drm/amd/powerplay: use smu7 common functions and data on Tonga.

Signed-off-by: Rex Zhu <Rex.Zhu@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
This commit is contained in:
Rex Zhu 2016-08-19 20:42:09 +08:00 committed by Alex Deucher
parent 1ff55f4651
commit ac43f0800f
3 changed files with 117 additions and 774 deletions

View File

@ -347,27 +347,27 @@ static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
int result;
result = tonga_populate_smc_vddc_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"can not populate VDDC voltage table to SMC",
return -EINVAL);
result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"can not populate VDDCI voltage table to SMC",
return -EINVAL);
result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"can not populate VDDGFX voltage table to SMC",
return -EINVAL);
result = tonga_populate_smc_mvdd_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"can not populate MVDD voltage table to SMC",
return -EINVAL);
result = tonga_populate_cac_tables(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"can not populate CAC voltage tables to SMC",
return -EINVAL);
@ -542,7 +542,7 @@ static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
result = tonga_get_dependecy_volt_by_clk(hwmgr,
pptable_info->vdd_dep_on_sclk, engine_clock,
&graphic_level->MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
PP_ASSERT_WITH_CODE((!result),
"can not find VDDC voltage value for VDDC "
"engine clock dependency table", return result);
@ -574,7 +574,7 @@ static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
if (0 == result) {
if (!result) {
/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
@ -603,7 +603,7 @@ int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
struct smu7_dpm_table *dpm_table = &data->dpm_table;
struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
uint32_t level_array_address = smu_data->dpm_table_start +
uint32_t level_array_address = smu_data->smu7_data.dpm_table_start +
offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
@ -690,7 +690,7 @@ int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
}
/* level count will send to smc once at init smc table and never change*/
result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_address,
result = smu7_copy_bytes_to_smc(hwmgr->smumgr, level_array_address,
(uint8_t *)levels, (uint32_t)level_array_size,
SMC_RAM_END);
@ -730,7 +730,7 @@ static int tonga_calculate_mclk_params(
result = atomctrl_get_memory_pll_dividers_si(hwmgr,
memory_clock, &mpll_param, strobe_mode);
PP_ASSERT_WITH_CODE(
0 == result,
!result,
"Error retrieving Memory Clock Parameters from VBIOS.",
return result);
@ -900,7 +900,7 @@ static int tonga_populate_single_memory_level(
memory_clock,
&memory_level->MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE(
0 == result,
!result,
"can not find MinVddc voltage value from memory VDDC "
"voltage dependency table",
return result);
@ -1008,7 +1008,7 @@ int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
/* populate MCLK dpm table to SMU7 */
uint32_t level_array_address =
smu_data->dpm_table_start +
smu_data->smu7_data.dpm_table_start +
offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
uint32_t level_array_size =
sizeof(SMU72_Discrete_MemoryLevel) *
@ -1048,11 +1048,10 @@ int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
/* level count will send to smc once at init smc table and never change*/
result = tonga_copy_bytes_to_smc(hwmgr->smumgr,
result = smu7_copy_bytes_to_smc(hwmgr->smumgr,
level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
SMC_RAM_END);
return result;
}
@ -1257,7 +1256,7 @@ static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
table->UvdLevel[count].VclkFrequency,
&dividers);
PP_ASSERT_WITH_CODE((0 == result),
PP_ASSERT_WITH_CODE((!result),
"can not find divide id for Vclk clock",
return result);
@ -1265,7 +1264,7 @@ static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->UvdLevel[count].DclkFrequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
PP_ASSERT_WITH_CODE((!result),
"can not find divide id for Dclk clock",
return result);
@ -1314,7 +1313,7 @@ static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->VceLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
PP_ASSERT_WITH_CODE((!result),
"can not find divide id for VCE engine clock",
return result);
@ -1359,7 +1358,7 @@ static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->AcpLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
PP_ASSERT_WITH_CODE((!result),
"can not find divide id for engine clock", return result);
table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
@ -1404,7 +1403,7 @@ static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->SamuLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
PP_ASSERT_WITH_CODE((!result),
"can not find divide id for samu clock", return result);
table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
@ -1474,10 +1473,10 @@ static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
}
}
if (0 == result) {
result = tonga_copy_bytes_to_smc(
if (!result) {
result = smu7_copy_bytes_to_smc(
hwmgr->smumgr,
smu_data->arb_table_start,
smu_data->smu7_data.arb_table_start,
(uint8_t *)&arb_regs,
sizeof(SMU72_Discrete_MCArbDramTimingTable),
SMC_RAM_END
@ -1502,7 +1501,7 @@ static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
data->vbios_boot_state.sclk_bootup_value,
(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
if (0 != result) {
if (result != 0) {
smu_data->smc_state_table.GraphicsBootLevel = 0;
printk(KERN_ERR "[powerplay] VBIOS did not find boot engine "
"clock value in dependency table. "
@ -1514,7 +1513,7 @@ static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
data->vbios_boot_state.mclk_bootup_value,
(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
if (0 != result) {
if (result != 0) {
smu_data->smc_state_table.MemoryBootLevel = 0;
printk(KERN_ERR "[powerplay] VBIOS did not find boot "
"engine clock value in dependency table."
@ -1538,7 +1537,6 @@ static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
return result;
}
static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
{
uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
@ -1591,6 +1589,7 @@ static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
/* Populate Stretch amount */
smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
for (i = 0; i < sclk_table->count; i++) {
smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
@ -1798,17 +1797,17 @@ static int tonga_init_arb_table_index(struct pp_smumgr *smumgr)
* In reality this field should not be in that structure
* but in a soft register.
*/
result = tonga_read_smc_sram_dword(smumgr,
smu_data->arb_table_start, &tmp, SMC_RAM_END);
result = smu7_read_smc_sram_dword(smumgr,
smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
if (0 != result)
if (result != 0)
return result;
tmp &= 0x00FFFFFF;
tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
return tonga_write_smc_sram_dword(smumgr,
smu_data->arb_table_start, tmp, SMC_RAM_END);
return smu7_write_smc_sram_dword(smumgr,
smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
}
@ -1903,7 +1902,7 @@ static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset
struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
uint32_t temp;
if (tonga_read_smc_sram_dword(hwmgr->smumgr,
if (smu7_read_smc_sram_dword(hwmgr->smumgr,
fuse_table_offset +
offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl),
(uint32_t *)&temp, SMC_RAM_END))
@ -1994,7 +1993,7 @@ static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr)
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerContainment)) {
if (tonga_read_smc_sram_dword(hwmgr->smumgr,
if (smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, PmFuseTable),
&pm_fuse_table_offset, SMC_RAM_END))
@ -2052,7 +2051,7 @@ static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr)
"Hi and Lo Sidd Failed !",
return -EINVAL);
if (tonga_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset,
if (smu7_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset,
(uint8_t *)&smu_data->power_tune_table,
sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
@ -2173,10 +2172,10 @@ static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
return result;
address = smu_data->mc_reg_table_start +
address = smu_data->smu7_data.mc_reg_table_start +
(uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
return tonga_copy_bytes_to_smc(
return smu7_copy_bytes_to_smc(
hwmgr->smumgr, address,
(uint8_t *)&smu_data->mc_regs.data[0],
sizeof(SMU72_Discrete_MCRegisterSet) *
@ -2192,16 +2191,16 @@ static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters));
result = tonga_populate_mc_reg_address(smumgr, &(smu_data->mc_regs));
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize MCRegTable for the MC register addresses !",
return result;);
result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize MCRegTable for driver state !",
return result;);
return tonga_copy_bytes_to_smc(smumgr, smu_data->mc_reg_table_start,
return smu7_copy_bytes_to_smc(smumgr, smu_data->smu7_data.mc_reg_table_start,
(uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END);
}
@ -2268,7 +2267,7 @@ int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
result = tonga_populate_ulv_state(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize ULV state !",
return result;);
@ -2277,31 +2276,31 @@ int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
}
result = tonga_populate_smc_link_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize Link Level !", return result);
result = tonga_populate_all_graphic_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize Graphics Level !", return result);
result = tonga_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize Memory Level !", return result);
result = tonga_populate_smc_acpi_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize ACPI Level !", return result);
result = tonga_populate_smc_vce_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize VCE Level !", return result);
result = tonga_populate_smc_acp_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize ACP Level !", return result);
result = tonga_populate_smc_samu_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize SAMU Level !", return result);
/* Since only the initial state is completely set up at this
@ -2309,26 +2308,26 @@ int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
* need to populate the ARB settings for the initial state.
*/
result = tonga_program_memory_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to Write ARB settings for the initial state.",
return result;);
result = tonga_populate_smc_uvd_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize UVD Level !", return result);
result = tonga_populate_smc_boot_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize Boot Level !", return result);
tonga_populate_bapm_parameters_in_dpm_table(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to populate BAPM Parameters !", return result);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher)) {
result = tonga_populate_clock_stretcher_data_table(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to populate Clock Stretcher Data Table !",
return result;);
}
@ -2367,7 +2366,7 @@ int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
table->PCIeGenInterval = 1;
result = tonga_populate_vr_config(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to populate VRConfig setting !", return result);
table->ThermGpio = 17;
@ -2448,26 +2447,26 @@ int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
result = tonga_copy_bytes_to_smc(
result = smu7_copy_bytes_to_smc(
hwmgr->smumgr,
smu_data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags),
smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags),
(uint8_t *)&(table->SystemFlags),
sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController),
SMC_RAM_END);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to upload dpm data to SMC memory !", return result;);
result = tonga_init_arb_table_index(hwmgr->smumgr);
PP_ASSERT_WITH_CODE(0 == result,
PP_ASSERT_WITH_CODE(!result,
"Failed to upload arb data to SMC memory !", return result);
tonga_populate_pm_fuses(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
PP_ASSERT_WITH_CODE((!result),
"Failed to populate initialize pm fuses !", return result);
result = tonga_populate_initial_mc_reg_table(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
PP_ASSERT_WITH_CODE((!result),
"Failed to populate initialize MC Reg table !", return result);
return 0;
@ -2498,7 +2497,7 @@ int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
PHM_PlatformCaps_MicrocodeFanControl))
return 0;
if (0 == smu_data->fan_table_start) {
if (0 == smu_data->smu7_data.fan_table_start) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl);
return 0;
@ -2558,19 +2557,12 @@ int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
fan_table.FanControl_GL_Flag = 1;
res = tonga_copy_bytes_to_smc(hwmgr->smumgr, smu_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
/* TO DO FOR SOME DEVICE ID 0X692b, send this msg return invalid command.
if (res == 0 && hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit != 0)
res = (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanMinPwm, \
hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit) ? 0 : -1);
res = smu7_copy_bytes_to_smc(hwmgr->smumgr,
smu_data->smu7_data.fan_table_start,
(uint8_t *)&fan_table,
(uint32_t)sizeof(fan_table),
SMC_RAM_END);
if (res == 0 && hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit != 0)
res = (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanSclkTarget, \
hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit) ? 0 : -1);
if (0 != res)
phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
*/
return 0;
}
@ -2606,9 +2598,9 @@ int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
result = tonga_copy_bytes_to_smc(
result = smu7_copy_bytes_to_smc(
hwmgr->smumgr,
smu_data->dpm_table_start +
smu_data->smu7_data.dpm_table_start +
offsetof(SMU72_Discrete_DpmTable,
LowSclkInterruptThreshold),
(uint8_t *)&low_sclk_interrupt_threshold,
@ -2618,7 +2610,7 @@ int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
result = tonga_update_and_upload_mc_reg_table(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
PP_ASSERT_WITH_CODE((!result),
"Failed to upload MC reg table !",
return result);
@ -2645,6 +2637,8 @@ uint32_t tonga_get_offsetof(uint32_t type, uint32_t member)
return offsetof(SMU72_SoftRegisters, PreVBlankGap);
case VBlankTimeout:
return offsetof(SMU72_SoftRegisters, VBlankTimeout);
case UcodeLoadStatus:
return offsetof(SMU72_SoftRegisters, UcodeLoadStatus);
}
case SMU_Discrete_DpmTable:
switch (member) {
@ -2700,7 +2694,7 @@ static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
if (table_info->mm_dep_table->count > 0)
smu_data->smc_state_table.UvdBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
mm_boot_level_offset = smu_data->dpm_table_start +
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
@ -2734,7 +2728,7 @@ static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr)
smu_data->smc_state_table.VceBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
mm_boot_level_offset = smu_data->dpm_table_start +
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
@ -2759,7 +2753,7 @@ static int tonga_update_samu_smc_table(struct pp_hwmgr *hwmgr)
uint32_t mm_boot_level_offset, mm_boot_level_value;
smu_data->smc_state_table.SamuBootLevel = 0;
mm_boot_level_offset = smu_data->dpm_table_start +
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
offsetof(SMU72_Discrete_DpmTable, SamuBootLevel);
mm_boot_level_offset /= 4;
@ -2813,67 +2807,66 @@ int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
int result;
bool error = false;
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, DpmTable),
&tmp, SMC_RAM_END);
if (0 == result)
smu_data->dpm_table_start = tmp;
if (!result)
smu_data->smu7_data.dpm_table_start = tmp;
error |= (0 != result);
error |= (result != 0);
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, SoftRegisters),
&tmp, SMC_RAM_END);
if (0 == result) {
if (!result) {
data->soft_regs_start = tmp;
smu_data->soft_regs_start = tmp;
smu_data->smu7_data.soft_regs_start = tmp;
}
error |= (0 != result);
error |= (result != 0);
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, mcRegisterTable),
&tmp, SMC_RAM_END);
if (0 == result)
smu_data->mc_reg_table_start = tmp;
if (!result)
smu_data->smu7_data.mc_reg_table_start = tmp;
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, FanTable),
&tmp, SMC_RAM_END);
if (0 == result)
smu_data->fan_table_start = tmp;
if (!result)
smu_data->smu7_data.fan_table_start = tmp;
error |= (0 != result);
error |= (result != 0);
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
&tmp, SMC_RAM_END);
if (0 == result)
smu_data->arb_table_start = tmp;
if (!result)
smu_data->smu7_data.arb_table_start = tmp;
error |= (0 != result);
error |= (result != 0);
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
result = smu7_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, Version),
&tmp, SMC_RAM_END);
if (0 == result)
if (!result)
hwmgr->microcode_version_info.SMC = tmp;
error |= (0 != result);
error |= (result != 0);
return error ? 1 : 0;
}
@ -3141,7 +3134,7 @@ int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
if (NULL == table)
if (table == NULL)
return -ENOMEM;
/* Program additional LP registers that are no longer programmed by VBIOS */
@ -3190,15 +3183,15 @@ int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
if (0 == result)
if (!result)
result = tonga_copy_vbios_smc_reg_table(table, ni_table);
if (0 == result) {
if (!result) {
tonga_set_s0_mc_reg_index(ni_table);
result = tonga_set_mc_special_registers(hwmgr, ni_table);
}
if (0 == result)
if (!result)
tonga_set_valid_flag(ni_table);
kfree(table);

View File

@ -34,587 +34,8 @@
#include "smu/smu_7_1_2_sh_mask.h"
#include "cgs_common.h"
#include "tonga_smc.h"
#include "smu7_smumgr.h"
#define TONGA_SMC_SIZE 0x20000
#define BUFFER_SIZE 80000
#define MAX_STRING_SIZE 15
#define BUFFER_SIZETWO 131072 /*128 *1024*/
/**
* Set the address for reading/writing the SMC SRAM space.
* @param smumgr the address of the powerplay hardware manager.
* @param smcAddress the address in the SMC RAM to access.
*/
static int tonga_set_smc_sram_address(struct pp_smumgr *smumgr,
uint32_t smcAddress, uint32_t limit)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
PP_ASSERT_WITH_CODE((0 == (3 & smcAddress)),
"SMC address must be 4 byte aligned.",
return -1;);
PP_ASSERT_WITH_CODE((limit > (smcAddress + 3)),
"SMC address is beyond the SMC RAM area.",
return -1;);
cgs_write_register(smumgr->device, mmSMC_IND_INDEX_0, smcAddress);
SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_11, 0);
return 0;
}
/**
* Copy bytes from an array into the SMC RAM space.
*
* @param smumgr the address of the powerplay SMU manager.
* @param smcStartAddress the start address in the SMC RAM to copy bytes to.
* @param src the byte array to copy the bytes from.
* @param byteCount the number of bytes to copy.
*/
int tonga_copy_bytes_to_smc(struct pp_smumgr *smumgr,
uint32_t smcStartAddress, const uint8_t *src,
uint32_t byteCount, uint32_t limit)
{
uint32_t addr;
uint32_t data, orig_data;
int result = 0;
uint32_t extra_shift;
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
PP_ASSERT_WITH_CODE((0 == (3 & smcStartAddress)),
"SMC address must be 4 byte aligned.",
return 0;);
PP_ASSERT_WITH_CODE((limit > (smcStartAddress + byteCount)),
"SMC address is beyond the SMC RAM area.",
return 0;);
addr = smcStartAddress;
while (byteCount >= 4) {
/*
* Bytes are written into the
* SMC address space with the MSB first
*/
data = (src[0] << 24) + (src[1] << 16) + (src[2] << 8) + src[3];
result = tonga_set_smc_sram_address(smumgr, addr, limit);
if (result)
goto out;
cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data);
src += 4;
byteCount -= 4;
addr += 4;
}
if (0 != byteCount) {
/* Now write odd bytes left, do a read modify write cycle */
data = 0;
result = tonga_set_smc_sram_address(smumgr, addr, limit);
if (result)
goto out;
orig_data = cgs_read_register(smumgr->device,
mmSMC_IND_DATA_0);
extra_shift = 8 * (4 - byteCount);
while (byteCount > 0) {
data = (data << 8) + *src++;
byteCount--;
}
data <<= extra_shift;
data |= (orig_data & ~((~0UL) << extra_shift));
result = tonga_set_smc_sram_address(smumgr, addr, limit);
if (result)
goto out;
cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data);
}
out:
return result;
}
int tonga_program_jump_on_start(struct pp_smumgr *smumgr)
{
static const unsigned char pData[] = { 0xE0, 0x00, 0x80, 0x40 };
tonga_copy_bytes_to_smc(smumgr, 0x0, pData, 4, sizeof(pData)+1);
return 0;
}
/**
* Return if the SMC is currently running.
*
* @param smumgr the address of the powerplay hardware manager.
*/
static int tonga_is_smc_ram_running(struct pp_smumgr *smumgr)
{
return ((0 == SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
&& (0x20100 <= cgs_read_ind_register(smumgr->device,
CGS_IND_REG__SMC, ixSMC_PC_C)));
}
static int tonga_send_msg_to_smc_offset(struct pp_smumgr *smumgr)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, 0x20000);
cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, PPSMC_MSG_Test);
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
return 0;
}
/**
* Send a message to the SMC, and wait for its response.
*
* @param smumgr the address of the powerplay hardware manager.
* @param msg the message to send.
* @return The response that came from the SMC.
*/
static int tonga_send_msg_to_smc(struct pp_smumgr *smumgr, uint16_t msg)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
if (!tonga_is_smc_ram_running(smumgr))
return -1;
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
PP_ASSERT_WITH_CODE(
1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP),
"Failed to send Previous Message.",
);
cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg);
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
PP_ASSERT_WITH_CODE(
1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP),
"Failed to send Message.",
);
return 0;
}
/*
* Send a message to the SMC, and do not wait for its response.
*
* @param smumgr the address of the powerplay hardware manager.
* @param msg the message to send.
* @return The response that came from the SMC.
*/
static int tonga_send_msg_to_smc_without_waiting
(struct pp_smumgr *smumgr, uint16_t msg)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
PP_ASSERT_WITH_CODE(
1 == SMUM_READ_FIELD(smumgr->device, SMC_RESP_0, SMC_RESP),
"Failed to send Previous Message.",
);
cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg);
return 0;
}
/*
* Send a message to the SMC with parameter
*
* @param smumgr: the address of the powerplay hardware manager.
* @param msg: the message to send.
* @param parameter: the parameter to send
* @return The response that came from the SMC.
*/
static int tonga_send_msg_to_smc_with_parameter(struct pp_smumgr *smumgr,
uint16_t msg, uint32_t parameter)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
if (!tonga_is_smc_ram_running(smumgr))
return PPSMC_Result_Failed;
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, parameter);
return tonga_send_msg_to_smc(smumgr, msg);
}
/*
* Send a message to the SMC with parameter, do not wait for response
*
* @param smumgr: the address of the powerplay hardware manager.
* @param msg: the message to send.
* @param parameter: the parameter to send
* @return The response that came from the SMC.
*/
static int tonga_send_msg_to_smc_with_parameter_without_waiting(
struct pp_smumgr *smumgr,
uint16_t msg, uint32_t parameter)
{
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
cgs_write_register(smumgr->device, mmSMC_MSG_ARG_0, parameter);
return tonga_send_msg_to_smc_without_waiting(smumgr, msg);
}
/*
* Read a 32bit value from the SMC SRAM space.
* ALL PARAMETERS ARE IN HOST BYTE ORDER.
* @param smumgr the address of the powerplay hardware manager.
* @param smcAddress the address in the SMC RAM to access.
* @param value and output parameter for the data read from the SMC SRAM.
*/
int tonga_read_smc_sram_dword(struct pp_smumgr *smumgr,
uint32_t smcAddress, uint32_t *value,
uint32_t limit)
{
int result;
result = tonga_set_smc_sram_address(smumgr, smcAddress, limit);
if (0 != result)
return result;
*value = cgs_read_register(smumgr->device, mmSMC_IND_DATA_0);
return 0;
}
/*
* Write a 32bit value to the SMC SRAM space.
* ALL PARAMETERS ARE IN HOST BYTE ORDER.
* @param smumgr the address of the powerplay hardware manager.
* @param smcAddress the address in the SMC RAM to access.
* @param value to write to the SMC SRAM.
*/
int tonga_write_smc_sram_dword(struct pp_smumgr *smumgr,
uint32_t smcAddress, uint32_t value,
uint32_t limit)
{
int result;
result = tonga_set_smc_sram_address(smumgr, smcAddress, limit);
if (0 != result)
return result;
cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, value);
return 0;
}
static int tonga_smu_fini(struct pp_smumgr *smumgr)
{
struct tonga_smumgr *priv = (struct tonga_smumgr *)(smumgr->backend);
smu_free_memory(smumgr->device, (void *)priv->smu_buffer.handle);
smu_free_memory(smumgr->device, (void *)priv->header_buffer.handle);
if (smumgr->backend != NULL) {
kfree(smumgr->backend);
smumgr->backend = NULL;
}
cgs_rel_firmware(smumgr->device, CGS_UCODE_ID_SMU);
return 0;
}
static enum cgs_ucode_id tonga_convert_fw_type_to_cgs(uint32_t fw_type)
{
enum cgs_ucode_id result = CGS_UCODE_ID_MAXIMUM;
switch (fw_type) {
case UCODE_ID_SMU:
result = CGS_UCODE_ID_SMU;
break;
case UCODE_ID_SDMA0:
result = CGS_UCODE_ID_SDMA0;
break;
case UCODE_ID_SDMA1:
result = CGS_UCODE_ID_SDMA1;
break;
case UCODE_ID_CP_CE:
result = CGS_UCODE_ID_CP_CE;
break;
case UCODE_ID_CP_PFP:
result = CGS_UCODE_ID_CP_PFP;
break;
case UCODE_ID_CP_ME:
result = CGS_UCODE_ID_CP_ME;
break;
case UCODE_ID_CP_MEC:
result = CGS_UCODE_ID_CP_MEC;
break;
case UCODE_ID_CP_MEC_JT1:
result = CGS_UCODE_ID_CP_MEC_JT1;
break;
case UCODE_ID_CP_MEC_JT2:
result = CGS_UCODE_ID_CP_MEC_JT2;
break;
case UCODE_ID_RLC_G:
result = CGS_UCODE_ID_RLC_G;
break;
default:
break;
}
return result;
}
/**
* Convert the PPIRI firmware type to SMU type mask.
* For MEC, we need to check all MEC related type
*/
static uint16_t tonga_get_mask_for_firmware_type(uint16_t firmwareType)
{
uint16_t result = 0;
switch (firmwareType) {
case UCODE_ID_SDMA0:
result = UCODE_ID_SDMA0_MASK;
break;
case UCODE_ID_SDMA1:
result = UCODE_ID_SDMA1_MASK;
break;
case UCODE_ID_CP_CE:
result = UCODE_ID_CP_CE_MASK;
break;
case UCODE_ID_CP_PFP:
result = UCODE_ID_CP_PFP_MASK;
break;
case UCODE_ID_CP_ME:
result = UCODE_ID_CP_ME_MASK;
break;
case UCODE_ID_CP_MEC:
case UCODE_ID_CP_MEC_JT1:
case UCODE_ID_CP_MEC_JT2:
result = UCODE_ID_CP_MEC_MASK;
break;
case UCODE_ID_RLC_G:
result = UCODE_ID_RLC_G_MASK;
break;
default:
break;
}
return result;
}
/**
* Check if the FW has been loaded,
* SMU will not return if loading has not finished.
*/
static int tonga_check_fw_load_finish(struct pp_smumgr *smumgr, uint32_t fwType)
{
uint16_t fwMask = tonga_get_mask_for_firmware_type(fwType);
if (0 != SMUM_WAIT_VFPF_INDIRECT_REGISTER(smumgr, SMC_IND,
SOFT_REGISTERS_TABLE_28, fwMask, fwMask)) {
printk(KERN_ERR "[ powerplay ] check firmware loading failed\n");
return -EINVAL;
}
return 0;
}
/* Populate one firmware image to the data structure */
static int tonga_populate_single_firmware_entry(struct pp_smumgr *smumgr,
uint16_t firmware_type,
struct SMU_Entry *pentry)
{
int result;
struct cgs_firmware_info info = {0};
result = cgs_get_firmware_info(
smumgr->device,
tonga_convert_fw_type_to_cgs(firmware_type),
&info);
if (result == 0) {
pentry->version = 0;
pentry->id = (uint16_t)firmware_type;
pentry->image_addr_high = smu_upper_32_bits(info.mc_addr);
pentry->image_addr_low = smu_lower_32_bits(info.mc_addr);
pentry->meta_data_addr_high = 0;
pentry->meta_data_addr_low = 0;
pentry->data_size_byte = info.image_size;
pentry->num_register_entries = 0;
if (firmware_type == UCODE_ID_RLC_G)
pentry->flags = 1;
else
pentry->flags = 0;
} else {
return result;
}
return result;
}
static int tonga_request_smu_reload_fw(struct pp_smumgr *smumgr)
{
struct tonga_smumgr *tonga_smu =
(struct tonga_smumgr *)(smumgr->backend);
uint16_t fw_to_load;
struct SMU_DRAMData_TOC *toc;
/**
* First time this gets called during SmuMgr init,
* we haven't processed SMU header file yet,
* so Soft Register Start offset is unknown.
* However, for this case, UcodeLoadStatus is already 0,
* so we can skip this if the Soft Registers Start offset is 0.
*/
cgs_write_ind_register(smumgr->device,
CGS_IND_REG__SMC, ixSOFT_REGISTERS_TABLE_28, 0);
tonga_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_SMU_DRAM_ADDR_HI,
tonga_smu->smu_buffer.mc_addr_high);
tonga_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_SMU_DRAM_ADDR_LO,
tonga_smu->smu_buffer.mc_addr_low);
toc = (struct SMU_DRAMData_TOC *)tonga_smu->pHeader;
toc->num_entries = 0;
toc->structure_version = 1;
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry(smumgr,
UCODE_ID_RLC_G,
&toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n",
return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry(smumgr,
UCODE_ID_CP_CE,
&toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n",
return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_CP_PFP, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_CP_ME, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_CP_MEC, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_CP_MEC_JT1, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_CP_MEC_JT2, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_SDMA0, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
PP_ASSERT_WITH_CODE(
0 == tonga_populate_single_firmware_entry
(smumgr, UCODE_ID_SDMA1, &toc->entry[toc->num_entries++]),
"Failed to Get Firmware Entry.\n", return -1);
tonga_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_DRV_DRAM_ADDR_HI,
tonga_smu->header_buffer.mc_addr_high);
tonga_send_msg_to_smc_with_parameter(smumgr,
PPSMC_MSG_DRV_DRAM_ADDR_LO,
tonga_smu->header_buffer.mc_addr_low);
fw_to_load = UCODE_ID_RLC_G_MASK
+ UCODE_ID_SDMA0_MASK
+ UCODE_ID_SDMA1_MASK
+ UCODE_ID_CP_CE_MASK
+ UCODE_ID_CP_ME_MASK
+ UCODE_ID_CP_PFP_MASK
+ UCODE_ID_CP_MEC_MASK;
PP_ASSERT_WITH_CODE(
0 == tonga_send_msg_to_smc_with_parameter_without_waiting(
smumgr, PPSMC_MSG_LoadUcodes, fw_to_load),
"Fail to Request SMU Load uCode", return 0);
return 0;
}
static int tonga_request_smu_load_specific_fw(struct pp_smumgr *smumgr,
uint32_t firmwareType)
{
return 0;
}
/**
* Upload the SMC firmware to the SMC microcontroller.
*
* @param smumgr the address of the powerplay hardware manager.
* @param pFirmware the data structure containing the various sections of the firmware.
*/
static int tonga_smu_upload_firmware_image(struct pp_smumgr *smumgr)
{
const uint8_t *src;
uint32_t byte_count;
uint32_t *data;
struct cgs_firmware_info info = {0};
if (smumgr == NULL || smumgr->device == NULL)
return -EINVAL;
cgs_get_firmware_info(smumgr->device,
tonga_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);
if (info.image_size & 3) {
printk(KERN_ERR "[ powerplay ] SMC ucode is not 4 bytes aligned\n");
return -EINVAL;
}
if (info.image_size > TONGA_SMC_SIZE) {
printk(KERN_ERR "[ powerplay ] SMC address is beyond the SMC RAM area\n");
return -EINVAL;
}
cgs_write_register(smumgr->device, mmSMC_IND_INDEX_0, 0x20000);
SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
byte_count = info.image_size;
src = (const uint8_t *)info.kptr;
data = (uint32_t *)src;
for (; byte_count >= 4; data++, byte_count -= 4)
cgs_write_register(smumgr->device, mmSMC_IND_DATA_0, data[0]);
SMUM_WRITE_FIELD(smumgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
return 0;
}
static int tonga_start_in_protection_mode(struct pp_smumgr *smumgr)
{
@ -624,7 +45,7 @@ static int tonga_start_in_protection_mode(struct pp_smumgr *smumgr)
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
result = tonga_smu_upload_firmware_image(smumgr);
result = smu7_upload_smu_firmware_image(smumgr);
if (result)
return result;
@ -654,7 +75,7 @@ static int tonga_start_in_protection_mode(struct pp_smumgr *smumgr)
/**
* Call Test SMU message with 0x20000 offset to trigger SMU start
*/
tonga_send_msg_to_smc_offset(smumgr);
smu7_send_msg_to_smc_offset(smumgr);
/* Wait for done bit to be set */
SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND,
@ -691,13 +112,13 @@ static int tonga_start_in_non_protection_mode(struct pp_smumgr *smumgr)
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
result = tonga_smu_upload_firmware_image(smumgr);
result = smu7_upload_smu_firmware_image(smumgr);
if (result != 0)
return result;
/* Set smc instruct start point at 0x0 */
tonga_program_jump_on_start(smumgr);
smu7_program_jump_on_start(smumgr);
SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
@ -719,7 +140,7 @@ static int tonga_start_smu(struct pp_smumgr *smumgr)
int result;
/* Only start SMC if SMC RAM is not running */
if (!tonga_is_smc_ram_running(smumgr)) {
if (!smu7_is_smc_ram_running(smumgr)) {
/*Check if SMU is running in protected mode*/
if (0 == SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
SMU_FIRMWARE, SMU_MODE)) {
@ -733,7 +154,7 @@ static int tonga_start_smu(struct pp_smumgr *smumgr)
}
}
result = tonga_request_smu_reload_fw(smumgr);
result = smu7_request_smu_load_fw(smumgr);
return result;
}
@ -747,70 +168,28 @@ static int tonga_start_smu(struct pp_smumgr *smumgr)
*/
static int tonga_smu_init(struct pp_smumgr *smumgr)
{
struct tonga_smumgr *tonga_smu;
uint8_t *internal_buf;
uint64_t mc_addr = 0;
struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend);
int i;
/* Allocate memory for backend private data */
tonga_smu = (struct tonga_smumgr *)(smumgr->backend);
tonga_smu->header_buffer.data_size =
((sizeof(struct SMU_DRAMData_TOC) / 4096) + 1) * 4096;
tonga_smu->smu_buffer.data_size = 200*4096;
smu_allocate_memory(smumgr->device,
tonga_smu->header_buffer.data_size,
CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB,
PAGE_SIZE,
&mc_addr,
&tonga_smu->header_buffer.kaddr,
&tonga_smu->header_buffer.handle);
tonga_smu->pHeader = tonga_smu->header_buffer.kaddr;
tonga_smu->header_buffer.mc_addr_high = smu_upper_32_bits(mc_addr);
tonga_smu->header_buffer.mc_addr_low = smu_lower_32_bits(mc_addr);
PP_ASSERT_WITH_CODE((NULL != tonga_smu->pHeader),
"Out of memory.",
kfree(smumgr->backend);
cgs_free_gpu_mem(smumgr->device,
(cgs_handle_t)tonga_smu->header_buffer.handle);
return -1);
smu_allocate_memory(smumgr->device,
tonga_smu->smu_buffer.data_size,
CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB,
PAGE_SIZE,
&mc_addr,
&tonga_smu->smu_buffer.kaddr,
&tonga_smu->smu_buffer.handle);
internal_buf = tonga_smu->smu_buffer.kaddr;
tonga_smu->smu_buffer.mc_addr_high = smu_upper_32_bits(mc_addr);
tonga_smu->smu_buffer.mc_addr_low = smu_lower_32_bits(mc_addr);
PP_ASSERT_WITH_CODE((NULL != internal_buf),
"Out of memory.",
kfree(smumgr->backend);
cgs_free_gpu_mem(smumgr->device,
(cgs_handle_t)tonga_smu->smu_buffer.handle);
return -1;);
if (smu7_init(smumgr))
return -EINVAL;
for (i = 0; i < SMU72_MAX_LEVELS_GRAPHICS; i++)
tonga_smu->activity_target[i] = 30;
smu_data->activity_target[i] = 30;
return 0;
}
static const struct pp_smumgr_func tonga_smu_funcs = {
.smu_init = &tonga_smu_init,
.smu_fini = &tonga_smu_fini,
.smu_fini = &smu7_smu_fini,
.start_smu = &tonga_start_smu,
.check_fw_load_finish = &tonga_check_fw_load_finish,
.request_smu_load_fw = &tonga_request_smu_reload_fw,
.request_smu_load_specific_fw = &tonga_request_smu_load_specific_fw,
.send_msg_to_smc = &tonga_send_msg_to_smc,
.send_msg_to_smc_with_parameter = &tonga_send_msg_to_smc_with_parameter,
.check_fw_load_finish = &smu7_check_fw_load_finish,
.request_smu_load_fw = &smu7_request_smu_load_fw,
.request_smu_load_specific_fw = NULL,
.send_msg_to_smc = &smu7_send_msg_to_smc,
.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
.download_pptable_settings = NULL,
.upload_pptable_settings = NULL,
.update_smc_table = tonga_update_smc_table,

View File

@ -26,16 +26,7 @@
#include "smu72_discrete.h"
#define SMC_RAM_END 0x40000
struct tonga_buffer_entry {
uint32_t data_size;
uint32_t mc_addr_low;
uint32_t mc_addr_high;
void *kaddr;
unsigned long handle;
};
#include "smu7_smumgr.h"
struct tonga_mc_reg_entry {
uint32_t mclk_max;
@ -52,19 +43,8 @@ struct tonga_mc_reg_table {
struct tonga_smumgr {
uint8_t *pHeader;
uint8_t *pMecImage;
uint32_t soft_regs_start;
uint32_t dpm_table_start;
uint32_t mc_reg_table_start;
uint32_t fan_table_start;
uint32_t arb_table_start;
struct tonga_buffer_entry header_buffer;
struct tonga_buffer_entry smu_buffer;
struct smu7_smumgr smu7_data;
struct SMU72_Discrete_DpmTable smc_state_table;
struct SMU72_Discrete_Ulv ulv_setting;
struct SMU72_Discrete_PmFuses power_tune_table;
@ -76,13 +56,4 @@ struct tonga_smumgr {
};
extern int tonga_smum_init(struct pp_smumgr *smumgr);
extern int tonga_copy_bytes_to_smc(struct pp_smumgr *smumgr,
uint32_t smcStartAddress, const uint8_t *src,
uint32_t byteCount, uint32_t limit);
extern int tonga_read_smc_sram_dword(struct pp_smumgr *smumgr, uint32_t smcAddress,
uint32_t *value, uint32_t limit);
extern int tonga_write_smc_sram_dword(struct pp_smumgr *smumgr, uint32_t smcAddress,
uint32_t value, uint32_t limit);
#endif