mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-02 14:36:46 +07:00
Merge branch 'uprobes/core' of git://git.kernel.org/pub/scm/linux/kernel/git/oleg/misc into perf/uprobes
Pull uprobes fixes and changes from Oleg Nesterov: " Denys found another nasty old bug in uprobes/x86: div, mul, shifts with count in CL, and cmpxchg are not handled correctly. Plus a couple of other minor fixes. Nobody acked the changes in x86/traps, hopefully they are simple enough, and I believe that they make sense anyway and allow to do more cleanups." Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
commit
a03b1e1c37
@ -98,7 +98,6 @@ static inline int get_si_code(unsigned long condition)
|
||||
|
||||
extern int panic_on_unrecovered_nmi;
|
||||
|
||||
void math_error(struct pt_regs *, int, int);
|
||||
void math_emulate(struct math_emu_info *);
|
||||
#ifndef CONFIG_X86_32
|
||||
asmlinkage void smp_thermal_interrupt(void);
|
||||
|
@ -50,9 +50,6 @@ struct arch_uprobe {
|
||||
u8 opc1;
|
||||
} branch;
|
||||
struct {
|
||||
#ifdef CONFIG_X86_64
|
||||
long riprel_target;
|
||||
#endif
|
||||
u8 fixups;
|
||||
u8 ilen;
|
||||
} def;
|
||||
|
@ -23,6 +23,7 @@
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/ptrace.h>
|
||||
#include <linux/uprobes.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/errno.h>
|
||||
@ -136,6 +137,37 @@ do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
|
||||
return -1;
|
||||
}
|
||||
|
||||
static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
|
||||
siginfo_t *info)
|
||||
{
|
||||
unsigned long siaddr;
|
||||
int sicode;
|
||||
|
||||
switch (trapnr) {
|
||||
default:
|
||||
return SEND_SIG_PRIV;
|
||||
|
||||
case X86_TRAP_DE:
|
||||
sicode = FPE_INTDIV;
|
||||
siaddr = uprobe_get_trap_addr(regs);
|
||||
break;
|
||||
case X86_TRAP_UD:
|
||||
sicode = ILL_ILLOPN;
|
||||
siaddr = uprobe_get_trap_addr(regs);
|
||||
break;
|
||||
case X86_TRAP_AC:
|
||||
sicode = BUS_ADRALN;
|
||||
siaddr = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
info->si_signo = signr;
|
||||
info->si_errno = 0;
|
||||
info->si_code = sicode;
|
||||
info->si_addr = (void __user *)siaddr;
|
||||
return info;
|
||||
}
|
||||
|
||||
static void __kprobes
|
||||
do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
|
||||
long error_code, siginfo_t *info)
|
||||
@ -168,60 +200,42 @@ do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
|
||||
}
|
||||
#endif
|
||||
|
||||
if (info)
|
||||
force_sig_info(signr, info, tsk);
|
||||
else
|
||||
force_sig(signr, tsk);
|
||||
force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
|
||||
}
|
||||
|
||||
static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
|
||||
unsigned long trapnr, int signr)
|
||||
{
|
||||
enum ctx_state prev_state = exception_enter();
|
||||
siginfo_t info;
|
||||
|
||||
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
|
||||
NOTIFY_STOP) {
|
||||
conditional_sti(regs);
|
||||
do_trap(trapnr, signr, str, regs, error_code,
|
||||
fill_trap_info(regs, signr, trapnr, &info));
|
||||
}
|
||||
|
||||
exception_exit(prev_state);
|
||||
}
|
||||
|
||||
#define DO_ERROR(trapnr, signr, str, name) \
|
||||
dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
|
||||
{ \
|
||||
enum ctx_state prev_state; \
|
||||
\
|
||||
prev_state = exception_enter(); \
|
||||
if (notify_die(DIE_TRAP, str, regs, error_code, \
|
||||
trapnr, signr) == NOTIFY_STOP) { \
|
||||
exception_exit(prev_state); \
|
||||
return; \
|
||||
} \
|
||||
conditional_sti(regs); \
|
||||
do_trap(trapnr, signr, str, regs, error_code, NULL); \
|
||||
exception_exit(prev_state); \
|
||||
do_error_trap(regs, error_code, str, trapnr, signr); \
|
||||
}
|
||||
|
||||
#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
|
||||
dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
|
||||
{ \
|
||||
siginfo_t info; \
|
||||
enum ctx_state prev_state; \
|
||||
\
|
||||
info.si_signo = signr; \
|
||||
info.si_errno = 0; \
|
||||
info.si_code = sicode; \
|
||||
info.si_addr = (void __user *)siaddr; \
|
||||
prev_state = exception_enter(); \
|
||||
if (notify_die(DIE_TRAP, str, regs, error_code, \
|
||||
trapnr, signr) == NOTIFY_STOP) { \
|
||||
exception_exit(prev_state); \
|
||||
return; \
|
||||
} \
|
||||
conditional_sti(regs); \
|
||||
do_trap(trapnr, signr, str, regs, error_code, &info); \
|
||||
exception_exit(prev_state); \
|
||||
}
|
||||
|
||||
DO_ERROR_INFO(X86_TRAP_DE, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip )
|
||||
DO_ERROR (X86_TRAP_OF, SIGSEGV, "overflow", overflow )
|
||||
DO_ERROR (X86_TRAP_BR, SIGSEGV, "bounds", bounds )
|
||||
DO_ERROR_INFO(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip )
|
||||
DO_ERROR (X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun )
|
||||
DO_ERROR (X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS )
|
||||
DO_ERROR (X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present )
|
||||
DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
|
||||
DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
|
||||
DO_ERROR(X86_TRAP_BR, SIGSEGV, "bounds", bounds)
|
||||
DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
|
||||
DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
|
||||
DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
|
||||
DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
|
||||
#ifdef CONFIG_X86_32
|
||||
DO_ERROR (X86_TRAP_SS, SIGBUS, "stack segment", stack_segment )
|
||||
DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
|
||||
#endif
|
||||
DO_ERROR_INFO(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0 )
|
||||
DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
|
||||
|
||||
#ifdef CONFIG_X86_64
|
||||
/* Runs on IST stack */
|
||||
@ -305,7 +319,7 @@ do_general_protection(struct pt_regs *regs, long error_code)
|
||||
pr_cont("\n");
|
||||
}
|
||||
|
||||
force_sig(SIGSEGV, tsk);
|
||||
force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
|
||||
exit:
|
||||
exception_exit(prev_state);
|
||||
}
|
||||
@ -488,7 +502,7 @@ dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
|
||||
* the correct behaviour even in the presence of the asynchronous
|
||||
* IRQ13 behaviour
|
||||
*/
|
||||
void math_error(struct pt_regs *regs, int error_code, int trapnr)
|
||||
static void math_error(struct pt_regs *regs, int error_code, int trapnr)
|
||||
{
|
||||
struct task_struct *task = current;
|
||||
siginfo_t info;
|
||||
@ -518,7 +532,7 @@ void math_error(struct pt_regs *regs, int error_code, int trapnr)
|
||||
task->thread.error_code = error_code;
|
||||
info.si_signo = SIGFPE;
|
||||
info.si_errno = 0;
|
||||
info.si_addr = (void __user *)regs->ip;
|
||||
info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
|
||||
if (trapnr == X86_TRAP_MF) {
|
||||
unsigned short cwd, swd;
|
||||
/*
|
||||
@ -645,7 +659,7 @@ void math_state_restore(void)
|
||||
*/
|
||||
if (unlikely(restore_fpu_checking(tsk))) {
|
||||
drop_init_fpu(tsk);
|
||||
force_sig(SIGSEGV, tsk);
|
||||
force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -41,8 +41,11 @@
|
||||
/* Instruction will modify TF, don't change it */
|
||||
#define UPROBE_FIX_SETF 0x04
|
||||
|
||||
#define UPROBE_FIX_RIP_AX 0x08
|
||||
#define UPROBE_FIX_RIP_CX 0x10
|
||||
#define UPROBE_FIX_RIP_SI 0x08
|
||||
#define UPROBE_FIX_RIP_DI 0x10
|
||||
#define UPROBE_FIX_RIP_BX 0x20
|
||||
#define UPROBE_FIX_RIP_MASK \
|
||||
(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
|
||||
|
||||
#define UPROBE_TRAP_NR UINT_MAX
|
||||
|
||||
@ -251,9 +254,9 @@ static inline bool is_64bit_mm(struct mm_struct *mm)
|
||||
* If arch_uprobe->insn doesn't use rip-relative addressing, return
|
||||
* immediately. Otherwise, rewrite the instruction so that it accesses
|
||||
* its memory operand indirectly through a scratch register. Set
|
||||
* def->fixups and def->riprel_target accordingly. (The contents of the
|
||||
* scratch register will be saved before we single-step the modified
|
||||
* instruction, and restored afterward).
|
||||
* def->fixups accordingly. (The contents of the scratch register
|
||||
* will be saved before we single-step the modified instruction,
|
||||
* and restored afterward).
|
||||
*
|
||||
* We do this because a rip-relative instruction can access only a
|
||||
* relatively small area (+/- 2 GB from the instruction), and the XOL
|
||||
@ -264,28 +267,120 @@ static inline bool is_64bit_mm(struct mm_struct *mm)
|
||||
*
|
||||
* Some useful facts about rip-relative instructions:
|
||||
*
|
||||
* - There's always a modrm byte.
|
||||
* - There's always a modrm byte with bit layout "00 reg 101".
|
||||
* - There's never a SIB byte.
|
||||
* - The displacement is always 4 bytes.
|
||||
* - REX.B=1 bit in REX prefix, which normally extends r/m field,
|
||||
* has no effect on rip-relative mode. It doesn't make modrm byte
|
||||
* with r/m=101 refer to register 1101 = R13.
|
||||
*/
|
||||
static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
|
||||
{
|
||||
u8 *cursor;
|
||||
u8 reg;
|
||||
u8 reg2;
|
||||
|
||||
if (!insn_rip_relative(insn))
|
||||
return;
|
||||
|
||||
/*
|
||||
* insn_rip_relative() would have decoded rex_prefix, modrm.
|
||||
* insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
|
||||
* Clear REX.b bit (extension of MODRM.rm field):
|
||||
* we want to encode rax/rcx, not r8/r9.
|
||||
* we want to encode low numbered reg, not r8+.
|
||||
*/
|
||||
if (insn->rex_prefix.nbytes) {
|
||||
cursor = auprobe->insn + insn_offset_rex_prefix(insn);
|
||||
*cursor &= 0xfe; /* Clearing REX.B bit */
|
||||
/* REX byte has 0100wrxb layout, clearing REX.b bit */
|
||||
*cursor &= 0xfe;
|
||||
}
|
||||
/*
|
||||
* Similar treatment for VEX3 prefix.
|
||||
* TODO: add XOP/EVEX treatment when insn decoder supports them
|
||||
*/
|
||||
if (insn->vex_prefix.nbytes == 3) {
|
||||
/*
|
||||
* vex2: c5 rvvvvLpp (has no b bit)
|
||||
* vex3/xop: c4/8f rxbmmmmm wvvvvLpp
|
||||
* evex: 62 rxbR00mm wvvvv1pp zllBVaaa
|
||||
* (evex will need setting of both b and x since
|
||||
* in non-sib encoding evex.x is 4th bit of MODRM.rm)
|
||||
* Setting VEX3.b (setting because it has inverted meaning):
|
||||
*/
|
||||
cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
|
||||
*cursor |= 0x20;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert from rip-relative addressing to register-relative addressing
|
||||
* via a scratch register.
|
||||
*
|
||||
* This is tricky since there are insns with modrm byte
|
||||
* which also use registers not encoded in modrm byte:
|
||||
* [i]div/[i]mul: implicitly use dx:ax
|
||||
* shift ops: implicitly use cx
|
||||
* cmpxchg: implicitly uses ax
|
||||
* cmpxchg8/16b: implicitly uses dx:ax and bx:cx
|
||||
* Encoding: 0f c7/1 modrm
|
||||
* The code below thinks that reg=1 (cx), chooses si as scratch.
|
||||
* mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
|
||||
* First appeared in Haswell (BMI2 insn). It is vex-encoded.
|
||||
* Example where none of bx,cx,dx can be used as scratch reg:
|
||||
* c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
|
||||
* [v]pcmpistri: implicitly uses cx, xmm0
|
||||
* [v]pcmpistrm: implicitly uses xmm0
|
||||
* [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
|
||||
* [v]pcmpestrm: implicitly uses ax, dx, xmm0
|
||||
* Evil SSE4.2 string comparison ops from hell.
|
||||
* maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
|
||||
* Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
|
||||
* Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
|
||||
* AMD says it has no 3-operand form (vex.vvvv must be 1111)
|
||||
* and that it can have only register operands, not mem
|
||||
* (its modrm byte must have mode=11).
|
||||
* If these restrictions will ever be lifted,
|
||||
* we'll need code to prevent selection of di as scratch reg!
|
||||
*
|
||||
* Summary: I don't know any insns with modrm byte which
|
||||
* use SI register implicitly. DI register is used only
|
||||
* by one insn (maskmovq) and BX register is used
|
||||
* only by one too (cmpxchg8b).
|
||||
* BP is stack-segment based (may be a problem?).
|
||||
* AX, DX, CX are off-limits (many implicit users).
|
||||
* SP is unusable (it's stack pointer - think about "pop mem";
|
||||
* also, rsp+disp32 needs sib encoding -> insn length change).
|
||||
*/
|
||||
|
||||
reg = MODRM_REG(insn); /* Fetch modrm.reg */
|
||||
reg2 = 0xff; /* Fetch vex.vvvv */
|
||||
if (insn->vex_prefix.nbytes == 2)
|
||||
reg2 = insn->vex_prefix.bytes[1];
|
||||
else if (insn->vex_prefix.nbytes == 3)
|
||||
reg2 = insn->vex_prefix.bytes[2];
|
||||
/*
|
||||
* TODO: add XOP, EXEV vvvv reading.
|
||||
*
|
||||
* vex.vvvv field is in bits 6-3, bits are inverted.
|
||||
* But in 32-bit mode, high-order bit may be ignored.
|
||||
* Therefore, let's consider only 3 low-order bits.
|
||||
*/
|
||||
reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
|
||||
/*
|
||||
* Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
|
||||
*
|
||||
* Choose scratch reg. Order is important: must not select bx
|
||||
* if we can use si (cmpxchg8b case!)
|
||||
*/
|
||||
if (reg != 6 && reg2 != 6) {
|
||||
reg2 = 6;
|
||||
auprobe->def.fixups |= UPROBE_FIX_RIP_SI;
|
||||
} else if (reg != 7 && reg2 != 7) {
|
||||
reg2 = 7;
|
||||
auprobe->def.fixups |= UPROBE_FIX_RIP_DI;
|
||||
/* TODO (paranoia): force maskmovq to not use di */
|
||||
} else {
|
||||
reg2 = 3;
|
||||
auprobe->def.fixups |= UPROBE_FIX_RIP_BX;
|
||||
}
|
||||
/*
|
||||
* Point cursor at the modrm byte. The next 4 bytes are the
|
||||
* displacement. Beyond the displacement, for some instructions,
|
||||
@ -293,43 +388,21 @@ static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
|
||||
*/
|
||||
cursor = auprobe->insn + insn_offset_modrm(insn);
|
||||
/*
|
||||
* Convert from rip-relative addressing to indirect addressing
|
||||
* via a scratch register. Change the r/m field from 0x5 (%rip)
|
||||
* to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
|
||||
* Change modrm from "00 reg 101" to "10 reg reg2". Example:
|
||||
* 89 05 disp32 mov %eax,disp32(%rip) becomes
|
||||
* 89 86 disp32 mov %eax,disp32(%rsi)
|
||||
*/
|
||||
reg = MODRM_REG(insn);
|
||||
if (reg == 0) {
|
||||
/*
|
||||
* The register operand (if any) is either the A register
|
||||
* (%rax, %eax, etc.) or (if the 0x4 bit is set in the
|
||||
* REX prefix) %r8. In any case, we know the C register
|
||||
* is NOT the register operand, so we use %rcx (register
|
||||
* #1) for the scratch register.
|
||||
*/
|
||||
auprobe->def.fixups |= UPROBE_FIX_RIP_CX;
|
||||
/* Change modrm from 00 000 101 to 00 000 001. */
|
||||
*cursor = 0x1;
|
||||
} else {
|
||||
/* Use %rax (register #0) for the scratch register. */
|
||||
auprobe->def.fixups |= UPROBE_FIX_RIP_AX;
|
||||
/* Change modrm from 00 xxx 101 to 00 xxx 000 */
|
||||
*cursor = (reg << 3);
|
||||
}
|
||||
|
||||
/* Target address = address of next instruction + (signed) offset */
|
||||
auprobe->def.riprel_target = (long)insn->length + insn->displacement.value;
|
||||
|
||||
/* Displacement field is gone; slide immediate field (if any) over. */
|
||||
if (insn->immediate.nbytes) {
|
||||
cursor++;
|
||||
memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
|
||||
}
|
||||
*cursor = 0x80 | (reg << 3) | reg2;
|
||||
}
|
||||
|
||||
static inline unsigned long *
|
||||
scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
|
||||
{
|
||||
return (auprobe->def.fixups & UPROBE_FIX_RIP_AX) ? ®s->ax : ®s->cx;
|
||||
if (auprobe->def.fixups & UPROBE_FIX_RIP_SI)
|
||||
return ®s->si;
|
||||
if (auprobe->def.fixups & UPROBE_FIX_RIP_DI)
|
||||
return ®s->di;
|
||||
return ®s->bx;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -338,31 +411,22 @@ scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
|
||||
*/
|
||||
static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
|
||||
{
|
||||
if (auprobe->def.fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) {
|
||||
if (auprobe->def.fixups & UPROBE_FIX_RIP_MASK) {
|
||||
struct uprobe_task *utask = current->utask;
|
||||
unsigned long *sr = scratch_reg(auprobe, regs);
|
||||
|
||||
utask->autask.saved_scratch_register = *sr;
|
||||
*sr = utask->vaddr + auprobe->def.riprel_target;
|
||||
*sr = utask->vaddr + auprobe->def.ilen;
|
||||
}
|
||||
}
|
||||
|
||||
static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs,
|
||||
long *correction)
|
||||
static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
|
||||
{
|
||||
if (auprobe->def.fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) {
|
||||
if (auprobe->def.fixups & UPROBE_FIX_RIP_MASK) {
|
||||
struct uprobe_task *utask = current->utask;
|
||||
unsigned long *sr = scratch_reg(auprobe, regs);
|
||||
|
||||
*sr = utask->autask.saved_scratch_register;
|
||||
/*
|
||||
* The original instruction includes a displacement, and so
|
||||
* is 4 bytes longer than what we've just single-stepped.
|
||||
* Caller may need to apply other fixups to handle stuff
|
||||
* like "jmpq *...(%rip)" and "callq *...(%rip)".
|
||||
*/
|
||||
if (correction)
|
||||
*correction += 4;
|
||||
}
|
||||
}
|
||||
#else /* 32-bit: */
|
||||
@ -379,8 +443,7 @@ static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
|
||||
static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
|
||||
{
|
||||
}
|
||||
static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs,
|
||||
long *correction)
|
||||
static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
|
||||
{
|
||||
}
|
||||
#endif /* CONFIG_X86_64 */
|
||||
@ -414,13 +477,30 @@ static int push_ret_address(struct pt_regs *regs, unsigned long ip)
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* We have to fix things up as follows:
|
||||
*
|
||||
* Typically, the new ip is relative to the copied instruction. We need
|
||||
* to make it relative to the original instruction (FIX_IP). Exceptions
|
||||
* are return instructions and absolute or indirect jump or call instructions.
|
||||
*
|
||||
* If the single-stepped instruction was a call, the return address that
|
||||
* is atop the stack is the address following the copied instruction. We
|
||||
* need to make it the address following the original instruction (FIX_CALL).
|
||||
*
|
||||
* If the original instruction was a rip-relative instruction such as
|
||||
* "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
|
||||
* instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
|
||||
* We need to restore the contents of the scratch register
|
||||
* (FIX_RIP_reg).
|
||||
*/
|
||||
static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
|
||||
{
|
||||
struct uprobe_task *utask = current->utask;
|
||||
long correction = (long)(utask->vaddr - utask->xol_vaddr);
|
||||
|
||||
riprel_post_xol(auprobe, regs, &correction);
|
||||
riprel_post_xol(auprobe, regs);
|
||||
if (auprobe->def.fixups & UPROBE_FIX_IP) {
|
||||
long correction = utask->vaddr - utask->xol_vaddr;
|
||||
regs->ip += correction;
|
||||
} else if (auprobe->def.fixups & UPROBE_FIX_CALL) {
|
||||
regs->sp += sizeof_long();
|
||||
@ -436,7 +516,7 @@ static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs
|
||||
|
||||
static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
|
||||
{
|
||||
riprel_post_xol(auprobe, regs, NULL);
|
||||
riprel_post_xol(auprobe, regs);
|
||||
}
|
||||
|
||||
static struct uprobe_xol_ops default_xol_ops = {
|
||||
@ -720,23 +800,6 @@ bool arch_uprobe_xol_was_trapped(struct task_struct *t)
|
||||
* single-step, we single-stepped a copy of the instruction.
|
||||
*
|
||||
* This function prepares to resume execution after the single-step.
|
||||
* We have to fix things up as follows:
|
||||
*
|
||||
* Typically, the new ip is relative to the copied instruction. We need
|
||||
* to make it relative to the original instruction (FIX_IP). Exceptions
|
||||
* are return instructions and absolute or indirect jump or call instructions.
|
||||
*
|
||||
* If the single-stepped instruction was a call, the return address that
|
||||
* is atop the stack is the address following the copied instruction. We
|
||||
* need to make it the address following the original instruction (FIX_CALL).
|
||||
*
|
||||
* If the original instruction was a rip-relative instruction such as
|
||||
* "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
|
||||
* instruction using a scratch register -- e.g., "movl %edx,(%rax)".
|
||||
* We need to restore the contents of the scratch register and adjust
|
||||
* the ip, keeping in mind that the instruction we executed is 4 bytes
|
||||
* shorter than the original instruction (since we squeezed out the offset
|
||||
* field). (FIX_RIP_AX or FIX_RIP_CX)
|
||||
*/
|
||||
int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
|
||||
{
|
||||
|
@ -102,6 +102,7 @@ extern int __weak set_orig_insn(struct arch_uprobe *aup, struct mm_struct *mm, u
|
||||
extern bool __weak is_swbp_insn(uprobe_opcode_t *insn);
|
||||
extern bool __weak is_trap_insn(uprobe_opcode_t *insn);
|
||||
extern unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs);
|
||||
extern unsigned long uprobe_get_trap_addr(struct pt_regs *regs);
|
||||
extern int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t);
|
||||
extern int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc);
|
||||
extern int uprobe_apply(struct inode *inode, loff_t offset, struct uprobe_consumer *uc, bool);
|
||||
@ -130,6 +131,9 @@ extern bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *r
|
||||
#else /* !CONFIG_UPROBES */
|
||||
struct uprobes_state {
|
||||
};
|
||||
|
||||
#define uprobe_get_trap_addr(regs) instruction_pointer(regs)
|
||||
|
||||
static inline int
|
||||
uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
|
||||
{
|
||||
|
@ -279,18 +279,13 @@ static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t
|
||||
* supported by that architecture then we need to modify is_trap_at_addr and
|
||||
* uprobe_write_opcode accordingly. This would never be a problem for archs
|
||||
* that have fixed length instructions.
|
||||
*/
|
||||
|
||||
/*
|
||||
*
|
||||
* uprobe_write_opcode - write the opcode at a given virtual address.
|
||||
* @mm: the probed process address space.
|
||||
* @vaddr: the virtual address to store the opcode.
|
||||
* @opcode: opcode to be written at @vaddr.
|
||||
*
|
||||
* Called with mm->mmap_sem held (for read and with a reference to
|
||||
* mm).
|
||||
*
|
||||
* For mm @mm, write the opcode at @vaddr.
|
||||
* Called with mm->mmap_sem held for write.
|
||||
* Return 0 (success) or a negative errno.
|
||||
*/
|
||||
int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
|
||||
@ -310,21 +305,25 @@ int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
|
||||
if (ret <= 0)
|
||||
goto put_old;
|
||||
|
||||
ret = anon_vma_prepare(vma);
|
||||
if (ret)
|
||||
goto put_old;
|
||||
|
||||
ret = -ENOMEM;
|
||||
new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
|
||||
if (!new_page)
|
||||
goto put_old;
|
||||
|
||||
__SetPageUptodate(new_page);
|
||||
if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
|
||||
goto put_new;
|
||||
|
||||
__SetPageUptodate(new_page);
|
||||
copy_highpage(new_page, old_page);
|
||||
copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
|
||||
|
||||
ret = anon_vma_prepare(vma);
|
||||
if (ret)
|
||||
goto put_new;
|
||||
|
||||
ret = __replace_page(vma, vaddr, old_page, new_page);
|
||||
if (ret)
|
||||
mem_cgroup_uncharge_page(new_page);
|
||||
|
||||
put_new:
|
||||
page_cache_release(new_page);
|
||||
@ -1352,6 +1351,16 @@ unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
|
||||
return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
|
||||
}
|
||||
|
||||
unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
|
||||
{
|
||||
struct uprobe_task *utask = current->utask;
|
||||
|
||||
if (unlikely(utask && utask->active_uprobe))
|
||||
return utask->vaddr;
|
||||
|
||||
return instruction_pointer(regs);
|
||||
}
|
||||
|
||||
/*
|
||||
* Called with no locks held.
|
||||
* Called in context of a exiting or a exec-ing thread.
|
||||
|
Loading…
Reference in New Issue
Block a user