mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-20 18:59:13 +07:00
drm/amd/powerplay: fix Smatch static checker warnings with indenting (v2)
v2: AGD: rebase on upstream Signed-off-by: Rex Zhu <Rex.Zhu@amd.com> Reviewed-by: Alex Deucher <alexander.deucher@amd.com> Reviewed-by: Ken Wang <Qingqing.Wang@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
This commit is contained in:
parent
53d3de140b
commit
75ac63dbc3
@ -807,7 +807,7 @@ void amdgpu_pm_compute_clocks(struct amdgpu_device *adev)
|
||||
struct amdgpu_ring *ring = adev->rings[i];
|
||||
if (ring && ring->ready)
|
||||
amdgpu_fence_wait_empty(ring);
|
||||
}
|
||||
}
|
||||
mutex_unlock(&adev->ring_lock);
|
||||
|
||||
amdgpu_dpm_dispatch_task(adev, AMD_PP_EVENT_DISPLAY_CONFIG_CHANGE, NULL, NULL);
|
||||
|
@ -941,8 +941,9 @@ static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr,
|
||||
memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
|
||||
kfree(table);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
|
||||
phm_ppt_v1_clock_voltage_dependency_table *dep_table)
|
||||
{
|
||||
@ -1112,7 +1113,7 @@ static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr)
|
||||
fiji_trim_voltage_table_to_fit_state_table(hwmgr,
|
||||
SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)));
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
|
||||
@ -1158,7 +1159,7 @@ static int fiji_program_static_screen_threshold_parameters(
|
||||
CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
|
||||
data->static_screen_threshold);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -1295,7 +1296,7 @@ static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
|
||||
|
||||
error |= (0 != result);
|
||||
|
||||
return error ? -1 : 0;
|
||||
return error ? -1 : 0;
|
||||
}
|
||||
|
||||
/* Copy one arb setting to another and then switch the active set.
|
||||
@ -1339,12 +1340,12 @@ static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
|
||||
mc_cg_config |= 0x0000000F;
|
||||
cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
|
||||
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
|
||||
mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
|
||||
mc_cg_config |= 0x0000000F;
|
||||
cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
|
||||
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -1927,17 +1928,17 @@ static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
|
||||
|
||||
threshold = clock * data->fast_watermark_threshold / 100;
|
||||
|
||||
/*
|
||||
* TODO: get minimum clocks from dal configaration
|
||||
* PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks);
|
||||
*/
|
||||
/* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */
|
||||
/*
|
||||
* TODO: get minimum clocks from dal configaration
|
||||
* PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks);
|
||||
*/
|
||||
/* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */
|
||||
|
||||
/* get level->DeepSleepDivId
|
||||
if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
|
||||
{
|
||||
level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR);
|
||||
} */
|
||||
/* get level->DeepSleepDivId
|
||||
if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
|
||||
{
|
||||
level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR);
|
||||
} */
|
||||
|
||||
/* Default to slow, highest DPM level will be
|
||||
* set to PPSMC_DISPLAY_WATERMARK_LOW later.
|
||||
@ -2756,7 +2757,7 @@ static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
|
||||
SclkFrequency) / 100);
|
||||
if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
|
||||
clock_freq_u16 &&
|
||||
fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
|
||||
fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
|
||||
clock_freq_u16) {
|
||||
/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
|
||||
value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
|
||||
@ -3172,9 +3173,9 @@ static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
|
||||
/* enable SCLK dpm */
|
||||
if(!data->sclk_dpm_key_disabled)
|
||||
PP_ASSERT_WITH_CODE(
|
||||
(0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
|
||||
"Failed to enable SCLK DPM during DPM Start Function!",
|
||||
return -1);
|
||||
(0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
|
||||
"Failed to enable SCLK DPM during DPM Start Function!",
|
||||
return -1);
|
||||
|
||||
/* enable MCLK dpm */
|
||||
if(0 == data->mclk_dpm_key_disabled) {
|
||||
@ -3320,7 +3321,7 @@ static int fiji_start_dpm(struct pp_hwmgr *hwmgr)
|
||||
return -1);
|
||||
}
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr,
|
||||
@ -3378,7 +3379,7 @@ static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
|
||||
|
||||
static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
|
||||
{
|
||||
return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
|
||||
return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
|
||||
}
|
||||
|
||||
static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
|
||||
|
@ -93,9 +93,9 @@ void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
|
||||
*/
|
||||
static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
|
||||
{
|
||||
uint32_t tmp;
|
||||
tmp = raw_setting * 4096 / 100;
|
||||
return (uint16_t)tmp;
|
||||
uint32_t tmp;
|
||||
tmp = raw_setting * 4096 / 100;
|
||||
return (uint16_t)tmp;
|
||||
}
|
||||
|
||||
static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t* sda)
|
||||
@ -546,8 +546,8 @@ int fiji_power_control_set_level(struct pp_hwmgr *hwmgr)
|
||||
* but message to be 8 bit fraction for messages
|
||||
*/
|
||||
target_tdp = ((100 + adjust_percent) * (int)(cac_table->usTDP * 256)) / 100;
|
||||
result = fiji_set_overdriver_target_tdp(hwmgr, (uint32_t)target_tdp);
|
||||
}
|
||||
result = fiji_set_overdriver_target_tdp(hwmgr, (uint32_t)target_tdp);
|
||||
}
|
||||
|
||||
return result;
|
||||
return result;
|
||||
}
|
||||
|
@ -317,4 +317,3 @@ int phm_set_cpu_power_state(struct pp_hwmgr *hwmgr)
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -117,379 +117,380 @@ int GetRoundedValue(fInt); /* Incomplete function - Usef
|
||||
*/
|
||||
fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/
|
||||
{
|
||||
uint32_t i;
|
||||
bool bNegated = false;
|
||||
uint32_t i;
|
||||
bool bNegated = false;
|
||||
|
||||
fInt fPositiveOne = ConvertToFraction(1);
|
||||
fInt fZERO = ConvertToFraction(0);
|
||||
fInt fPositiveOne = ConvertToFraction(1);
|
||||
fInt fZERO = ConvertToFraction(0);
|
||||
|
||||
fInt lower_bound = Divide(78, 10000);
|
||||
fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
|
||||
fInt error_term;
|
||||
fInt lower_bound = Divide(78, 10000);
|
||||
fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
|
||||
fInt error_term;
|
||||
|
||||
uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
|
||||
uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
|
||||
uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
|
||||
uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
|
||||
|
||||
if (GreaterThan(fZERO, exponent)) {
|
||||
exponent = fNegate(exponent);
|
||||
bNegated = true;
|
||||
}
|
||||
if (GreaterThan(fZERO, exponent)) {
|
||||
exponent = fNegate(exponent);
|
||||
bNegated = true;
|
||||
}
|
||||
|
||||
while (GreaterThan(exponent, lower_bound)) {
|
||||
for (i = 0; i < 11; i++) {
|
||||
if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
|
||||
exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
|
||||
solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
|
||||
}
|
||||
}
|
||||
}
|
||||
while (GreaterThan(exponent, lower_bound)) {
|
||||
for (i = 0; i < 11; i++) {
|
||||
if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
|
||||
exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
|
||||
solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
error_term = fAdd(fPositiveOne, exponent);
|
||||
error_term = fAdd(fPositiveOne, exponent);
|
||||
|
||||
solution = fMultiply(solution, error_term);
|
||||
solution = fMultiply(solution, error_term);
|
||||
|
||||
if (bNegated)
|
||||
solution = fDivide(fPositiveOne, solution);
|
||||
if (bNegated)
|
||||
solution = fDivide(fPositiveOne, solution);
|
||||
|
||||
return solution;
|
||||
return solution;
|
||||
}
|
||||
|
||||
fInt fNaturalLog(fInt value)
|
||||
{
|
||||
uint32_t i;
|
||||
fInt upper_bound = Divide(8, 1000);
|
||||
fInt fNegativeOne = ConvertToFraction(-1);
|
||||
fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
|
||||
fInt error_term;
|
||||
uint32_t i;
|
||||
fInt upper_bound = Divide(8, 1000);
|
||||
fInt fNegativeOne = ConvertToFraction(-1);
|
||||
fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
|
||||
fInt error_term;
|
||||
|
||||
uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
|
||||
uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
|
||||
uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
|
||||
uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
|
||||
|
||||
while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
|
||||
for (i = 0; i < 10; i++) {
|
||||
if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
|
||||
value = fDivide(value, GetScaledFraction(k_array[i], 10000));
|
||||
solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
|
||||
}
|
||||
}
|
||||
}
|
||||
while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
|
||||
for (i = 0; i < 10; i++) {
|
||||
if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
|
||||
value = fDivide(value, GetScaledFraction(k_array[i], 10000));
|
||||
solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
error_term = fAdd(fNegativeOne, value);
|
||||
error_term = fAdd(fNegativeOne, value);
|
||||
|
||||
return (fAdd(solution, error_term));
|
||||
return (fAdd(solution, error_term));
|
||||
}
|
||||
|
||||
fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
|
||||
{
|
||||
fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
|
||||
fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
|
||||
fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
|
||||
fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
|
||||
|
||||
fInt f_decoded_value;
|
||||
fInt f_decoded_value;
|
||||
|
||||
f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
|
||||
f_decoded_value = fMultiply(f_decoded_value, f_range);
|
||||
f_decoded_value = fAdd(f_decoded_value, f_min);
|
||||
f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
|
||||
f_decoded_value = fMultiply(f_decoded_value, f_range);
|
||||
f_decoded_value = fAdd(f_decoded_value, f_min);
|
||||
|
||||
return f_decoded_value;
|
||||
return f_decoded_value;
|
||||
}
|
||||
|
||||
|
||||
fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
|
||||
{
|
||||
fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
|
||||
fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
|
||||
fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
|
||||
fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
|
||||
|
||||
fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
|
||||
fInt f_CONSTANT1 = ConvertToFraction(1);
|
||||
fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
|
||||
fInt f_CONSTANT1 = ConvertToFraction(1);
|
||||
|
||||
fInt f_decoded_value;
|
||||
fInt f_decoded_value;
|
||||
|
||||
f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
|
||||
f_decoded_value = fNaturalLog(f_decoded_value);
|
||||
f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
|
||||
f_decoded_value = fAdd(f_decoded_value, f_average);
|
||||
f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
|
||||
f_decoded_value = fNaturalLog(f_decoded_value);
|
||||
f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
|
||||
f_decoded_value = fAdd(f_decoded_value, f_average);
|
||||
|
||||
return f_decoded_value;
|
||||
return f_decoded_value;
|
||||
}
|
||||
|
||||
fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
|
||||
{
|
||||
fInt fLeakage;
|
||||
fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
|
||||
fInt fLeakage;
|
||||
fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
|
||||
|
||||
fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
|
||||
fLeakage = fDivide(fLeakage, f_bit_max_value);
|
||||
fLeakage = fExponential(fLeakage);
|
||||
fLeakage = fMultiply(fLeakage, f_min);
|
||||
fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
|
||||
fLeakage = fDivide(fLeakage, f_bit_max_value);
|
||||
fLeakage = fExponential(fLeakage);
|
||||
fLeakage = fMultiply(fLeakage, f_min);
|
||||
|
||||
return fLeakage;
|
||||
return fLeakage;
|
||||
}
|
||||
|
||||
fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
|
||||
{
|
||||
fInt temp;
|
||||
fInt temp;
|
||||
|
||||
if (X <= MAX)
|
||||
temp.full = (X << SHIFT_AMOUNT);
|
||||
else
|
||||
temp.full = 0;
|
||||
if (X <= MAX)
|
||||
temp.full = (X << SHIFT_AMOUNT);
|
||||
else
|
||||
temp.full = 0;
|
||||
|
||||
return temp;
|
||||
return temp;
|
||||
}
|
||||
|
||||
fInt fNegate(fInt X)
|
||||
{
|
||||
fInt CONSTANT_NEGONE = ConvertToFraction(-1);
|
||||
return (fMultiply(X, CONSTANT_NEGONE));
|
||||
fInt CONSTANT_NEGONE = ConvertToFraction(-1);
|
||||
return (fMultiply(X, CONSTANT_NEGONE));
|
||||
}
|
||||
|
||||
fInt Convert_ULONG_ToFraction(uint32_t X)
|
||||
{
|
||||
fInt temp;
|
||||
fInt temp;
|
||||
|
||||
if (X <= MAX)
|
||||
temp.full = (X << SHIFT_AMOUNT);
|
||||
else
|
||||
temp.full = 0;
|
||||
if (X <= MAX)
|
||||
temp.full = (X << SHIFT_AMOUNT);
|
||||
else
|
||||
temp.full = 0;
|
||||
|
||||
return temp;
|
||||
return temp;
|
||||
}
|
||||
|
||||
fInt GetScaledFraction(int X, int factor)
|
||||
{
|
||||
int times_shifted, factor_shifted;
|
||||
bool bNEGATED;
|
||||
fInt fValue;
|
||||
int times_shifted, factor_shifted;
|
||||
bool bNEGATED;
|
||||
fInt fValue;
|
||||
|
||||
times_shifted = 0;
|
||||
factor_shifted = 0;
|
||||
bNEGATED = false;
|
||||
times_shifted = 0;
|
||||
factor_shifted = 0;
|
||||
bNEGATED = false;
|
||||
|
||||
if (X < 0) {
|
||||
X = -1*X;
|
||||
bNEGATED = true;
|
||||
}
|
||||
if (X < 0) {
|
||||
X = -1*X;
|
||||
bNEGATED = true;
|
||||
}
|
||||
|
||||
if (factor < 0) {
|
||||
factor = -1*factor;
|
||||
if (factor < 0) {
|
||||
factor = -1*factor;
|
||||
bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
|
||||
}
|
||||
|
||||
bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
|
||||
}
|
||||
if ((X > MAX) || factor > MAX) {
|
||||
if ((X/factor) <= MAX) {
|
||||
while (X > MAX) {
|
||||
X = X >> 1;
|
||||
times_shifted++;
|
||||
}
|
||||
|
||||
if ((X > MAX) || factor > MAX) {
|
||||
if ((X/factor) <= MAX) {
|
||||
while (X > MAX) {
|
||||
X = X >> 1;
|
||||
times_shifted++;
|
||||
}
|
||||
while (factor > MAX) {
|
||||
factor = factor >> 1;
|
||||
factor_shifted++;
|
||||
}
|
||||
} else {
|
||||
fValue.full = 0;
|
||||
return fValue;
|
||||
}
|
||||
}
|
||||
|
||||
while (factor > MAX) {
|
||||
factor = factor >> 1;
|
||||
factor_shifted++;
|
||||
}
|
||||
} else {
|
||||
fValue.full = 0;
|
||||
return fValue;
|
||||
}
|
||||
}
|
||||
if (factor == 1)
|
||||
return (ConvertToFraction(X));
|
||||
|
||||
if (factor == 1)
|
||||
return (ConvertToFraction(X));
|
||||
fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
|
||||
|
||||
fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
|
||||
fValue.full = fValue.full << times_shifted;
|
||||
fValue.full = fValue.full >> factor_shifted;
|
||||
|
||||
fValue.full = fValue.full << times_shifted;
|
||||
fValue.full = fValue.full >> factor_shifted;
|
||||
|
||||
return fValue;
|
||||
return fValue;
|
||||
}
|
||||
|
||||
/* Addition using two fInts */
|
||||
fInt fAdd (fInt X, fInt Y)
|
||||
{
|
||||
fInt Sum;
|
||||
fInt Sum;
|
||||
|
||||
Sum.full = X.full + Y.full;
|
||||
Sum.full = X.full + Y.full;
|
||||
|
||||
return Sum;
|
||||
return Sum;
|
||||
}
|
||||
|
||||
/* Addition using two fInts */
|
||||
fInt fSubtract (fInt X, fInt Y)
|
||||
{
|
||||
fInt Difference;
|
||||
fInt Difference;
|
||||
|
||||
Difference.full = X.full - Y.full;
|
||||
Difference.full = X.full - Y.full;
|
||||
|
||||
return Difference;
|
||||
return Difference;
|
||||
}
|
||||
|
||||
bool Equal(fInt A, fInt B)
|
||||
{
|
||||
if (A.full == B.full)
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
if (A.full == B.full)
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
bool GreaterThan(fInt A, fInt B)
|
||||
{
|
||||
if (A.full > B.full)
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
if (A.full > B.full)
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
|
||||
{
|
||||
fInt Product;
|
||||
int64_t tempProduct;
|
||||
bool X_LessThanOne, Y_LessThanOne;
|
||||
fInt Product;
|
||||
int64_t tempProduct;
|
||||
bool X_LessThanOne, Y_LessThanOne;
|
||||
|
||||
X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
|
||||
Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
|
||||
X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
|
||||
Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
|
||||
|
||||
/*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
|
||||
/* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
|
||||
/*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
|
||||
/* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
|
||||
|
||||
if (X_LessThanOne && Y_LessThanOne) {
|
||||
Product.full = X.full * Y.full;
|
||||
return Product
|
||||
}*/
|
||||
if (X_LessThanOne && Y_LessThanOne) {
|
||||
Product.full = X.full * Y.full;
|
||||
return Product
|
||||
}*/
|
||||
|
||||
tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
|
||||
tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
|
||||
Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
|
||||
tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
|
||||
tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
|
||||
Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
|
||||
|
||||
return Product;
|
||||
return Product;
|
||||
}
|
||||
|
||||
fInt fDivide (fInt X, fInt Y)
|
||||
{
|
||||
fInt fZERO, fQuotient;
|
||||
int64_t longlongX, longlongY;
|
||||
fInt fZERO, fQuotient;
|
||||
int64_t longlongX, longlongY;
|
||||
|
||||
fZERO = ConvertToFraction(0);
|
||||
fZERO = ConvertToFraction(0);
|
||||
|
||||
if (Equal(Y, fZERO))
|
||||
return fZERO;
|
||||
if (Equal(Y, fZERO))
|
||||
return fZERO;
|
||||
|
||||
longlongX = (int64_t)X.full;
|
||||
longlongY = (int64_t)Y.full;
|
||||
longlongX = (int64_t)X.full;
|
||||
longlongY = (int64_t)Y.full;
|
||||
|
||||
longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
|
||||
longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
|
||||
|
||||
div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
|
||||
div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
|
||||
|
||||
fQuotient.full = (int)longlongX;
|
||||
return fQuotient;
|
||||
fQuotient.full = (int)longlongX;
|
||||
return fQuotient;
|
||||
}
|
||||
|
||||
int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
|
||||
{
|
||||
fInt fullNumber, scaledDecimal, scaledReal;
|
||||
fInt fullNumber, scaledDecimal, scaledReal;
|
||||
|
||||
scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
|
||||
scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
|
||||
|
||||
scaledDecimal.full = uGetScaledDecimal(A);
|
||||
scaledDecimal.full = uGetScaledDecimal(A);
|
||||
|
||||
fullNumber = fAdd(scaledDecimal,scaledReal);
|
||||
fullNumber = fAdd(scaledDecimal,scaledReal);
|
||||
|
||||
return fullNumber.full;
|
||||
return fullNumber.full;
|
||||
}
|
||||
|
||||
fInt fGetSquare(fInt A)
|
||||
{
|
||||
return fMultiply(A,A);
|
||||
return fMultiply(A,A);
|
||||
}
|
||||
|
||||
/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
|
||||
fInt fSqrt(fInt num)
|
||||
{
|
||||
fInt F_divide_Fprime, Fprime;
|
||||
fInt test;
|
||||
fInt twoShifted;
|
||||
int seed, counter, error;
|
||||
fInt x_new, x_old, C, y;
|
||||
fInt F_divide_Fprime, Fprime;
|
||||
fInt test;
|
||||
fInt twoShifted;
|
||||
int seed, counter, error;
|
||||
fInt x_new, x_old, C, y;
|
||||
|
||||
fInt fZERO = ConvertToFraction(0);
|
||||
/* (0 > num) is the same as (num < 0), i.e., num is negative */
|
||||
if (GreaterThan(fZERO, num) || Equal(fZERO, num))
|
||||
return fZERO;
|
||||
fInt fZERO = ConvertToFraction(0);
|
||||
|
||||
C = num;
|
||||
/* (0 > num) is the same as (num < 0), i.e., num is negative */
|
||||
|
||||
if (num.partial.real > 3000)
|
||||
seed = 60;
|
||||
else if (num.partial.real > 1000)
|
||||
seed = 30;
|
||||
else if (num.partial.real > 100)
|
||||
seed = 10;
|
||||
else
|
||||
seed = 2;
|
||||
if (GreaterThan(fZERO, num) || Equal(fZERO, num))
|
||||
return fZERO;
|
||||
|
||||
counter = 0;
|
||||
C = num;
|
||||
|
||||
if (Equal(num, fZERO)) /*Square Root of Zero is zero */
|
||||
return fZERO;
|
||||
if (num.partial.real > 3000)
|
||||
seed = 60;
|
||||
else if (num.partial.real > 1000)
|
||||
seed = 30;
|
||||
else if (num.partial.real > 100)
|
||||
seed = 10;
|
||||
else
|
||||
seed = 2;
|
||||
|
||||
twoShifted = ConvertToFraction(2);
|
||||
x_new = ConvertToFraction(seed);
|
||||
counter = 0;
|
||||
|
||||
do {
|
||||
counter++;
|
||||
if (Equal(num, fZERO)) /*Square Root of Zero is zero */
|
||||
return fZERO;
|
||||
|
||||
x_old.full = x_new.full;
|
||||
twoShifted = ConvertToFraction(2);
|
||||
x_new = ConvertToFraction(seed);
|
||||
|
||||
test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
|
||||
y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
|
||||
do {
|
||||
counter++;
|
||||
|
||||
Fprime = fMultiply(twoShifted, x_old);
|
||||
F_divide_Fprime = fDivide(y, Fprime);
|
||||
x_old.full = x_new.full;
|
||||
|
||||
x_new = fSubtract(x_old, F_divide_Fprime);
|
||||
test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
|
||||
y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
|
||||
|
||||
error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
|
||||
Fprime = fMultiply(twoShifted, x_old);
|
||||
F_divide_Fprime = fDivide(y, Fprime);
|
||||
|
||||
if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
|
||||
return x_new;
|
||||
x_new = fSubtract(x_old, F_divide_Fprime);
|
||||
|
||||
} while (uAbs(error) > 0);
|
||||
error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
|
||||
|
||||
return (x_new);
|
||||
if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
|
||||
return x_new;
|
||||
|
||||
} while (uAbs(error) > 0);
|
||||
|
||||
return (x_new);
|
||||
}
|
||||
|
||||
void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
|
||||
{
|
||||
fInt* pRoots = &Roots[0];
|
||||
fInt temp, root_first, root_second;
|
||||
fInt f_CONSTANT10, f_CONSTANT100;
|
||||
fInt *pRoots = &Roots[0];
|
||||
fInt temp, root_first, root_second;
|
||||
fInt f_CONSTANT10, f_CONSTANT100;
|
||||
|
||||
f_CONSTANT100 = ConvertToFraction(100);
|
||||
f_CONSTANT10 = ConvertToFraction(10);
|
||||
f_CONSTANT100 = ConvertToFraction(100);
|
||||
f_CONSTANT10 = ConvertToFraction(10);
|
||||
|
||||
while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
|
||||
A = fDivide(A, f_CONSTANT10);
|
||||
B = fDivide(B, f_CONSTANT10);
|
||||
C = fDivide(C, f_CONSTANT10);
|
||||
}
|
||||
while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
|
||||
A = fDivide(A, f_CONSTANT10);
|
||||
B = fDivide(B, f_CONSTANT10);
|
||||
C = fDivide(C, f_CONSTANT10);
|
||||
}
|
||||
|
||||
temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
|
||||
temp = fMultiply(temp, C); /* root = 4*A*C */
|
||||
temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
|
||||
temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
|
||||
temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
|
||||
temp = fMultiply(temp, C); /* root = 4*A*C */
|
||||
temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
|
||||
temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
|
||||
|
||||
root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
|
||||
root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
|
||||
root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
|
||||
root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
|
||||
|
||||
root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
|
||||
root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
|
||||
root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
|
||||
root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
|
||||
|
||||
root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
|
||||
root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
|
||||
root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
|
||||
root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
|
||||
|
||||
*(pRoots + 0) = root_first;
|
||||
*(pRoots + 1) = root_second;
|
||||
*(pRoots + 0) = root_first;
|
||||
*(pRoots + 1) = root_second;
|
||||
}
|
||||
|
||||
/* -----------------------------------------------------------------------------
|
||||
@ -500,61 +501,58 @@ void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
|
||||
/* Addition using two normal ints - Temporary - Use only for testing purposes?. */
|
||||
fInt Add (int X, int Y)
|
||||
{
|
||||
fInt A, B, Sum;
|
||||
fInt A, B, Sum;
|
||||
|
||||
A.full = (X << SHIFT_AMOUNT);
|
||||
B.full = (Y << SHIFT_AMOUNT);
|
||||
A.full = (X << SHIFT_AMOUNT);
|
||||
B.full = (Y << SHIFT_AMOUNT);
|
||||
|
||||
Sum.full = A.full + B.full;
|
||||
Sum.full = A.full + B.full;
|
||||
|
||||
return Sum;
|
||||
return Sum;
|
||||
}
|
||||
|
||||
/* Conversion Functions */
|
||||
int GetReal (fInt A)
|
||||
{
|
||||
return (A.full >> SHIFT_AMOUNT);
|
||||
return (A.full >> SHIFT_AMOUNT);
|
||||
}
|
||||
|
||||
/* Temporarily Disabled */
|
||||
int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
|
||||
{
|
||||
/* ROUNDING TEMPORARLY DISABLED
|
||||
int temp = A.full;
|
||||
/* ROUNDING TEMPORARLY DISABLED
|
||||
int temp = A.full;
|
||||
int decimal_cutoff, decimal_mask = 0x000001FF;
|
||||
decimal_cutoff = temp & decimal_mask;
|
||||
if (decimal_cutoff > 0x147) {
|
||||
temp += 673;
|
||||
}*/
|
||||
|
||||
int decimal_cutoff, decimal_mask = 0x000001FF;
|
||||
|
||||
decimal_cutoff = temp & decimal_mask;
|
||||
|
||||
|
||||
if (decimal_cutoff > 0x147) {
|
||||
temp += 673;
|
||||
}*/
|
||||
|
||||
return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */
|
||||
return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */
|
||||
}
|
||||
|
||||
fInt Multiply (int X, int Y)
|
||||
{
|
||||
fInt A, B, Product;
|
||||
fInt A, B, Product;
|
||||
|
||||
A.full = X << SHIFT_AMOUNT;
|
||||
B.full = Y << SHIFT_AMOUNT;
|
||||
A.full = X << SHIFT_AMOUNT;
|
||||
B.full = Y << SHIFT_AMOUNT;
|
||||
|
||||
Product = fMultiply(A, B);
|
||||
Product = fMultiply(A, B);
|
||||
|
||||
return Product;
|
||||
return Product;
|
||||
}
|
||||
|
||||
fInt Divide (int X, int Y)
|
||||
{
|
||||
fInt A, B, Quotient;
|
||||
fInt A, B, Quotient;
|
||||
|
||||
A.full = X << SHIFT_AMOUNT;
|
||||
B.full = Y << SHIFT_AMOUNT;
|
||||
A.full = X << SHIFT_AMOUNT;
|
||||
B.full = Y << SHIFT_AMOUNT;
|
||||
|
||||
Quotient = fDivide(A, B);
|
||||
Quotient = fDivide(A, B);
|
||||
|
||||
return Quotient;
|
||||
return Quotient;
|
||||
}
|
||||
|
||||
int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
|
||||
@ -563,16 +561,13 @@ int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole intege
|
||||
int i, scaledDecimal = 0, tmp = A.partial.decimal;
|
||||
|
||||
for (i = 0; i < PRECISION; i++) {
|
||||
dec[i] = tmp / (1 << SHIFT_AMOUNT);
|
||||
dec[i] = tmp / (1 << SHIFT_AMOUNT);
|
||||
tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
|
||||
tmp *= 10;
|
||||
scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i);
|
||||
}
|
||||
|
||||
tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
|
||||
|
||||
tmp *= 10;
|
||||
|
||||
scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i);
|
||||
}
|
||||
|
||||
return scaledDecimal;
|
||||
return scaledDecimal;
|
||||
}
|
||||
|
||||
int uPow(int base, int power)
|
||||
@ -601,17 +596,17 @@ int uAbs(int X)
|
||||
|
||||
fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
|
||||
{
|
||||
fInt solution;
|
||||
fInt solution;
|
||||
|
||||
solution = fDivide(A, fStepSize);
|
||||
solution.partial.decimal = 0; /*All fractional digits changes to 0 */
|
||||
solution = fDivide(A, fStepSize);
|
||||
solution.partial.decimal = 0; /*All fractional digits changes to 0 */
|
||||
|
||||
if (error_term)
|
||||
solution.partial.real += 1; /*Error term of 1 added */
|
||||
if (error_term)
|
||||
solution.partial.real += 1; /*Error term of 1 added */
|
||||
|
||||
solution = fMultiply(solution, fStepSize);
|
||||
solution = fAdd(solution, fStepSize);
|
||||
solution = fMultiply(solution, fStepSize);
|
||||
solution = fAdd(solution, fStepSize);
|
||||
|
||||
return solution;
|
||||
return solution;
|
||||
}
|
||||
|
||||
|
@ -228,9 +228,9 @@ int fiji_send_msg_to_smc(struct pp_smumgr *smumgr, uint16_t msg)
|
||||
}
|
||||
|
||||
cgs_write_register(smumgr->device, mmSMC_MESSAGE_0, msg);
|
||||
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
|
||||
SMUM_WAIT_FIELD_UNEQUAL(smumgr, SMC_RESP_0, SMC_RESP, 0);
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -557,7 +557,7 @@ static int fiji_request_smu_specific_fw_load(struct pp_smumgr *smumgr, uint32_t
|
||||
/* For non-virtualization cases,
|
||||
* SMU loads all FWs at once in fiji_request_smu_load_fw.
|
||||
*/
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int fiji_start_smu_in_protection_mode(struct pp_smumgr *smumgr)
|
||||
@ -723,7 +723,7 @@ static int fiji_start_avfs_btc(struct pp_smumgr *smumgr)
|
||||
/* clear reset */
|
||||
cgs_write_register(smumgr->device, mmGRBM_SOFT_RESET, 0);
|
||||
|
||||
return result;
|
||||
return result;
|
||||
}
|
||||
|
||||
int fiji_setup_pm_fuse_for_avfs(struct pp_smumgr *smumgr)
|
||||
|
Loading…
Reference in New Issue
Block a user