perf sched: Don't read all tracepoint variables in advance

Do it just at the actual consumer of these fields, that way we avoid
needless lookups:

  [root@sandy ~]# perf sched record sleep 30s
  [ perf record: Woken up 1 times to write data ]
  [ perf record: Captured and wrote 8.585 MB perf.data (~375063 samples) ]

Before:

  [root@sandy ~]# perf stat -r 10 perf sched lat > /dev/null

   Performance counter stats for 'perf sched lat' (10 runs):

          103.592215 task-clock                #    0.993 CPUs utilized            ( +-  0.33% )
                  12 context-switches          #    0.114 K/sec                    ( +-  3.29% )
                   0 cpu-migrations            #    0.000 K/sec
               7,605 page-faults               #    0.073 M/sec                    ( +-  0.00% )
         345,796,112 cycles                    #    3.338 GHz                      ( +-  0.07% ) [82.90%]
         106,876,796 stalled-cycles-frontend   #   30.91% frontend cycles idle     ( +-  0.38% ) [83.23%]
          62,060,877 stalled-cycles-backend    #   17.95% backend  cycles idle     ( +-  0.80% ) [67.14%]
         628,246,586 instructions              #    1.82  insns per cycle
                                               #    0.17  stalled cycles per insn  ( +-  0.04% ) [83.64%]
         134,962,057 branches                  # 1302.820 M/sec                    ( +-  0.10% ) [83.64%]
           1,233,037 branch-misses             #    0.91% of all branches          ( +-  0.29% ) [83.41%]

         0.104333272 seconds time elapsed                                          ( +-  0.33% )

  [root@sandy ~]# perf stat -r 10 perf sched lat > /dev/null

   Performance counter stats for 'perf sched lat' (10 runs):

         98.848272 task-clock                #    0.993 CPUs utilized            ( +-  0.48% )
                11 context-switches          #    0.112 K/sec                    ( +-  2.83% )
                 0 cpu-migrations            #    0.003 K/sec                    ( +- 50.92% )
             7,604 page-faults               #    0.077 M/sec                    ( +-  0.00% )
       332,216,085 cycles                    #    3.361 GHz                      ( +-  0.14% ) [82.87%]
       100,623,710 stalled-cycles-frontend   #   30.29% frontend cycles idle     ( +-  0.53% ) [82.95%]
        58,788,692 stalled-cycles-backend    #   17.70% backend  cycles idle     ( +-  0.59% ) [67.15%]
       609,402,433 instructions              #    1.83  insns per cycle
                                             #    0.17  stalled cycles per insn  ( +-  0.04% ) [83.76%]
       131,277,138 branches                  # 1328.067 M/sec                    ( +-  0.06% ) [83.77%]
         1,117,871 branch-misses             #    0.85% of all branches          ( +-  0.32% ) [83.51%]

       0.099580430 seconds time elapsed                                          ( +-  0.48% )

  [root@sandy ~]#

Cc: David Ahern <dsahern@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/n/tip-kracdpw8wqlr0xjh75uk8g11@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This commit is contained in:
Arnaldo Carvalho de Melo 2012-09-11 19:29:17 -03:00
parent 2b7fcbc5a9
commit 9ec3f4e437

View File

@ -97,73 +97,25 @@ struct work_atoms {
typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
struct trace_switch_event {
char *prev_comm;
u32 prev_pid;
u32 prev_prio;
u64 prev_state;
char *next_comm;
u32 next_pid;
u32 next_prio;
};
struct trace_runtime_event {
char *comm;
u32 pid;
u64 runtime;
u64 vruntime;
};
struct trace_wakeup_event {
char *comm;
u32 pid;
u32 prio;
u32 success;
u32 cpu;
};
struct trace_fork_event {
char *parent_comm;
u32 parent_pid;
char *child_comm;
u32 child_pid;
};
struct trace_migrate_task_event {
char *comm;
u32 pid;
u32 prio;
u32 cpu;
};
struct perf_sched;
struct trace_sched_handler {
int (*switch_event)(struct perf_sched *sched,
struct trace_switch_event *event,
struct machine *machine,
struct perf_evsel *evsel,
struct perf_sample *sample);
int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
struct perf_sample *sample, struct machine *machine);
int (*runtime_event)(struct perf_sched *sched,
struct trace_runtime_event *event,
struct machine *machine,
struct perf_sample *sample);
int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
struct perf_sample *sample, struct machine *machine);
int (*wakeup_event)(struct perf_sched *sched,
struct trace_wakeup_event *event,
struct machine *machine,
struct perf_evsel *evsel,
struct perf_sample *sample);
int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
struct perf_sample *sample, struct machine *machine);
int (*fork_event)(struct perf_sched *sched,
struct trace_fork_event *event,
struct perf_evsel *evsel);
int (*fork_event)(struct perf_sched *sched, struct perf_evsel *evsel,
struct perf_sample *sample);
int (*migrate_task_event)(struct perf_sched *sched,
struct trace_migrate_task_event *event,
struct machine *machine,
struct perf_sample *sample);
struct perf_evsel *evsel,
struct perf_sample *sample,
struct machine *machine);
};
struct perf_sched {
@ -700,33 +652,36 @@ static void test_calibrations(struct perf_sched *sched)
static int
replay_wakeup_event(struct perf_sched *sched,
struct trace_wakeup_event *wakeup_event,
struct machine *machine __maybe_unused,
struct perf_evsel *evsel, struct perf_sample *sample)
struct perf_evsel *evsel, struct perf_sample *sample,
struct machine *machine __maybe_unused)
{
const char *comm = perf_evsel__strval(evsel, sample, "comm");
const u32 pid = perf_evsel__intval(evsel, sample, "pid");
struct task_desc *waker, *wakee;
if (verbose) {
printf("sched_wakeup event %p\n", evsel);
printf(" ... pid %d woke up %s/%d\n",
sample->tid, wakeup_event->comm, wakeup_event->pid);
printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
}
waker = register_pid(sched, sample->tid, "<unknown>");
wakee = register_pid(sched, wakeup_event->pid, wakeup_event->comm);
wakee = register_pid(sched, pid, comm);
add_sched_event_wakeup(sched, waker, sample->time, wakee);
return 0;
}
static int
replay_switch_event(struct perf_sched *sched,
struct trace_switch_event *switch_event,
struct machine *machine __maybe_unused,
static int replay_switch_event(struct perf_sched *sched,
struct perf_evsel *evsel,
struct perf_sample *sample)
struct perf_sample *sample,
struct machine *machine __maybe_unused)
{
const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
*next_comm = perf_evsel__strval(evsel, sample, "next_comm");
const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
next_pid = perf_evsel__intval(evsel, sample, "next_pid");
const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
struct task_desc *prev, __maybe_unused *next;
u64 timestamp0, timestamp = sample->time;
int cpu = sample->cpu;
@ -749,35 +704,36 @@ replay_switch_event(struct perf_sched *sched,
return -1;
}
if (verbose) {
printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
switch_event->prev_comm, switch_event->prev_pid,
switch_event->next_comm, switch_event->next_pid,
delta);
}
pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
prev_comm, prev_pid, next_comm, next_pid, delta);
prev = register_pid(sched, switch_event->prev_pid, switch_event->prev_comm);
next = register_pid(sched, switch_event->next_pid, switch_event->next_comm);
prev = register_pid(sched, prev_pid, prev_comm);
next = register_pid(sched, next_pid, next_comm);
sched->cpu_last_switched[cpu] = timestamp;
add_sched_event_run(sched, prev, timestamp, delta);
add_sched_event_sleep(sched, prev, timestamp, switch_event->prev_state);
add_sched_event_sleep(sched, prev, timestamp, prev_state);
return 0;
}
static int
replay_fork_event(struct perf_sched *sched, struct trace_fork_event *fork_event,
struct perf_evsel *evsel)
static int replay_fork_event(struct perf_sched *sched, struct perf_evsel *evsel,
struct perf_sample *sample)
{
const char *parent_comm = perf_evsel__strval(evsel, sample, "parent_comm"),
*child_comm = perf_evsel__strval(evsel, sample, "child_comm");
const u32 parent_pid = perf_evsel__intval(evsel, sample, "parent_pid"),
child_pid = perf_evsel__intval(evsel, sample, "child_pid");
if (verbose) {
printf("sched_fork event %p\n", evsel);
printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
printf("... parent: %s/%d\n", parent_comm, parent_pid);
printf("... child: %s/%d\n", child_comm, child_pid);
}
register_pid(sched, fork_event->parent_pid, fork_event->parent_comm);
register_pid(sched, fork_event->child_pid, fork_event->child_comm);
register_pid(sched, parent_pid, parent_comm);
register_pid(sched, child_pid, child_comm);
return 0;
}
@ -870,18 +826,18 @@ static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
}
static int latency_fork_event(struct perf_sched *sched __maybe_unused,
struct trace_fork_event *fork_event __maybe_unused,
struct perf_evsel *evsel __maybe_unused)
struct perf_evsel *evsel __maybe_unused,
struct perf_sample *sample __maybe_unused)
{
/* should insert the newcomer */
return 0;
}
static char sched_out_state(struct trace_switch_event *switch_event)
static char sched_out_state(u64 prev_state)
{
const char *str = TASK_STATE_TO_CHAR_STR;
return str[switch_event->prev_state];
return str[prev_state];
}
static int
@ -951,13 +907,14 @@ add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
atoms->nb_atoms++;
}
static int
latency_switch_event(struct perf_sched *sched,
struct trace_switch_event *switch_event,
struct machine *machine,
struct perf_evsel *evsel __maybe_unused,
struct perf_sample *sample)
static int latency_switch_event(struct perf_sched *sched,
struct perf_evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
next_pid = perf_evsel__intval(evsel, sample, "next_pid");
const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
struct work_atoms *out_events, *in_events;
struct thread *sched_out, *sched_in;
u64 timestamp0, timestamp = sample->time;
@ -978,8 +935,8 @@ latency_switch_event(struct perf_sched *sched,
return -1;
}
sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
sched_in = machine__findnew_thread(machine, switch_event->next_pid);
sched_out = machine__findnew_thread(machine, prev_pid);
sched_in = machine__findnew_thread(machine, next_pid);
out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
if (!out_events) {
@ -991,7 +948,7 @@ latency_switch_event(struct perf_sched *sched,
return -1;
}
}
if (add_sched_out_event(out_events, sched_out_state(switch_event), timestamp))
if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
return -1;
in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
@ -1015,12 +972,14 @@ latency_switch_event(struct perf_sched *sched,
return 0;
}
static int
latency_runtime_event(struct perf_sched *sched,
struct trace_runtime_event *runtime_event,
struct machine *machine, struct perf_sample *sample)
static int latency_runtime_event(struct perf_sched *sched,
struct perf_evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
struct thread *thread = machine__findnew_thread(machine, runtime_event->pid);
const u32 pid = perf_evsel__intval(evsel, sample, "pid");
const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
struct thread *thread = machine__findnew_thread(machine, pid);
struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
u64 timestamp = sample->time;
int cpu = sample->cpu;
@ -1038,27 +997,27 @@ latency_runtime_event(struct perf_sched *sched,
return -1;
}
add_runtime_event(atoms, runtime_event->runtime, timestamp);
add_runtime_event(atoms, runtime, timestamp);
return 0;
}
static int
latency_wakeup_event(struct perf_sched *sched,
struct trace_wakeup_event *wakeup_event,
struct machine *machine,
struct perf_evsel *evsel __maybe_unused,
struct perf_sample *sample)
static int latency_wakeup_event(struct perf_sched *sched,
struct perf_evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
const u32 pid = perf_evsel__intval(evsel, sample, "pid"),
success = perf_evsel__intval(evsel, sample, "success");
struct work_atoms *atoms;
struct work_atom *atom;
struct thread *wakee;
u64 timestamp = sample->time;
/* Note for later, it may be interesting to observe the failing cases */
if (!wakeup_event->success)
if (!success)
return 0;
wakee = machine__findnew_thread(machine, wakeup_event->pid);
wakee = machine__findnew_thread(machine, pid);
atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
if (!atoms) {
if (thread_atoms_insert(sched, wakee))
@ -1095,11 +1054,12 @@ latency_wakeup_event(struct perf_sched *sched,
return 0;
}
static int
latency_migrate_task_event(struct perf_sched *sched,
struct trace_migrate_task_event *migrate_task_event,
struct machine *machine, struct perf_sample *sample)
static int latency_migrate_task_event(struct perf_sched *sched,
struct perf_evsel *evsel,
struct perf_sample *sample,
struct machine *machine)
{
const u32 pid = perf_evsel__intval(evsel, sample, "pid");
u64 timestamp = sample->time;
struct work_atoms *atoms;
struct work_atom *atom;
@ -1111,7 +1071,7 @@ latency_migrate_task_event(struct perf_sched *sched,
if (sched->profile_cpu == -1)
return 0;
migrant = machine__findnew_thread(machine, migrate_task_event->pid);
migrant = machine__findnew_thread(machine, pid);
atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
if (!atoms) {
if (thread_atoms_insert(sched, migrant))
@ -1296,28 +1256,17 @@ static int process_sched_wakeup_event(struct perf_tool *tool,
{
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
if (sched->tp_handler->wakeup_event) {
struct trace_wakeup_event event = {
.comm = perf_evsel__strval(evsel, sample, "comm"),
.pid = perf_evsel__intval(evsel, sample, "pid"),
.prio = perf_evsel__intval(evsel, sample, "prio"),
.success = perf_evsel__intval(evsel, sample, "success"),
.cpu = perf_evsel__intval(evsel, sample, "cpu"),
};
return sched->tp_handler->wakeup_event(sched, &event, machine, evsel, sample);
}
if (sched->tp_handler->wakeup_event)
return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
return 0;
}
static int
map_switch_event(struct perf_sched *sched,
struct trace_switch_event *switch_event,
struct machine *machine,
struct perf_evsel *evsel __maybe_unused,
struct perf_sample *sample)
static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
struct perf_sample *sample, struct machine *machine)
{
const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
next_pid = perf_evsel__intval(evsel, sample, "next_pid");
struct thread *sched_out __maybe_unused, *sched_in;
int new_shortname;
u64 timestamp0, timestamp = sample->time;
@ -1341,8 +1290,8 @@ map_switch_event(struct perf_sched *sched,
return -1;
}
sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
sched_in = machine__findnew_thread(machine, switch_event->next_pid);
sched_out = machine__findnew_thread(machine, prev_pid);
sched_in = machine__findnew_thread(machine, next_pid);
sched->curr_thread[this_cpu] = sched_in;
@ -1411,19 +1360,8 @@ static int process_sched_switch_event(struct perf_tool *tool,
sched->nr_context_switch_bugs++;
}
if (sched->tp_handler->switch_event) {
struct trace_switch_event event = {
.prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
.prev_pid = prev_pid,
.prev_prio = perf_evsel__intval(evsel, sample, "prev_prio"),
.prev_state = perf_evsel__intval(evsel, sample, "prev_state"),
.next_comm = perf_evsel__strval(evsel, sample, "next_comm"),
.next_pid = next_pid,
.next_prio = perf_evsel__intval(evsel, sample, "next_prio"),
};
err = sched->tp_handler->switch_event(sched, &event, machine, evsel, sample);
}
if (sched->tp_handler->switch_event)
err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
sched->curr_pid[this_cpu] = next_pid;
return err;
@ -1436,15 +1374,8 @@ static int process_sched_runtime_event(struct perf_tool *tool,
{
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
if (sched->tp_handler->runtime_event) {
struct trace_runtime_event event = {
.comm = perf_evsel__strval(evsel, sample, "comm"),
.pid = perf_evsel__intval(evsel, sample, "pid"),
.runtime = perf_evsel__intval(evsel, sample, "runtime"),
.vruntime = perf_evsel__intval(evsel, sample, "vruntime"),
};
return sched->tp_handler->runtime_event(sched, &event, machine, sample);
}
if (sched->tp_handler->runtime_event)
return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
return 0;
}
@ -1456,15 +1387,8 @@ static int process_sched_fork_event(struct perf_tool *tool,
{
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
if (sched->tp_handler->fork_event) {
struct trace_fork_event event = {
.parent_comm = perf_evsel__strval(evsel, sample, "parent_comm"),
.child_comm = perf_evsel__strval(evsel, sample, "child_comm"),
.parent_pid = perf_evsel__intval(evsel, sample, "parent_pid"),
.child_pid = perf_evsel__intval(evsel, sample, "child_pid"),
};
return sched->tp_handler->fork_event(sched, &event, evsel);
}
if (sched->tp_handler->fork_event)
return sched->tp_handler->fork_event(sched, evsel, sample);
return 0;
}
@ -1485,15 +1409,8 @@ static int process_sched_migrate_task_event(struct perf_tool *tool,
{
struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
if (sched->tp_handler->migrate_task_event) {
struct trace_migrate_task_event event = {
.comm = perf_evsel__strval(evsel, sample, "comm"),
.pid = perf_evsel__intval(evsel, sample, "pid"),
.prio = perf_evsel__intval(evsel, sample, "prio"),
.cpu = perf_evsel__intval(evsel, sample, "cpu"),
};
return sched->tp_handler->migrate_task_event(sched, &event, machine, sample);
}
if (sched->tp_handler->migrate_task_event)
return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
return 0;
}