bnxt_en: Check context memory requirements from firmware.

New device requires host context memory as a backing store.  Call
firmware to check for context memory requirements and store the
parameters.  Allocate host pages accordingly.

We also need to move the call bnxt_hwrm_queue_qportcfg() earlier
so that all the supported hardware queues and the IDs are known
before checking and allocating context memory.

Signed-off-by: Michael Chan <michael.chan@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Michael Chan 2018-10-14 07:02:43 -04:00 committed by David S. Miller
parent 66cca20abc
commit 98f04cf0f1
2 changed files with 248 additions and 8 deletions
drivers/net/ethernet/broadcom/bnxt

View File

@ -5255,6 +5255,187 @@ static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
return rc;
}
static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
{
struct hwrm_func_backing_store_qcaps_input req = {0};
struct hwrm_func_backing_store_qcaps_output *resp =
bp->hwrm_cmd_resp_addr;
int rc;
if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
return 0;
bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BACKING_STORE_QCAPS, -1, -1);
mutex_lock(&bp->hwrm_cmd_lock);
rc = _hwrm_send_message_silent(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
if (!rc) {
struct bnxt_ctx_pg_info *ctx_pg;
struct bnxt_ctx_mem_info *ctx;
int i;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
rc = -ENOMEM;
goto ctx_err;
}
ctx_pg = kzalloc(sizeof(*ctx_pg) * (bp->max_q + 1), GFP_KERNEL);
if (!ctx_pg) {
kfree(ctx);
rc = -ENOMEM;
goto ctx_err;
}
for (i = 0; i < bp->max_q + 1; i++, ctx_pg++)
ctx->tqm_mem[i] = ctx_pg;
bp->ctx = ctx;
ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
ctx->vnic_max_vnic_entries =
le16_to_cpu(resp->vnic_max_vnic_entries);
ctx->vnic_max_ring_table_entries =
le16_to_cpu(resp->vnic_max_ring_table_entries);
ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
ctx->tqm_min_entries_per_ring =
le32_to_cpu(resp->tqm_min_entries_per_ring);
ctx->tqm_max_entries_per_ring =
le32_to_cpu(resp->tqm_max_entries_per_ring);
ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
if (!ctx->tqm_entries_multiple)
ctx->tqm_entries_multiple = 1;
ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
} else {
rc = 0;
}
ctx_err:
mutex_unlock(&bp->hwrm_cmd_lock);
return rc;
}
static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size)
{
struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
if (!mem_size)
return 0;
rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
if (rmem->nr_pages > MAX_CTX_PAGES) {
rmem->nr_pages = 0;
return -EINVAL;
}
rmem->page_size = BNXT_PAGE_SIZE;
rmem->pg_arr = ctx_pg->ctx_pg_arr;
rmem->dma_arr = ctx_pg->ctx_dma_arr;
return bnxt_alloc_ring(bp, rmem);
}
static void bnxt_free_ctx_mem(struct bnxt *bp)
{
struct bnxt_ctx_mem_info *ctx = bp->ctx;
int i;
if (!ctx)
return;
if (ctx->tqm_mem[0]) {
for (i = 0; i < bp->max_q + 1; i++)
bnxt_free_ring(bp, &ctx->tqm_mem[i]->ring_mem);
kfree(ctx->tqm_mem[0]);
ctx->tqm_mem[0] = NULL;
}
bnxt_free_ring(bp, &ctx->stat_mem.ring_mem);
bnxt_free_ring(bp, &ctx->vnic_mem.ring_mem);
bnxt_free_ring(bp, &ctx->cq_mem.ring_mem);
bnxt_free_ring(bp, &ctx->srq_mem.ring_mem);
bnxt_free_ring(bp, &ctx->qp_mem.ring_mem);
ctx->flags &= ~BNXT_CTX_FLAG_INITED;
}
static int bnxt_alloc_ctx_mem(struct bnxt *bp)
{
struct bnxt_ctx_pg_info *ctx_pg;
struct bnxt_ctx_mem_info *ctx;
u32 mem_size, entries;
int i, rc;
rc = bnxt_hwrm_func_backing_store_qcaps(bp);
if (rc) {
netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
rc);
return rc;
}
ctx = bp->ctx;
if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
return 0;
ctx_pg = &ctx->qp_mem;
ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries;
mem_size = ctx->qp_entry_size * ctx_pg->entries;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size);
if (rc)
return rc;
ctx_pg = &ctx->srq_mem;
ctx_pg->entries = ctx->srq_max_l2_entries;
mem_size = ctx->srq_entry_size * ctx_pg->entries;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size);
if (rc)
return rc;
ctx_pg = &ctx->cq_mem;
ctx_pg->entries = ctx->cq_max_l2_entries;
mem_size = ctx->cq_entry_size * ctx_pg->entries;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size);
if (rc)
return rc;
ctx_pg = &ctx->vnic_mem;
ctx_pg->entries = ctx->vnic_max_vnic_entries +
ctx->vnic_max_ring_table_entries;
mem_size = ctx->vnic_entry_size * ctx_pg->entries;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size);
if (rc)
return rc;
ctx_pg = &ctx->stat_mem;
ctx_pg->entries = ctx->stat_max_entries;
mem_size = ctx->stat_entry_size * ctx_pg->entries;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size);
if (rc)
return rc;
entries = ctx->qp_max_l2_entries;
entries = roundup(entries, ctx->tqm_entries_multiple);
entries = clamp_t(u32, entries, ctx->tqm_min_entries_per_ring,
ctx->tqm_max_entries_per_ring);
for (i = 0; i < bp->max_q + 1; i++) {
ctx_pg = ctx->tqm_mem[i];
ctx_pg->entries = entries;
mem_size = ctx->tqm_entry_size * entries;
rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg, mem_size);
if (rc)
return rc;
}
ctx->flags |= BNXT_CTX_FLAG_INITED;
return 0;
}
int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
{
struct hwrm_func_resource_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
@ -5382,6 +5563,9 @@ static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
if (rc)
return rc;
if (bp->hwrm_spec_code >= 0x10803) {
rc = bnxt_alloc_ctx_mem(bp);
if (rc)
return rc;
rc = bnxt_hwrm_func_resc_qcaps(bp, true);
if (!rc)
bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
@ -5426,13 +5610,15 @@ static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
qptr = &resp->queue_id0;
for (i = 0, j = 0; i < bp->max_tc; i++) {
bp->q_info[j].queue_id = *qptr++;
bp->q_info[j].queue_id = *qptr;
bp->q_ids[i] = *qptr++;
bp->q_info[j].queue_profile = *qptr++;
bp->tc_to_qidx[j] = j;
if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
(no_rdma && BNXT_PF(bp)))
j++;
}
bp->max_q = bp->max_tc;
bp->max_tc = max_t(u8, j, 1);
if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
@ -8682,6 +8868,9 @@ static void bnxt_remove_one(struct pci_dev *pdev)
bnxt_dcb_free(bp);
kfree(bp->edev);
bp->edev = NULL;
bnxt_free_ctx_mem(bp);
kfree(bp->ctx);
bp->ctx = NULL;
bnxt_cleanup_pci(bp);
free_netdev(dev);
}
@ -9075,6 +9264,13 @@ static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
bp->ulp_probe = bnxt_ulp_probe;
rc = bnxt_hwrm_queue_qportcfg(bp);
if (rc) {
netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
rc);
rc = -1;
goto init_err_pci_clean;
}
/* Get the MAX capabilities for this function */
rc = bnxt_hwrm_func_qcaps(bp);
if (rc) {
@ -9089,13 +9285,6 @@ static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
rc = -EADDRNOTAVAIL;
goto init_err_pci_clean;
}
rc = bnxt_hwrm_queue_qportcfg(bp);
if (rc) {
netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
rc);
rc = -1;
goto init_err_pci_clean;
}
bnxt_hwrm_func_qcfg(bp);
bnxt_hwrm_port_led_qcaps(bp);
@ -9195,6 +9384,9 @@ static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
init_err_pci_clean:
bnxt_free_hwrm_resources(bp);
bnxt_free_ctx_mem(bp);
kfree(bp->ctx);
bp->ctx = NULL;
bnxt_cleanup_pci(bp);
init_err_free:

View File

@ -1117,6 +1117,51 @@ struct bnxt_vf_rep {
#define PTU_PTE_LAST 0x2UL
#define PTU_PTE_NEXT_TO_LAST 0x4UL
#define MAX_CTX_PAGES (BNXT_PAGE_SIZE / 8)
struct bnxt_ctx_pg_info {
u32 entries;
void *ctx_pg_arr[MAX_CTX_PAGES];
dma_addr_t ctx_dma_arr[MAX_CTX_PAGES];
struct bnxt_ring_mem_info ring_mem;
};
struct bnxt_ctx_mem_info {
u32 qp_max_entries;
u16 qp_min_qp1_entries;
u16 qp_max_l2_entries;
u16 qp_entry_size;
u16 srq_max_l2_entries;
u32 srq_max_entries;
u16 srq_entry_size;
u16 cq_max_l2_entries;
u32 cq_max_entries;
u16 cq_entry_size;
u16 vnic_max_vnic_entries;
u16 vnic_max_ring_table_entries;
u16 vnic_entry_size;
u32 stat_max_entries;
u16 stat_entry_size;
u16 tqm_entry_size;
u32 tqm_min_entries_per_ring;
u32 tqm_max_entries_per_ring;
u32 mrav_max_entries;
u16 mrav_entry_size;
u16 tim_entry_size;
u32 tim_max_entries;
u8 tqm_entries_multiple;
u32 flags;
#define BNXT_CTX_FLAG_INITED 0x01
struct bnxt_ctx_pg_info qp_mem;
struct bnxt_ctx_pg_info srq_mem;
struct bnxt_ctx_pg_info cq_mem;
struct bnxt_ctx_pg_info vnic_mem;
struct bnxt_ctx_pg_info stat_mem;
struct bnxt_ctx_pg_info *tqm_mem[9];
};
struct bnxt {
void __iomem *bar0;
void __iomem *bar1;
@ -1309,6 +1354,8 @@ struct bnxt {
u8 max_lltc; /* lossless TCs */
struct bnxt_queue_info q_info[BNXT_MAX_QUEUE];
u8 tc_to_qidx[BNXT_MAX_QUEUE];
u8 q_ids[BNXT_MAX_QUEUE];
u8 max_q;
unsigned int current_interval;
#define BNXT_TIMER_INTERVAL HZ
@ -1412,6 +1459,7 @@ struct bnxt {
struct bnxt_hw_resc hw_resc;
struct bnxt_pf_info pf;
struct bnxt_ctx_mem_info *ctx;
#ifdef CONFIG_BNXT_SRIOV
int nr_vfs;
struct bnxt_vf_info vf;