ath9k_hw: add all the AR9003 PHY callbacks

Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
This commit is contained in:
Luis R. Rodriguez 2010-04-15 17:38:40 -04:00 committed by John W. Linville
parent c16fcb49b3
commit af914a9ffd

View File

@ -225,7 +225,30 @@ static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
static void ar9003_hw_init_bb(struct ath_hw *ah,
struct ath9k_channel *chan)
{
/* TODO */
u32 synthDelay;
/*
* Wait for the frequency synth to settle (synth goes on
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
* Value is in 100ns increments.
*/
synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_B(chan))
synthDelay = (4 * synthDelay) / 22;
else
synthDelay /= 10;
/* Activate the PHY (includes baseband activate + synthesizer on) */
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
/*
* There is an issue if the AP starts the calibration before
* the base band timeout completes. This could result in the
* rx_clear false triggering. As a workaround we add delay an
* extra BASE_ACTIVATE_DELAY usecs to ensure this condition
* does not happen.
*/
udelay(synthDelay + BASE_ACTIVATE_DELAY);
}
void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
@ -385,46 +408,301 @@ static int ar9003_hw_process_ini(struct ath_hw *ah,
static void ar9003_hw_set_rfmode(struct ath_hw *ah,
struct ath9k_channel *chan)
{
/* TODO */
u32 rfMode = 0;
if (chan == NULL)
return;
rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
if (IS_CHAN_A_5MHZ_SPACED(chan))
rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
REG_WRITE(ah, AR_PHY_MODE, rfMode);
}
static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
{
/* TODO */
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
}
static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
struct ath9k_channel *chan)
{
/* TODO */
u32 coef_scaled, ds_coef_exp, ds_coef_man;
u32 clockMhzScaled = 0x64000000;
struct chan_centers centers;
/*
* half and quarter rate can divide the scaled clock by 2 or 4
* scale for selected channel bandwidth
*/
if (IS_CHAN_HALF_RATE(chan))
clockMhzScaled = clockMhzScaled >> 1;
else if (IS_CHAN_QUARTER_RATE(chan))
clockMhzScaled = clockMhzScaled >> 2;
/*
* ALGO -> coef = 1e8/fcarrier*fclock/40;
* scaled coef to provide precision for this floating calculation
*/
ath9k_hw_get_channel_centers(ah, chan, &centers);
coef_scaled = clockMhzScaled / centers.synth_center;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
/*
* For Short GI,
* scaled coeff is 9/10 that of normal coeff
*/
coef_scaled = (9 * coef_scaled) / 10;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
/* for short gi */
REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
AR_PHY_SGI_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
AR_PHY_SGI_DSC_EXP, ds_coef_exp);
}
static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
{
/* TODO */
return false;
REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
}
/*
* Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
* Read the phy active delay register. Value is in 100ns increments.
*/
static void ar9003_hw_rfbus_done(struct ath_hw *ah)
{
/* TODO */
u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_B(ah->curchan))
synthDelay = (4 * synthDelay) / 22;
else
synthDelay /= 10;
udelay(synthDelay + BASE_ACTIVATE_DELAY);
REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
}
/*
* Set the interrupt and GPIO values so the ISR can disable RF
* on a switch signal. Assumes GPIO port and interrupt polarity
* are set prior to call.
*/
static void ar9003_hw_enable_rfkill(struct ath_hw *ah)
{
/* TODO */
/* Connect rfsilent_bb_l to baseband */
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
/* Set input mux for rfsilent_bb_l to GPIO #0 */
REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
AR_GPIO_INPUT_MUX2_RFSILENT);
/*
* Configure the desired GPIO port for input and
* enable baseband rf silence.
*/
ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
}
static void ar9003_hw_set_diversity(struct ath_hw *ah, bool value)
{
/* TODO */
u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
if (value)
v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
else
v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
}
static bool ar9003_hw_ani_control(struct ath_hw *ah,
enum ath9k_ani_cmd cmd, int param)
{
/* TODO */
return false;
struct ar5416AniState *aniState = ah->curani;
struct ath_common *common = ath9k_hw_common(ah);
switch (cmd & ah->ani_function) {
case ATH9K_ANI_NOISE_IMMUNITY_LEVEL:{
u32 level = param;
if (level >= ARRAY_SIZE(ah->totalSizeDesired)) {
ath_print(common, ATH_DBG_ANI,
"level out of range (%u > %u)\n",
level,
(unsigned)ARRAY_SIZE(ah->totalSizeDesired));
return false;
}
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
AR_PHY_DESIRED_SZ_TOT_DES,
ah->totalSizeDesired[level]);
REG_RMW_FIELD(ah, AR_PHY_AGC,
AR_PHY_AGC_COARSE_LOW,
ah->coarse_low[level]);
REG_RMW_FIELD(ah, AR_PHY_AGC,
AR_PHY_AGC_COARSE_HIGH,
ah->coarse_high[level]);
REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
AR_PHY_FIND_SIG_FIRPWR, ah->firpwr[level]);
if (level > aniState->noiseImmunityLevel)
ah->stats.ast_ani_niup++;
else if (level < aniState->noiseImmunityLevel)
ah->stats.ast_ani_nidown++;
aniState->noiseImmunityLevel = level;
break;
}
case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
const int m1ThreshLow[] = { 127, 50 };
const int m2ThreshLow[] = { 127, 40 };
const int m1Thresh[] = { 127, 0x4d };
const int m2Thresh[] = { 127, 0x40 };
const int m2CountThr[] = { 31, 16 };
const int m2CountThrLow[] = { 63, 48 };
u32 on = param ? 1 : 0;
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
m1ThreshLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
m2ThreshLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M1_THRESH, m1Thresh[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M2_THRESH, m2Thresh[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M2COUNT_THR, m2CountThr[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
m2CountThrLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M1_THRESH, m1Thresh[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M2_THRESH, m2Thresh[on]);
if (on)
REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
else
REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
if (!on != aniState->ofdmWeakSigDetectOff) {
if (on)
ah->stats.ast_ani_ofdmon++;
else
ah->stats.ast_ani_ofdmoff++;
aniState->ofdmWeakSigDetectOff = !on;
}
break;
}
case ATH9K_ANI_CCK_WEAK_SIGNAL_THR:{
const int weakSigThrCck[] = { 8, 6 };
u32 high = param ? 1 : 0;
REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK,
weakSigThrCck[high]);
if (high != aniState->cckWeakSigThreshold) {
if (high)
ah->stats.ast_ani_cckhigh++;
else
ah->stats.ast_ani_ccklow++;
aniState->cckWeakSigThreshold = high;
}
break;
}
case ATH9K_ANI_FIRSTEP_LEVEL:{
const int firstep[] = { 0, 4, 8 };
u32 level = param;
if (level >= ARRAY_SIZE(firstep)) {
ath_print(common, ATH_DBG_ANI,
"level out of range (%u > %u)\n",
level,
(unsigned) ARRAY_SIZE(firstep));
return false;
}
REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
AR_PHY_FIND_SIG_FIRSTEP,
firstep[level]);
if (level > aniState->firstepLevel)
ah->stats.ast_ani_stepup++;
else if (level < aniState->firstepLevel)
ah->stats.ast_ani_stepdown++;
aniState->firstepLevel = level;
break;
}
case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
const int cycpwrThr1[] = { 2, 4, 6, 8, 10, 12, 14, 16 };
u32 level = param;
if (level >= ARRAY_SIZE(cycpwrThr1)) {
ath_print(common, ATH_DBG_ANI,
"level out of range (%u > %u)\n",
level,
(unsigned) ARRAY_SIZE(cycpwrThr1));
return false;
}
REG_RMW_FIELD(ah, AR_PHY_TIMING5,
AR_PHY_TIMING5_CYCPWR_THR1,
cycpwrThr1[level]);
if (level > aniState->spurImmunityLevel)
ah->stats.ast_ani_spurup++;
else if (level < aniState->spurImmunityLevel)
ah->stats.ast_ani_spurdown++;
aniState->spurImmunityLevel = level;
break;
}
case ATH9K_ANI_PRESENT:
break;
default:
ath_print(common, ATH_DBG_ANI,
"invalid cmd %u\n", cmd);
return false;
}
ath_print(common, ATH_DBG_ANI, "ANI parameters:\n");
ath_print(common, ATH_DBG_ANI,
"noiseImmunityLevel=%d, spurImmunityLevel=%d, "
"ofdmWeakSigDetectOff=%d\n",
aniState->noiseImmunityLevel,
aniState->spurImmunityLevel,
!aniState->ofdmWeakSigDetectOff);
ath_print(common, ATH_DBG_ANI,
"cckWeakSigThreshold=%d, "
"firstepLevel=%d, listenTime=%d\n",
aniState->cckWeakSigThreshold,
aniState->firstepLevel,
aniState->listenTime);
ath_print(common, ATH_DBG_ANI,
"cycleCount=%d, ofdmPhyErrCount=%d, cckPhyErrCount=%d\n\n",
aniState->cycleCount,
aniState->ofdmPhyErrCount,
aniState->cckPhyErrCount);
return true;
}
void ar9003_hw_attach_phy_ops(struct ath_hw *ah)