mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-19 02:47:23 +07:00
pwm: Add support for sl28cpld PWM controller
Add support for the PWM controller of the sl28cpld board management controller. This is part of a multi-function device driver. The controller has one PWM channel and can just generate four distinct frequencies. Signed-off-by: Michael Walle <michael@walle.cc> Acked-by: Thierry Reding <thierry.reding@gmail.com> Reviewed-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Lee Jones <lee.jones@linaro.org>
This commit is contained in:
parent
85174ca663
commit
9db33d221e
@ -428,6 +428,16 @@ config PWM_SIFIVE
|
||||
To compile this driver as a module, choose M here: the module
|
||||
will be called pwm-sifive.
|
||||
|
||||
config PWM_SL28CPLD
|
||||
tristate "Kontron sl28cpld PWM support"
|
||||
depends on MFD_SL28CPLD || COMPILE_TEST
|
||||
help
|
||||
Generic PWM framework driver for board management controller
|
||||
found on the Kontron sl28 CPLD.
|
||||
|
||||
To compile this driver as a module, choose M here: the module
|
||||
will be called pwm-sl28cpld.
|
||||
|
||||
config PWM_SPEAR
|
||||
tristate "STMicroelectronics SPEAr PWM support"
|
||||
depends on PLAT_SPEAR || COMPILE_TEST
|
||||
|
@ -40,6 +40,7 @@ obj-$(CONFIG_PWM_RENESAS_TPU) += pwm-renesas-tpu.o
|
||||
obj-$(CONFIG_PWM_ROCKCHIP) += pwm-rockchip.o
|
||||
obj-$(CONFIG_PWM_SAMSUNG) += pwm-samsung.o
|
||||
obj-$(CONFIG_PWM_SIFIVE) += pwm-sifive.o
|
||||
obj-$(CONFIG_PWM_SL28CPLD) += pwm-sl28cpld.o
|
||||
obj-$(CONFIG_PWM_SPEAR) += pwm-spear.o
|
||||
obj-$(CONFIG_PWM_SPRD) += pwm-sprd.o
|
||||
obj-$(CONFIG_PWM_STI) += pwm-sti.o
|
||||
|
270
drivers/pwm/pwm-sl28cpld.c
Normal file
270
drivers/pwm/pwm-sl28cpld.c
Normal file
@ -0,0 +1,270 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-only
|
||||
/*
|
||||
* sl28cpld PWM driver
|
||||
*
|
||||
* Copyright (c) 2020 Michael Walle <michael@walle.cc>
|
||||
*
|
||||
* There is no public datasheet available for this PWM core. But it is easy
|
||||
* enough to be briefly explained. It consists of one 8-bit counter. The PWM
|
||||
* supports four distinct frequencies by selecting when to reset the counter.
|
||||
* With the prescaler setting you can select which bit of the counter is used
|
||||
* to reset it. This implies that the higher the frequency the less remaining
|
||||
* bits are available for the actual counter.
|
||||
*
|
||||
* Let cnt[7:0] be the counter, clocked at 32kHz:
|
||||
* +-----------+--------+--------------+-----------+---------------+
|
||||
* | prescaler | reset | counter bits | frequency | period length |
|
||||
* +-----------+--------+--------------+-----------+---------------+
|
||||
* | 0 | cnt[7] | cnt[6:0] | 250 Hz | 4000000 ns |
|
||||
* | 1 | cnt[6] | cnt[5:0] | 500 Hz | 2000000 ns |
|
||||
* | 2 | cnt[5] | cnt[4:0] | 1 kHz | 1000000 ns |
|
||||
* | 3 | cnt[4] | cnt[3:0] | 2 kHz | 500000 ns |
|
||||
* +-----------+--------+--------------+-----------+---------------+
|
||||
*
|
||||
* Limitations:
|
||||
* - The hardware cannot generate a 100% duty cycle if the prescaler is 0.
|
||||
* - The hardware cannot atomically set the prescaler and the counter value,
|
||||
* which might lead to glitches and inconsistent states if a write fails.
|
||||
* - The counter is not reset if you switch the prescaler which leads
|
||||
* to glitches, too.
|
||||
* - The duty cycle will switch immediately and not after a complete cycle.
|
||||
* - Depending on the actual implementation, disabling the PWM might have
|
||||
* side effects. For example, if the output pin is shared with a GPIO pin
|
||||
* it will automatically switch back to GPIO mode.
|
||||
*/
|
||||
|
||||
#include <linux/bitfield.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/mod_devicetable.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/pwm.h>
|
||||
#include <linux/regmap.h>
|
||||
|
||||
/*
|
||||
* PWM timer block registers.
|
||||
*/
|
||||
#define SL28CPLD_PWM_CTRL 0x00
|
||||
#define SL28CPLD_PWM_CTRL_ENABLE BIT(7)
|
||||
#define SL28CPLD_PWM_CTRL_PRESCALER_MASK GENMASK(1, 0)
|
||||
#define SL28CPLD_PWM_CYCLE 0x01
|
||||
#define SL28CPLD_PWM_CYCLE_MAX GENMASK(6, 0)
|
||||
|
||||
#define SL28CPLD_PWM_CLK 32000 /* 32 kHz */
|
||||
#define SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler) (1 << (7 - (prescaler)))
|
||||
#define SL28CPLD_PWM_PERIOD(prescaler) \
|
||||
(NSEC_PER_SEC / SL28CPLD_PWM_CLK * SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler))
|
||||
|
||||
/*
|
||||
* We calculate the duty cycle like this:
|
||||
* duty_cycle_ns = pwm_cycle_reg * max_period_ns / max_duty_cycle
|
||||
*
|
||||
* With
|
||||
* max_period_ns = 1 << (7 - prescaler) / SL28CPLD_PWM_CLK * NSEC_PER_SEC
|
||||
* max_duty_cycle = 1 << (7 - prescaler)
|
||||
* this then simplifies to:
|
||||
* duty_cycle_ns = pwm_cycle_reg / SL28CPLD_PWM_CLK * NSEC_PER_SEC
|
||||
* = NSEC_PER_SEC / SL28CPLD_PWM_CLK * pwm_cycle_reg
|
||||
*
|
||||
* NSEC_PER_SEC is a multiple of SL28CPLD_PWM_CLK, therefore we're not losing
|
||||
* precision by doing the divison first.
|
||||
*/
|
||||
#define SL28CPLD_PWM_TO_DUTY_CYCLE(reg) \
|
||||
(NSEC_PER_SEC / SL28CPLD_PWM_CLK * (reg))
|
||||
#define SL28CPLD_PWM_FROM_DUTY_CYCLE(duty_cycle) \
|
||||
(DIV_ROUND_DOWN_ULL((duty_cycle), NSEC_PER_SEC / SL28CPLD_PWM_CLK))
|
||||
|
||||
#define sl28cpld_pwm_read(priv, reg, val) \
|
||||
regmap_read((priv)->regmap, (priv)->offset + (reg), (val))
|
||||
#define sl28cpld_pwm_write(priv, reg, val) \
|
||||
regmap_write((priv)->regmap, (priv)->offset + (reg), (val))
|
||||
|
||||
struct sl28cpld_pwm {
|
||||
struct pwm_chip pwm_chip;
|
||||
struct regmap *regmap;
|
||||
u32 offset;
|
||||
};
|
||||
|
||||
static void sl28cpld_pwm_get_state(struct pwm_chip *chip,
|
||||
struct pwm_device *pwm,
|
||||
struct pwm_state *state)
|
||||
{
|
||||
struct sl28cpld_pwm *priv = dev_get_drvdata(chip->dev);
|
||||
unsigned int reg;
|
||||
int prescaler;
|
||||
|
||||
sl28cpld_pwm_read(priv, SL28CPLD_PWM_CTRL, ®);
|
||||
|
||||
state->enabled = reg & SL28CPLD_PWM_CTRL_ENABLE;
|
||||
|
||||
prescaler = FIELD_GET(SL28CPLD_PWM_CTRL_PRESCALER_MASK, reg);
|
||||
state->period = SL28CPLD_PWM_PERIOD(prescaler);
|
||||
|
||||
sl28cpld_pwm_read(priv, SL28CPLD_PWM_CYCLE, ®);
|
||||
state->duty_cycle = SL28CPLD_PWM_TO_DUTY_CYCLE(reg);
|
||||
state->polarity = PWM_POLARITY_NORMAL;
|
||||
|
||||
/*
|
||||
* Sanitize values for the PWM core. Depending on the prescaler it
|
||||
* might happen that we calculate a duty_cycle greater than the actual
|
||||
* period. This might happen if someone (e.g. the bootloader) sets an
|
||||
* invalid combination of values. The behavior of the hardware is
|
||||
* undefined in this case. But we need to report sane values back to
|
||||
* the PWM core.
|
||||
*/
|
||||
state->duty_cycle = min(state->duty_cycle, state->period);
|
||||
}
|
||||
|
||||
static int sl28cpld_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
|
||||
const struct pwm_state *state)
|
||||
{
|
||||
struct sl28cpld_pwm *priv = dev_get_drvdata(chip->dev);
|
||||
unsigned int cycle, prescaler;
|
||||
bool write_duty_cycle_first;
|
||||
int ret;
|
||||
u8 ctrl;
|
||||
|
||||
/* Polarity inversion is not supported */
|
||||
if (state->polarity != PWM_POLARITY_NORMAL)
|
||||
return -EINVAL;
|
||||
|
||||
/*
|
||||
* Calculate the prescaler. Pick the biggest period that isn't
|
||||
* bigger than the requested period.
|
||||
*/
|
||||
prescaler = DIV_ROUND_UP_ULL(SL28CPLD_PWM_PERIOD(0), state->period);
|
||||
prescaler = order_base_2(prescaler);
|
||||
|
||||
if (prescaler > field_max(SL28CPLD_PWM_CTRL_PRESCALER_MASK))
|
||||
return -ERANGE;
|
||||
|
||||
ctrl = FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, prescaler);
|
||||
if (state->enabled)
|
||||
ctrl |= SL28CPLD_PWM_CTRL_ENABLE;
|
||||
|
||||
cycle = SL28CPLD_PWM_FROM_DUTY_CYCLE(state->duty_cycle);
|
||||
cycle = min_t(unsigned int, cycle, SL28CPLD_PWM_MAX_DUTY_CYCLE(prescaler));
|
||||
|
||||
/*
|
||||
* Work around the hardware limitation. See also above. Trap 100% duty
|
||||
* cycle if the prescaler is 0. Set prescaler to 1 instead. We don't
|
||||
* care about the frequency because its "all-one" in either case.
|
||||
*
|
||||
* We don't need to check the actual prescaler setting, because only
|
||||
* if the prescaler is 0 we can have this particular value.
|
||||
*/
|
||||
if (cycle == SL28CPLD_PWM_MAX_DUTY_CYCLE(0)) {
|
||||
ctrl &= ~SL28CPLD_PWM_CTRL_PRESCALER_MASK;
|
||||
ctrl |= FIELD_PREP(SL28CPLD_PWM_CTRL_PRESCALER_MASK, 1);
|
||||
cycle = SL28CPLD_PWM_MAX_DUTY_CYCLE(1);
|
||||
}
|
||||
|
||||
/*
|
||||
* To avoid glitches when we switch the prescaler, we have to make sure
|
||||
* we have a valid duty cycle for the new mode.
|
||||
*
|
||||
* Take the current prescaler (or the current period length) into
|
||||
* account to decide whether we have to write the duty cycle or the new
|
||||
* prescaler first. If the period length is decreasing we have to
|
||||
* write the duty cycle first.
|
||||
*/
|
||||
write_duty_cycle_first = pwm->state.period > state->period;
|
||||
|
||||
if (write_duty_cycle_first) {
|
||||
ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CTRL, ctrl);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (!write_duty_cycle_first) {
|
||||
ret = sl28cpld_pwm_write(priv, SL28CPLD_PWM_CYCLE, cycle);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct pwm_ops sl28cpld_pwm_ops = {
|
||||
.apply = sl28cpld_pwm_apply,
|
||||
.get_state = sl28cpld_pwm_get_state,
|
||||
.owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static int sl28cpld_pwm_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct sl28cpld_pwm *priv;
|
||||
struct pwm_chip *chip;
|
||||
int ret;
|
||||
|
||||
if (!pdev->dev.parent) {
|
||||
dev_err(&pdev->dev, "no parent device\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
|
||||
if (!priv)
|
||||
return -ENOMEM;
|
||||
|
||||
priv->regmap = dev_get_regmap(pdev->dev.parent, NULL);
|
||||
if (!priv->regmap) {
|
||||
dev_err(&pdev->dev, "could not get parent regmap\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
ret = device_property_read_u32(&pdev->dev, "reg", &priv->offset);
|
||||
if (ret) {
|
||||
dev_err(&pdev->dev, "no 'reg' property found (%pe)\n",
|
||||
ERR_PTR(ret));
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* Initialize the pwm_chip structure */
|
||||
chip = &priv->pwm_chip;
|
||||
chip->dev = &pdev->dev;
|
||||
chip->ops = &sl28cpld_pwm_ops;
|
||||
chip->base = -1;
|
||||
chip->npwm = 1;
|
||||
|
||||
ret = pwmchip_add(&priv->pwm_chip);
|
||||
if (ret) {
|
||||
dev_err(&pdev->dev, "failed to add PWM chip (%pe)",
|
||||
ERR_PTR(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
platform_set_drvdata(pdev, priv);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sl28cpld_pwm_remove(struct platform_device *pdev)
|
||||
{
|
||||
struct sl28cpld_pwm *priv = platform_get_drvdata(pdev);
|
||||
|
||||
return pwmchip_remove(&priv->pwm_chip);
|
||||
}
|
||||
|
||||
static const struct of_device_id sl28cpld_pwm_of_match[] = {
|
||||
{ .compatible = "kontron,sl28cpld-pwm" },
|
||||
{}
|
||||
};
|
||||
MODULE_DEVICE_TABLE(of, sl28cpld_pwm_of_match);
|
||||
|
||||
static struct platform_driver sl28cpld_pwm_driver = {
|
||||
.probe = sl28cpld_pwm_probe,
|
||||
.remove = sl28cpld_pwm_remove,
|
||||
.driver = {
|
||||
.name = "sl28cpld-pwm",
|
||||
.of_match_table = sl28cpld_pwm_of_match,
|
||||
},
|
||||
};
|
||||
module_platform_driver(sl28cpld_pwm_driver);
|
||||
|
||||
MODULE_DESCRIPTION("sl28cpld PWM Driver");
|
||||
MODULE_AUTHOR("Michael Walle <michael@walle.cc>");
|
||||
MODULE_LICENSE("GPL");
|
Loading…
Reference in New Issue
Block a user