_type)
goto failure;
match = interval_iter_next(match, start, end-1);
entry_match = interval_iter_next(entry_match, start, end-1);
}
success:
if (newtype)
@ -107,29 +108,29 @@ static int memtype_check_conflict(u64 start, u64 end,
failure:
pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n",
current->comm, current->pid, start, end,
cattr_name(found_type), cattr_name(match->type));
cattr_name(found_type), cattr_name(entry_match->type));
return -EBUSY;
}
int memtype_check_insert(struct memtype *new, enum page_cache_mode *ret_type)
int memtype_check_insert(struct memtype *entry_new, enum page_cache_mode *ret_type)
{
int err = 0;
err = memtype_check_conflict(new->start, new->end, new->type, ret_type);
err = memtype_check_conflict(entry_new->start, entry_new->end, entry_new->type, ret_type);
if (err)
return err;
if (ret_type)
new->type = *ret_type;
entry_new->type = *ret_type;
interval_insert(new, &memtype_rbroot);
interval_insert(entry_new, &memtype_rbroot);
return 0;
}
struct memtype *memtype_erase(u64 start, u64 end)
{
struct memtype *data;
struct memtype *entry_old;
/*
* Since the memtype_rbroot tree allows overlapping ranges,
@ -138,26 +139,26 @@ struct memtype *memtype_erase(u64 start, u64 end)
* it then checks with END_MATCH, i.e. shrink the size of a node
* from the end for the mremap case.
*/
data = memtype_match(start, end, MEMTYPE_EXACT_MATCH);
if (!data) {
data = memtype_match(start, end, MEMTYPE_END_MATCH);
if (!data)
entry_old = memtype_match(start, end, MEMTYPE_EXACT_MATCH);
if (!entry_old) {
entry_old = memtype_match(start, end, MEMTYPE_END_MATCH);
if (!entry_old)
return ERR_PTR(-EINVAL);
}
if (data->start == start) {
if (entry_old->start == start) {
/* munmap: erase this node */
interval_remove(data, &memtype_rbroot);
interval_remove(entry_old, &memtype_rbroot);
} else {
/* mremap: update the end value of this node */
interval_remove(data, &memtype_rbroot);
data->end = start;
interval_insert(data, &memtype_rbroot);
interval_remove(entry_old, &memtype_rbroot);
entry_old->end = start;
interval_insert(entry_old, &memtype_rbroot);
return NULL;
}
return data;
return entry_old;
}
struct memtype *memtype_lookup(u64 addr)
@ -171,20 +172,20 @@ struct memtype *memtype_lookup(u64 addr)
* via debugfs, without holding the memtype_lock too long:
*/
#ifdef CONFIG_DEBUG_FS
int memtype_copy_nth_element(struct memtype *out, loff_t pos)
int memtype_copy_nth_element(struct memtype *entry_out, loff_t pos)
{
struct memtype *match;
struct memtype *entry_match;
int i = 1;
match = interval_iter_first(&memtype_rbroot, 0, ULONG_MAX);
entry_match = interval_iter_first(&memtype_rbroot, 0, ULONG_MAX);
while (match && pos != i) {
match = interval_iter_next(match, 0, ULONG_MAX);
while (entry_match && pos != i) {
entry_match = interval_iter_next(entry_match, 0, ULONG_MAX);
i++;
}
if (match) { /* pos == i */
*out = *match;
if (entry_match) { /* pos == i */
*entry_out = *entry_match;
return 0;
} else {
return 1;