mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-15 21:16:54 +07:00
Merge branch 'x86/core' into x86/apic
This commit is contained in:
commit
5aa37e4f06
8
CREDITS
8
CREDITS
@ -317,6 +317,14 @@ S: 2322 37th Ave SW
|
||||
S: Seattle, Washington 98126-2010
|
||||
S: USA
|
||||
|
||||
N: Muli Ben-Yehuda
|
||||
E: mulix@mulix.org
|
||||
E: muli@il.ibm.com
|
||||
W: http://www.mulix.org
|
||||
D: trident OSS sound driver, x86-64 dma-ops and Calgary IOMMU,
|
||||
D: KVM and Xen bits and other misc. hackery.
|
||||
S: Haifa, Israel
|
||||
|
||||
N: Johannes Berg
|
||||
E: johannes@sipsolutions.net
|
||||
W: http://johannes.sipsolutions.net/
|
||||
|
@ -89,8 +89,6 @@ cciss.txt
|
||||
- info, major/minor #'s for Compaq's SMART Array Controllers.
|
||||
cdrom/
|
||||
- directory with information on the CD-ROM drivers that Linux has.
|
||||
cli-sti-removal.txt
|
||||
- cli()/sti() removal guide.
|
||||
computone.txt
|
||||
- info on Computone Intelliport II/Plus Multiport Serial Driver.
|
||||
connector/
|
||||
@ -361,8 +359,6 @@ telephony/
|
||||
- directory with info on telephony (e.g. voice over IP) support.
|
||||
time_interpolators.txt
|
||||
- info on time interpolators.
|
||||
tipar.txt
|
||||
- information about Parallel link cable for Texas Instruments handhelds.
|
||||
tty.txt
|
||||
- guide to the locking policies of the tty layer.
|
||||
uml/
|
||||
|
315
Documentation/ABI/testing/sysfs-class-regulator
Normal file
315
Documentation/ABI/testing/sysfs-class-regulator
Normal file
@ -0,0 +1,315 @@
|
||||
What: /sys/class/regulator/.../state
|
||||
Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
state. This holds the regulator output state.
|
||||
|
||||
This will be one of the following strings:
|
||||
|
||||
'enabled'
|
||||
'disabled'
|
||||
'unknown'
|
||||
|
||||
'enabled' means the regulator output is ON and is supplying
|
||||
power to the system.
|
||||
|
||||
'disabled' means the regulator output is OFF and is not
|
||||
supplying power to the system..
|
||||
|
||||
'unknown' means software cannot determine the state.
|
||||
|
||||
NOTE: this field can be used in conjunction with microvolts
|
||||
and microamps to determine regulator output levels.
|
||||
|
||||
|
||||
What: /sys/class/regulator/.../type
|
||||
Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
type. This holds the regulator type.
|
||||
|
||||
This will be one of the following strings:
|
||||
|
||||
'voltage'
|
||||
'current'
|
||||
'unknown'
|
||||
|
||||
'voltage' means the regulator output voltage can be controlled
|
||||
by software.
|
||||
|
||||
'current' means the regulator output current limit can be
|
||||
controlled by software.
|
||||
|
||||
'unknown' means software cannot control either voltage or
|
||||
current limit.
|
||||
|
||||
|
||||
What: /sys/class/regulator/.../microvolts
|
||||
Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
microvolts. This holds the regulator output voltage setting
|
||||
measured in microvolts (i.e. E-6 Volts).
|
||||
|
||||
NOTE: This value should not be used to determine the regulator
|
||||
output voltage level as this value is the same regardless of
|
||||
whether the regulator is enabled or disabled.
|
||||
|
||||
|
||||
What: /sys/class/regulator/.../microamps
|
||||
Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
microamps. This holds the regulator output current limit
|
||||
setting measured in microamps (i.e. E-6 Amps).
|
||||
|
||||
NOTE: This value should not be used to determine the regulator
|
||||
output current level as this value is the same regardless of
|
||||
whether the regulator is enabled or disabled.
|
||||
|
||||
|
||||
What: /sys/class/regulator/.../opmode
|
||||
Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
opmode. This holds the regulator operating mode setting.
|
||||
|
||||
The opmode value can be one of the following strings:
|
||||
|
||||
'fast'
|
||||
'normal'
|
||||
'idle'
|
||||
'standby'
|
||||
'unknown'
|
||||
|
||||
The modes are described in include/linux/regulator/regulator.h
|
||||
|
||||
NOTE: This value should not be used to determine the regulator
|
||||
output operating mode as this value is the same regardless of
|
||||
whether the regulator is enabled or disabled.
|
||||
|
||||
|
||||
What: /sys/class/regulator/.../min_microvolts
|
||||
Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
min_microvolts. This holds the minimum safe working regulator
|
||||
output voltage setting for this domain measured in microvolts.
|
||||
|
||||
NOTE: this will return the string 'constraint not defined' if
|
||||
the power domain has no min microvolts constraint defined by
|
||||
platform code.
|
||||
|
||||
|
||||
What: /sys/class/regulator/.../max_microvolts
|
||||
Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
max_microvolts. This holds the maximum safe working regulator
|
||||
output voltage setting for this domain measured in microvolts.
|
||||
|
||||
NOTE: this will return the string 'constraint not defined' if
|
||||
the power domain has no max microvolts constraint defined by
|
||||
platform code.
|
||||
|
||||
|
||||
What: /sys/class/regulator/.../min_microamps
|
||||
Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
min_microamps. This holds the minimum safe working regulator
|
||||
output current limit setting for this domain measured in
|
||||
microamps.
|
||||
|
||||
NOTE: this will return the string 'constraint not defined' if
|
||||
the power domain has no min microamps constraint defined by
|
||||
platform code.
|
||||
|
||||
|
||||
What: /sys/class/regulator/.../max_microamps
|
||||
Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
max_microamps. This holds the maximum safe working regulator
|
||||
output current limit setting for this domain measured in
|
||||
microamps.
|
||||
|
||||
NOTE: this will return the string 'constraint not defined' if
|
||||
the power domain has no max microamps constraint defined by
|
||||
platform code.
|
||||
|
||||
|
||||
What: /sys/class/regulator/.../num_users
|
||||
Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
num_users. This holds the number of consumer devices that
|
||||
have called regulator_enable() on this regulator.
|
||||
|
||||
|
||||
What: /sys/class/regulator/.../requested_microamps
|
||||
Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
requested_microamps. This holds the total requested load
|
||||
current in microamps for this regulator from all its consumer
|
||||
devices.
|
||||
|
||||
|
||||
What: /sys/class/regulator/.../parent
|
||||
Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Some regulator directories will contain a link called parent.
|
||||
This points to the parent or supply regulator if one exists.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_mem_microvolts
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
suspend_mem_microvolts. This holds the regulator output
|
||||
voltage setting for this domain measured in microvolts when
|
||||
the system is suspended to memory.
|
||||
|
||||
NOTE: this will return the string 'not defined' if
|
||||
the power domain has no suspend to memory voltage defined by
|
||||
platform code.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_disk_microvolts
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
suspend_disk_microvolts. This holds the regulator output
|
||||
voltage setting for this domain measured in microvolts when
|
||||
the system is suspended to disk.
|
||||
|
||||
NOTE: this will return the string 'not defined' if
|
||||
the power domain has no suspend to disk voltage defined by
|
||||
platform code.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_standby_microvolts
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
suspend_standby_microvolts. This holds the regulator output
|
||||
voltage setting for this domain measured in microvolts when
|
||||
the system is suspended to standby.
|
||||
|
||||
NOTE: this will return the string 'not defined' if
|
||||
the power domain has no suspend to standby voltage defined by
|
||||
platform code.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_mem_mode
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
suspend_mem_mode. This holds the regulator operating mode
|
||||
setting for this domain when the system is suspended to
|
||||
memory.
|
||||
|
||||
NOTE: this will return the string 'not defined' if
|
||||
the power domain has no suspend to memory mode defined by
|
||||
platform code.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_disk_mode
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
suspend_disk_mode. This holds the regulator operating mode
|
||||
setting for this domain when the system is suspended to disk.
|
||||
|
||||
NOTE: this will return the string 'not defined' if
|
||||
the power domain has no suspend to disk mode defined by
|
||||
platform code.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_standby_mode
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
suspend_standby_mode. This holds the regulator operating mode
|
||||
setting for this domain when the system is suspended to
|
||||
standby.
|
||||
|
||||
NOTE: this will return the string 'not defined' if
|
||||
the power domain has no suspend to standby mode defined by
|
||||
platform code.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_mem_state
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
suspend_mem_state. This holds the regulator operating state
|
||||
when suspended to memory.
|
||||
|
||||
This will be one of the following strings:
|
||||
|
||||
'enabled'
|
||||
'disabled'
|
||||
'not defined'
|
||||
|
||||
What: /sys/class/regulator/.../suspend_disk_state
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
suspend_disk_state. This holds the regulator operating state
|
||||
when suspended to disk.
|
||||
|
||||
This will be one of the following strings:
|
||||
|
||||
'enabled'
|
||||
'disabled'
|
||||
'not defined'
|
||||
|
||||
What: /sys/class/regulator/.../suspend_standby_state
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
suspend_standby_state. This holds the regulator operating
|
||||
state when suspended to standby.
|
||||
|
||||
This will be one of the following strings:
|
||||
|
||||
'enabled'
|
||||
'disabled'
|
||||
'not defined'
|
24
Documentation/ABI/testing/sysfs-devices-memory
Normal file
24
Documentation/ABI/testing/sysfs-devices-memory
Normal file
@ -0,0 +1,24 @@
|
||||
What: /sys/devices/system/memory
|
||||
Date: June 2008
|
||||
Contact: Badari Pulavarty <pbadari@us.ibm.com>
|
||||
Description:
|
||||
The /sys/devices/system/memory contains a snapshot of the
|
||||
internal state of the kernel memory blocks. Files could be
|
||||
added or removed dynamically to represent hot-add/remove
|
||||
operations.
|
||||
|
||||
Users: hotplug memory add/remove tools
|
||||
https://w3.opensource.ibm.com/projects/powerpc-utils/
|
||||
|
||||
What: /sys/devices/system/memory/memoryX/removable
|
||||
Date: June 2008
|
||||
Contact: Badari Pulavarty <pbadari@us.ibm.com>
|
||||
Description:
|
||||
The file /sys/devices/system/memory/memoryX/removable
|
||||
indicates whether this memory block is removable or not.
|
||||
This is useful for a user-level agent to determine
|
||||
identify removable sections of the memory before attempting
|
||||
potentially expensive hot-remove memory operation
|
||||
|
||||
Users: hotplug memory remove tools
|
||||
https://w3.opensource.ibm.com/projects/powerpc-utils/
|
6
Documentation/ABI/testing/sysfs-kernel-mm
Normal file
6
Documentation/ABI/testing/sysfs-kernel-mm
Normal file
@ -0,0 +1,6 @@
|
||||
What: /sys/kernel/mm
|
||||
Date: July 2008
|
||||
Contact: Nishanth Aravamudan <nacc@us.ibm.com>, VM maintainers
|
||||
Description:
|
||||
/sys/kernel/mm/ should contain any and all VM
|
||||
related information in /sys/kernel/.
|
15
Documentation/ABI/testing/sysfs-kernel-mm-hugepages
Normal file
15
Documentation/ABI/testing/sysfs-kernel-mm-hugepages
Normal file
@ -0,0 +1,15 @@
|
||||
What: /sys/kernel/mm/hugepages/
|
||||
Date: June 2008
|
||||
Contact: Nishanth Aravamudan <nacc@us.ibm.com>, hugetlb maintainers
|
||||
Description:
|
||||
/sys/kernel/mm/hugepages/ contains a number of subdirectories
|
||||
of the form hugepages-<size>kB, where <size> is the page size
|
||||
of the hugepages supported by the kernel/CPU combination.
|
||||
|
||||
Under these directories are a number of files:
|
||||
nr_hugepages
|
||||
nr_overcommit_hugepages
|
||||
free_hugepages
|
||||
surplus_hugepages
|
||||
resv_hugepages
|
||||
See Documentation/vm/hugetlbpage.txt for details.
|
@ -474,25 +474,29 @@ make a good program).
|
||||
So, you can either get rid of GNU emacs, or change it to use saner
|
||||
values. To do the latter, you can stick the following in your .emacs file:
|
||||
|
||||
(defun linux-c-mode ()
|
||||
"C mode with adjusted defaults for use with the Linux kernel."
|
||||
(interactive)
|
||||
(c-mode)
|
||||
(c-set-style "K&R")
|
||||
(setq tab-width 8)
|
||||
(defun c-lineup-arglist-tabs-only (ignored)
|
||||
"Line up argument lists by tabs, not spaces"
|
||||
(let* ((anchor (c-langelem-pos c-syntactic-element))
|
||||
(column (c-langelem-2nd-pos c-syntactic-element))
|
||||
(offset (- (1+ column) anchor))
|
||||
(steps (floor offset c-basic-offset)))
|
||||
(* (max steps 1)
|
||||
c-basic-offset)))
|
||||
|
||||
(add-hook 'c-mode-hook
|
||||
(lambda ()
|
||||
(let ((filename (buffer-file-name)))
|
||||
;; Enable kernel mode for the appropriate files
|
||||
(when (and filename
|
||||
(string-match "~/src/linux-trees" filename))
|
||||
(setq indent-tabs-mode t)
|
||||
(setq c-basic-offset 8))
|
||||
(c-set-style "linux")
|
||||
(c-set-offset 'arglist-cont-nonempty
|
||||
'(c-lineup-gcc-asm-reg
|
||||
c-lineup-arglist-tabs-only))))))
|
||||
|
||||
This will define the M-x linux-c-mode command. When hacking on a
|
||||
module, if you put the string -*- linux-c -*- somewhere on the first
|
||||
two lines, this mode will be automatically invoked. Also, you may want
|
||||
to add
|
||||
|
||||
(setq auto-mode-alist (cons '("/usr/src/linux.*/.*\\.[ch]$" . linux-c-mode)
|
||||
auto-mode-alist))
|
||||
|
||||
to your .emacs file if you want to have linux-c-mode switched on
|
||||
automagically when you edit source files under /usr/src/linux.
|
||||
This will make emacs go better with the kernel coding style for C
|
||||
files below ~/src/linux-trees.
|
||||
|
||||
But even if you fail in getting emacs to do sane formatting, not
|
||||
everything is lost: use "indent".
|
||||
|
@ -298,10 +298,10 @@ recommended that you never use these unless you really know what the
|
||||
cache width is.
|
||||
|
||||
int
|
||||
dma_mapping_error(dma_addr_t dma_addr)
|
||||
dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
||||
|
||||
int
|
||||
pci_dma_mapping_error(dma_addr_t dma_addr)
|
||||
pci_dma_mapping_error(struct pci_dev *hwdev, dma_addr_t dma_addr)
|
||||
|
||||
In some circumstances dma_map_single and dma_map_page will fail to create
|
||||
a mapping. A driver can check for these errors by testing the returned
|
||||
|
@ -12,7 +12,7 @@ DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml videobook.xml \
|
||||
kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
|
||||
gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \
|
||||
genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
|
||||
mac80211.xml debugobjects.xml
|
||||
mac80211.xml debugobjects.xml sh.xml
|
||||
|
||||
###
|
||||
# The build process is as follows (targets):
|
||||
@ -102,6 +102,13 @@ C-procfs-example = procfs_example.xml
|
||||
C-procfs-example2 = $(addprefix $(obj)/,$(C-procfs-example))
|
||||
$(obj)/procfs-guide.xml: $(C-procfs-example2)
|
||||
|
||||
# List of programs to build
|
||||
##oops, this is a kernel module::hostprogs-y := procfs_example
|
||||
obj-m += procfs_example.o
|
||||
|
||||
# Tell kbuild to always build the programs
|
||||
always := $(hostprogs-y)
|
||||
|
||||
notfoundtemplate = echo "*** You have to install docbook-utils or xmlto ***"; \
|
||||
exit 1
|
||||
db2xtemplate = db2TYPE -o $(dir $@) $<
|
||||
|
@ -219,10 +219,10 @@
|
||||
</para>
|
||||
|
||||
<sect1 id="lock-intro">
|
||||
<title>Three Main Types of Kernel Locks: Spinlocks, Mutexes and Semaphores</title>
|
||||
<title>Two Main Types of Kernel Locks: Spinlocks and Mutexes</title>
|
||||
|
||||
<para>
|
||||
There are three main types of kernel locks. The fundamental type
|
||||
There are two main types of kernel locks. The fundamental type
|
||||
is the spinlock
|
||||
(<filename class="headerfile">include/asm/spinlock.h</filename>),
|
||||
which is a very simple single-holder lock: if you can't get the
|
||||
@ -239,14 +239,6 @@
|
||||
can't sleep (see <xref linkend="sleeping-things"/>), and so have to
|
||||
use a spinlock instead.
|
||||
</para>
|
||||
<para>
|
||||
The third type is a semaphore
|
||||
(<filename class="headerfile">include/linux/semaphore.h</filename>): it
|
||||
can have more than one holder at any time (the number decided at
|
||||
initialization time), although it is most commonly used as a
|
||||
single-holder lock (a mutex). If you can't get a semaphore, your
|
||||
task will be suspended and later on woken up - just like for mutexes.
|
||||
</para>
|
||||
<para>
|
||||
Neither type of lock is recursive: see
|
||||
<xref linkend="deadlock"/>.
|
||||
@ -278,7 +270,7 @@
|
||||
</para>
|
||||
|
||||
<para>
|
||||
Semaphores still exist, because they are required for
|
||||
Mutexes still exist, because they are required for
|
||||
synchronization between <firstterm linkend="gloss-usercontext">user
|
||||
contexts</firstterm>, as we will see below.
|
||||
</para>
|
||||
@ -289,18 +281,17 @@
|
||||
|
||||
<para>
|
||||
If you have a data structure which is only ever accessed from
|
||||
user context, then you can use a simple semaphore
|
||||
(<filename>linux/linux/semaphore.h</filename>) to protect it. This
|
||||
is the most trivial case: you initialize the semaphore to the number
|
||||
of resources available (usually 1), and call
|
||||
<function>down_interruptible()</function> to grab the semaphore, and
|
||||
<function>up()</function> to release it. There is also a
|
||||
<function>down()</function>, which should be avoided, because it
|
||||
user context, then you can use a simple mutex
|
||||
(<filename>include/linux/mutex.h</filename>) to protect it. This
|
||||
is the most trivial case: you initialize the mutex. Then you can
|
||||
call <function>mutex_lock_interruptible()</function> to grab the mutex,
|
||||
and <function>mutex_unlock()</function> to release it. There is also a
|
||||
<function>mutex_lock()</function>, which should be avoided, because it
|
||||
will not return if a signal is received.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
Example: <filename>linux/net/core/netfilter.c</filename> allows
|
||||
Example: <filename>net/netfilter/nf_sockopt.c</filename> allows
|
||||
registration of new <function>setsockopt()</function> and
|
||||
<function>getsockopt()</function> calls, with
|
||||
<function>nf_register_sockopt()</function>. Registration and
|
||||
@ -515,7 +506,7 @@
|
||||
<listitem>
|
||||
<para>
|
||||
If you are in a process context (any syscall) and want to
|
||||
lock other process out, use a semaphore. You can take a semaphore
|
||||
lock other process out, use a mutex. You can take a mutex
|
||||
and sleep (<function>copy_from_user*(</function> or
|
||||
<function>kmalloc(x,GFP_KERNEL)</function>).
|
||||
</para>
|
||||
@ -662,7 +653,7 @@
|
||||
<entry>SLBH</entry>
|
||||
<entry>SLBH</entry>
|
||||
<entry>SLBH</entry>
|
||||
<entry>DI</entry>
|
||||
<entry>MLI</entry>
|
||||
<entry>None</entry>
|
||||
</row>
|
||||
|
||||
@ -692,8 +683,8 @@
|
||||
<entry>spin_lock_bh</entry>
|
||||
</row>
|
||||
<row>
|
||||
<entry>DI</entry>
|
||||
<entry>down_interruptible</entry>
|
||||
<entry>MLI</entry>
|
||||
<entry>mutex_lock_interruptible</entry>
|
||||
</row>
|
||||
|
||||
</tbody>
|
||||
@ -1310,7 +1301,7 @@ as Alan Cox says, <quote>Lock data, not code</quote>.
|
||||
<para>
|
||||
There is a coding bug where a piece of code tries to grab a
|
||||
spinlock twice: it will spin forever, waiting for the lock to
|
||||
be released (spinlocks, rwlocks and semaphores are not
|
||||
be released (spinlocks, rwlocks and mutexes are not
|
||||
recursive in Linux). This is trivial to diagnose: not a
|
||||
stay-up-five-nights-talk-to-fluffy-code-bunnies kind of
|
||||
problem.
|
||||
@ -1335,7 +1326,7 @@ as Alan Cox says, <quote>Lock data, not code</quote>.
|
||||
|
||||
<para>
|
||||
This complete lockup is easy to diagnose: on SMP boxes the
|
||||
watchdog timer or compiling with <symbol>DEBUG_SPINLOCKS</symbol> set
|
||||
watchdog timer or compiling with <symbol>DEBUG_SPINLOCK</symbol> set
|
||||
(<filename>include/linux/spinlock.h</filename>) will show this up
|
||||
immediately when it happens.
|
||||
</para>
|
||||
@ -1558,7 +1549,7 @@ the amount of locking which needs to be done.
|
||||
<title>Read/Write Lock Variants</title>
|
||||
|
||||
<para>
|
||||
Both spinlocks and semaphores have read/write variants:
|
||||
Both spinlocks and mutexes have read/write variants:
|
||||
<type>rwlock_t</type> and <structname>struct rw_semaphore</structname>.
|
||||
These divide users into two classes: the readers and the writers. If
|
||||
you are only reading the data, you can get a read lock, but to write to
|
||||
@ -1681,7 +1672,7 @@ the amount of locking which needs to be done.
|
||||
#include <linux/slab.h>
|
||||
#include <linux/string.h>
|
||||
+#include <linux/rcupdate.h>
|
||||
#include <linux/semaphore.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <asm/errno.h>
|
||||
|
||||
struct object
|
||||
@ -1927,13 +1918,13 @@ machines due to caching.
|
||||
|
||||
<listitem>
|
||||
<para>
|
||||
<function>down_interruptible()</function> and
|
||||
<function>down()</function>
|
||||
<function>mutex_lock_interruptible()</function> and
|
||||
<function>mutex_lock()</function>
|
||||
</para>
|
||||
<para>
|
||||
There is a <function>down_trylock()</function> which can be
|
||||
There is a <function>mutex_trylock()</function> which can be
|
||||
used inside interrupt context, as it will not sleep.
|
||||
<function>up()</function> will also never sleep.
|
||||
<function>mutex_unlock()</function> will also never sleep.
|
||||
</para>
|
||||
</listitem>
|
||||
</itemizedlist>
|
||||
@ -2023,7 +2014,7 @@ machines due to caching.
|
||||
<para>
|
||||
Prior to 2.5, or when <symbol>CONFIG_PREEMPT</symbol> is
|
||||
unset, processes in user context inside the kernel would not
|
||||
preempt each other (ie. you had that CPU until you have it up,
|
||||
preempt each other (ie. you had that CPU until you gave it up,
|
||||
except for interrupts). With the addition of
|
||||
<symbol>CONFIG_PREEMPT</symbol> in 2.5.4, this changed: when
|
||||
in user context, higher priority tasks can "cut in": spinlocks
|
||||
|
@ -98,6 +98,24 @@
|
||||
"Kernel debugging" select "KGDB: kernel debugging with remote gdb".
|
||||
</para>
|
||||
<para>
|
||||
It is advised, but not required that you turn on the
|
||||
CONFIG_FRAME_POINTER kernel option. This option inserts code to
|
||||
into the compiled executable which saves the frame information in
|
||||
registers or on the stack at different points which will allow a
|
||||
debugger such as gdb to more accurately construct stack back traces
|
||||
while debugging the kernel.
|
||||
</para>
|
||||
<para>
|
||||
If the architecture that you are using supports the kernel option
|
||||
CONFIG_DEBUG_RODATA, you should consider turning it off. This
|
||||
option will prevent the use of software breakpoints because it
|
||||
marks certain regions of the kernel's memory space as read-only.
|
||||
If kgdb supports it for the architecture you are using, you can
|
||||
use hardware breakpoints if you desire to run with the
|
||||
CONFIG_DEBUG_RODATA option turned on, else you need to turn off
|
||||
this option.
|
||||
</para>
|
||||
<para>
|
||||
Next you should choose one of more I/O drivers to interconnect debugging
|
||||
host and debugged target. Early boot debugging requires a KGDB
|
||||
I/O driver that supports early debugging and the driver must be
|
||||
|
@ -29,12 +29,12 @@
|
||||
|
||||
<revhistory>
|
||||
<revision>
|
||||
<revnumber>1.0 </revnumber>
|
||||
<revnumber>1.0</revnumber>
|
||||
<date>May 30, 2001</date>
|
||||
<revremark>Initial revision posted to linux-kernel</revremark>
|
||||
</revision>
|
||||
<revision>
|
||||
<revnumber>1.1 </revnumber>
|
||||
<revnumber>1.1</revnumber>
|
||||
<date>June 3, 2001</date>
|
||||
<revremark>Revised after comments from linux-kernel</revremark>
|
||||
</revision>
|
||||
|
@ -189,8 +189,6 @@ static int __init init_procfs_example(void)
|
||||
return 0;
|
||||
|
||||
no_symlink:
|
||||
remove_proc_entry("tty", example_dir);
|
||||
no_tty:
|
||||
remove_proc_entry("bar", example_dir);
|
||||
no_bar:
|
||||
remove_proc_entry("foo", example_dir);
|
||||
@ -206,7 +204,6 @@ static int __init init_procfs_example(void)
|
||||
static void __exit cleanup_procfs_example(void)
|
||||
{
|
||||
remove_proc_entry("jiffies_too", example_dir);
|
||||
remove_proc_entry("tty", example_dir);
|
||||
remove_proc_entry("bar", example_dir);
|
||||
remove_proc_entry("foo", example_dir);
|
||||
remove_proc_entry("jiffies", example_dir);
|
||||
@ -222,3 +219,4 @@ module_exit(cleanup_procfs_example);
|
||||
|
||||
MODULE_AUTHOR("Erik Mouw");
|
||||
MODULE_DESCRIPTION("procfs examples");
|
||||
MODULE_LICENSE("GPL");
|
||||
|
@ -100,7 +100,7 @@
|
||||
the hardware structures represented here, please consult the Principles
|
||||
of Operation.
|
||||
</para>
|
||||
!Iinclude/asm-s390/cio.h
|
||||
!Iarch/s390/include/asm/cio.h
|
||||
</sect1>
|
||||
<sect1 id="ccwdev">
|
||||
<title>ccw devices</title>
|
||||
@ -114,7 +114,7 @@
|
||||
ccw device structure. Device drivers must not bypass those functions
|
||||
or strange side effects may happen.
|
||||
</para>
|
||||
!Iinclude/asm-s390/ccwdev.h
|
||||
!Iarch/s390/include/asm/ccwdev.h
|
||||
!Edrivers/s390/cio/device.c
|
||||
!Edrivers/s390/cio/device_ops.c
|
||||
</sect1>
|
||||
@ -125,7 +125,7 @@
|
||||
measurement data which is made available by the channel subsystem
|
||||
for each channel attached device.
|
||||
</para>
|
||||
!Iinclude/asm-s390/cmb.h
|
||||
!Iarch/s390/include/asm/cmb.h
|
||||
!Edrivers/s390/cio/cmf.c
|
||||
</sect1>
|
||||
</chapter>
|
||||
@ -142,7 +142,7 @@
|
||||
</para>
|
||||
<sect1 id="ccwgroupdevices">
|
||||
<title>ccw group devices</title>
|
||||
!Iinclude/asm-s390/ccwgroup.h
|
||||
!Iarch/s390/include/asm/ccwgroup.h
|
||||
!Edrivers/s390/cio/ccwgroup.c
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
105
Documentation/DocBook/sh.tmpl
Normal file
105
Documentation/DocBook/sh.tmpl
Normal file
@ -0,0 +1,105 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
|
||||
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
|
||||
|
||||
<book id="sh-drivers">
|
||||
<bookinfo>
|
||||
<title>SuperH Interfaces Guide</title>
|
||||
|
||||
<authorgroup>
|
||||
<author>
|
||||
<firstname>Paul</firstname>
|
||||
<surname>Mundt</surname>
|
||||
<affiliation>
|
||||
<address>
|
||||
<email>lethal@linux-sh.org</email>
|
||||
</address>
|
||||
</affiliation>
|
||||
</author>
|
||||
</authorgroup>
|
||||
|
||||
<copyright>
|
||||
<year>2008</year>
|
||||
<holder>Paul Mundt</holder>
|
||||
</copyright>
|
||||
<copyright>
|
||||
<year>2008</year>
|
||||
<holder>Renesas Technology Corp.</holder>
|
||||
</copyright>
|
||||
|
||||
<legalnotice>
|
||||
<para>
|
||||
This documentation is free software; you can redistribute
|
||||
it and/or modify it under the terms of the GNU General Public
|
||||
License version 2 as published by the Free Software Foundation.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
This program is distributed in the hope that it will be
|
||||
useful, but WITHOUT ANY WARRANTY; without even the implied
|
||||
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
See the GNU General Public License for more details.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with this program; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
||||
MA 02111-1307 USA
|
||||
</para>
|
||||
|
||||
<para>
|
||||
For more details see the file COPYING in the source
|
||||
distribution of Linux.
|
||||
</para>
|
||||
</legalnotice>
|
||||
</bookinfo>
|
||||
|
||||
<toc></toc>
|
||||
|
||||
<chapter id="mm">
|
||||
<title>Memory Management</title>
|
||||
<sect1 id="sh4">
|
||||
<title>SH-4</title>
|
||||
<sect2 id="sq">
|
||||
<title>Store Queue API</title>
|
||||
!Earch/sh/kernel/cpu/sh4/sq.c
|
||||
</sect2>
|
||||
</sect1>
|
||||
<sect1 id="sh5">
|
||||
<title>SH-5</title>
|
||||
<sect2 id="tlb">
|
||||
<title>TLB Interfaces</title>
|
||||
!Iarch/sh/mm/tlb-sh5.c
|
||||
!Iarch/sh/include/asm/tlb_64.h
|
||||
</sect2>
|
||||
</sect1>
|
||||
</chapter>
|
||||
<chapter id="clk">
|
||||
<title>Clock Framework Extensions</title>
|
||||
!Iarch/sh/include/asm/clock.h
|
||||
</chapter>
|
||||
<chapter id="mach">
|
||||
<title>Machine Specific Interfaces</title>
|
||||
<sect1 id="dreamcast">
|
||||
<title>mach-dreamcast</title>
|
||||
!Iarch/sh/boards/mach-dreamcast/rtc.c
|
||||
</sect1>
|
||||
<sect1 id="x3proto">
|
||||
<title>mach-x3proto</title>
|
||||
!Earch/sh/boards/mach-x3proto/ilsel.c
|
||||
</sect1>
|
||||
</chapter>
|
||||
<chapter id="busses">
|
||||
<title>Busses</title>
|
||||
<sect1 id="superhyway">
|
||||
<title>SuperHyway</title>
|
||||
!Edrivers/sh/superhyway/superhyway.c
|
||||
</sect1>
|
||||
|
||||
<sect1 id="maple">
|
||||
<title>Maple</title>
|
||||
!Edrivers/sh/maple/maple.c
|
||||
</sect1>
|
||||
</chapter>
|
||||
</book>
|
@ -1648,7 +1648,7 @@ static struct video_buffer capture_fb;
|
||||
|
||||
<chapter id="pubfunctions">
|
||||
<title>Public Functions Provided</title>
|
||||
!Edrivers/media/video/videodev.c
|
||||
!Edrivers/media/video/v4l2-dev.c
|
||||
</chapter>
|
||||
|
||||
</book>
|
||||
|
@ -69,12 +69,6 @@
|
||||
device to be used as both a tty interface and as a synchronous
|
||||
controller is a project for Linux post the 2.4 release
|
||||
</para>
|
||||
<para>
|
||||
The support code handles most common card configurations and
|
||||
supports running both Cisco HDLC and Synchronous PPP. With extra
|
||||
glue the frame relay and X.25 protocols can also be used with this
|
||||
driver.
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="Driver_Modes">
|
||||
@ -179,35 +173,27 @@
|
||||
<para>
|
||||
If you wish to use the network interface facilities of the driver,
|
||||
then you need to attach a network device to each channel that is
|
||||
present and in use. In addition to use the SyncPPP and Cisco HDLC
|
||||
present and in use. In addition to use the generic HDLC
|
||||
you need to follow some additional plumbing rules. They may seem
|
||||
complex but a look at the example hostess_sv11 driver should
|
||||
reassure you.
|
||||
</para>
|
||||
<para>
|
||||
The network device used for each channel should be pointed to by
|
||||
the netdevice field of each channel. The dev-> priv field of the
|
||||
the netdevice field of each channel. The hdlc-> priv field of the
|
||||
network device points to your private data - you will need to be
|
||||
able to find your ppp device from this. In addition to use the
|
||||
sync ppp layer the private data must start with a void * pointer
|
||||
to the syncppp structures.
|
||||
able to find your private data from this.
|
||||
</para>
|
||||
<para>
|
||||
The way most drivers approach this particular problem is to
|
||||
create a structure holding the Z8530 device definition and
|
||||
put that and the syncppp pointer into the private field of
|
||||
the network device. The network device fields of the channels
|
||||
then point back to the network devices. The ppp_device can also
|
||||
be put in the private structure conveniently.
|
||||
put that into the private field of the network device. The
|
||||
network device fields of the channels then point back to the
|
||||
network devices.
|
||||
</para>
|
||||
<para>
|
||||
If you wish to use the synchronous ppp then you need to attach
|
||||
the syncppp layer to the network device. You should do this before
|
||||
you register the network device. The
|
||||
<function>sppp_attach</function> requires that the first void *
|
||||
pointer in your private data is pointing to an empty struct
|
||||
ppp_device. The function fills in the initial data for the
|
||||
ppp/hdlc layer.
|
||||
If you wish to use the generic HDLC then you need to register
|
||||
the HDLC device.
|
||||
</para>
|
||||
<para>
|
||||
Before you register your network device you will also need to
|
||||
@ -314,7 +300,7 @@
|
||||
buffer in sk_buff format and queues it for transmission. The
|
||||
caller must provide the entire packet with the exception of the
|
||||
bitstuffing and CRC. This is normally done by the caller via
|
||||
the syncppp interface layer. It returns 0 if the buffer has been
|
||||
the generic HDLC interface layer. It returns 0 if the buffer has been
|
||||
queued and non zero values for queue full. If the function accepts
|
||||
the buffer it becomes property of the Z8530 layer and the caller
|
||||
should not free it.
|
||||
|
@ -48,7 +48,7 @@ IOVA generation is pretty generic. We used the same technique as vmalloc()
|
||||
but these are not global address spaces, but separate for each domain.
|
||||
Different DMA engines may support different number of domains.
|
||||
|
||||
We also allocate gaurd pages with each mapping, so we can attempt to catch
|
||||
We also allocate guard pages with each mapping, so we can attempt to catch
|
||||
any overflow that might happen.
|
||||
|
||||
|
||||
@ -112,4 +112,4 @@ TBD
|
||||
|
||||
- For compatibility testing, could use unity map domain for all devices, just
|
||||
provide a 1-1 for all useful memory under a single domain for all devices.
|
||||
- API for paravirt ops for abstracting functionlity for VMM folks.
|
||||
- API for paravirt ops for abstracting functionality for VMM folks.
|
||||
|
3
Documentation/Makefile
Normal file
3
Documentation/Makefile
Normal file
@ -0,0 +1,3 @@
|
||||
obj-m := DocBook/ accounting/ auxdisplay/ connector/ \
|
||||
filesystems/configfs/ ia64/ networking/ \
|
||||
pcmcia/ spi/ video4linux/ vm/ watchdog/src/
|
@ -528,7 +528,33 @@ See more details on the proper patch format in the following
|
||||
references.
|
||||
|
||||
|
||||
16) Sending "git pull" requests (from Linus emails)
|
||||
|
||||
Please write the git repo address and branch name alone on the same line
|
||||
so that I can't even by mistake pull from the wrong branch, and so
|
||||
that a triple-click just selects the whole thing.
|
||||
|
||||
So the proper format is something along the lines of:
|
||||
|
||||
"Please pull from
|
||||
|
||||
git://jdelvare.pck.nerim.net/jdelvare-2.6 i2c-for-linus
|
||||
|
||||
to get these changes:"
|
||||
|
||||
so that I don't have to hunt-and-peck for the address and inevitably
|
||||
get it wrong (actually, I've only gotten it wrong a few times, and
|
||||
checking against the diffstat tells me when I get it wrong, but I'm
|
||||
just a lot more comfortable when I don't have to "look for" the right
|
||||
thing to pull, and double-check that I have the right branch-name).
|
||||
|
||||
|
||||
Please use "git diff -M --stat --summary" to generate the diffstat:
|
||||
the -M enables rename detection, and the summary enables a summary of
|
||||
new/deleted or renamed files.
|
||||
|
||||
With rename detection, the statistics are rather different [...]
|
||||
because git will notice that a fair number of the changes are renames.
|
||||
|
||||
-----------------------------------
|
||||
SECTION 2 - HINTS, TIPS, AND TRICKS
|
||||
|
10
Documentation/accounting/Makefile
Normal file
10
Documentation/accounting/Makefile
Normal file
@ -0,0 +1,10 @@
|
||||
# kbuild trick to avoid linker error. Can be omitted if a module is built.
|
||||
obj- := dummy.o
|
||||
|
||||
# List of programs to build
|
||||
hostprogs-y := getdelays
|
||||
|
||||
# Tell kbuild to always build the programs
|
||||
always := $(hostprogs-y)
|
||||
|
||||
HOSTCFLAGS_getdelays.o += -I$(objtree)/usr/include
|
@ -11,6 +11,7 @@ the delays experienced by a task while
|
||||
a) waiting for a CPU (while being runnable)
|
||||
b) completion of synchronous block I/O initiated by the task
|
||||
c) swapping in pages
|
||||
d) memory reclaim
|
||||
|
||||
and makes these statistics available to userspace through
|
||||
the taskstats interface.
|
||||
@ -41,7 +42,7 @@ this structure. See
|
||||
include/linux/taskstats.h
|
||||
for a description of the fields pertaining to delay accounting.
|
||||
It will generally be in the form of counters returning the cumulative
|
||||
delay seen for cpu, sync block I/O, swapin etc.
|
||||
delay seen for cpu, sync block I/O, swapin, memory reclaim etc.
|
||||
|
||||
Taking the difference of two successive readings of a given
|
||||
counter (say cpu_delay_total) for a task will give the delay
|
||||
@ -94,7 +95,9 @@ CPU count real total virtual total delay total
|
||||
7876 92005750 100000000 24001500
|
||||
IO count delay total
|
||||
0 0
|
||||
MEM count delay total
|
||||
SWAP count delay total
|
||||
0 0
|
||||
RECLAIM count delay total
|
||||
0 0
|
||||
|
||||
Get delays seen in executing a given simple command
|
||||
@ -108,5 +111,7 @@ CPU count real total virtual total delay total
|
||||
6 4000250 4000000 0
|
||||
IO count delay total
|
||||
0 0
|
||||
MEM count delay total
|
||||
SWAP count delay total
|
||||
0 0
|
||||
RECLAIM count delay total
|
||||
0 0
|
||||
|
@ -196,14 +196,24 @@ void print_delayacct(struct taskstats *t)
|
||||
" %15llu%15llu%15llu%15llu\n"
|
||||
"IO %15s%15s\n"
|
||||
" %15llu%15llu\n"
|
||||
"MEM %15s%15s\n"
|
||||
"SWAP %15s%15s\n"
|
||||
" %15llu%15llu\n"
|
||||
"RECLAIM %12s%15s\n"
|
||||
" %15llu%15llu\n",
|
||||
"count", "real total", "virtual total", "delay total",
|
||||
t->cpu_count, t->cpu_run_real_total, t->cpu_run_virtual_total,
|
||||
t->cpu_delay_total,
|
||||
(unsigned long long)t->cpu_count,
|
||||
(unsigned long long)t->cpu_run_real_total,
|
||||
(unsigned long long)t->cpu_run_virtual_total,
|
||||
(unsigned long long)t->cpu_delay_total,
|
||||
"count", "delay total",
|
||||
t->blkio_count, t->blkio_delay_total,
|
||||
"count", "delay total", t->swapin_count, t->swapin_delay_total);
|
||||
(unsigned long long)t->blkio_count,
|
||||
(unsigned long long)t->blkio_delay_total,
|
||||
"count", "delay total",
|
||||
(unsigned long long)t->swapin_count,
|
||||
(unsigned long long)t->swapin_delay_total,
|
||||
"count", "delay total",
|
||||
(unsigned long long)t->freepages_count,
|
||||
(unsigned long long)t->freepages_delay_total);
|
||||
}
|
||||
|
||||
void task_context_switch_counts(struct taskstats *t)
|
||||
@ -211,14 +221,17 @@ void task_context_switch_counts(struct taskstats *t)
|
||||
printf("\n\nTask %15s%15s\n"
|
||||
" %15llu%15llu\n",
|
||||
"voluntary", "nonvoluntary",
|
||||
t->nvcsw, t->nivcsw);
|
||||
(unsigned long long)t->nvcsw, (unsigned long long)t->nivcsw);
|
||||
}
|
||||
|
||||
void print_cgroupstats(struct cgroupstats *c)
|
||||
{
|
||||
printf("sleeping %llu, blocked %llu, running %llu, stopped %llu, "
|
||||
"uninterruptible %llu\n", c->nr_sleeping, c->nr_io_wait,
|
||||
c->nr_running, c->nr_stopped, c->nr_uninterruptible);
|
||||
"uninterruptible %llu\n", (unsigned long long)c->nr_sleeping,
|
||||
(unsigned long long)c->nr_io_wait,
|
||||
(unsigned long long)c->nr_running,
|
||||
(unsigned long long)c->nr_stopped,
|
||||
(unsigned long long)c->nr_uninterruptible);
|
||||
}
|
||||
|
||||
|
||||
|
@ -6,7 +6,7 @@ This document contains an explanation of the struct taskstats fields.
|
||||
There are three different groups of fields in the struct taskstats:
|
||||
|
||||
1) Common and basic accounting fields
|
||||
If CONFIG_TASKSTATS is set, the taskstats inteface is enabled and
|
||||
If CONFIG_TASKSTATS is set, the taskstats interface is enabled and
|
||||
the common fields and basic accounting fields are collected for
|
||||
delivery at do_exit() of a task.
|
||||
2) Delay accounting fields
|
||||
@ -26,6 +26,8 @@ There are three different groups of fields in the struct taskstats:
|
||||
|
||||
5) Time accounting for SMT machines
|
||||
|
||||
6) Extended delay accounting fields for memory reclaim
|
||||
|
||||
Future extension should add fields to the end of the taskstats struct, and
|
||||
should not change the relative position of each field within the struct.
|
||||
|
||||
@ -170,4 +172,9 @@ struct taskstats {
|
||||
__u64 ac_utimescaled; /* utime scaled on frequency etc */
|
||||
__u64 ac_stimescaled; /* stime scaled on frequency etc */
|
||||
__u64 cpu_scaled_run_real_total; /* scaled cpu_run_real_total */
|
||||
|
||||
6) Extended delay accounting fields for memory reclaim
|
||||
/* Delay waiting for memory reclaim */
|
||||
__u64 freepages_count;
|
||||
__u64 freepages_delay_total;
|
||||
}
|
||||
|
@ -32,7 +32,7 @@ Linux currently supports the following features on the IXP4xx chips:
|
||||
- Flash access (MTD/JFFS)
|
||||
- I2C through GPIO on IXP42x
|
||||
- GPIO for input/output/interrupts
|
||||
See include/asm-arm/arch-ixp4xx/platform.h for access functions.
|
||||
See arch/arm/mach-ixp4xx/include/mach/platform.h for access functions.
|
||||
- Timers (watchdog, OS)
|
||||
|
||||
The following components of the chips are not supported by Linux and
|
||||
|
@ -138,14 +138,8 @@ So, what's changed?
|
||||
|
||||
Set active the IRQ edge(s)/level. This replaces the
|
||||
SA1111 INTPOL manipulation, and the set_GPIO_IRQ_edge()
|
||||
function. Type should be one of the following:
|
||||
|
||||
#define IRQT_NOEDGE (0)
|
||||
#define IRQT_RISING (__IRQT_RISEDGE)
|
||||
#define IRQT_FALLING (__IRQT_FALEDGE)
|
||||
#define IRQT_BOTHEDGE (__IRQT_RISEDGE|__IRQT_FALEDGE)
|
||||
#define IRQT_LOW (__IRQT_LOWLVL)
|
||||
#define IRQT_HIGH (__IRQT_HIGHLVL)
|
||||
function. Type should be one of IRQ_TYPE_xxx defined in
|
||||
<linux/irq.h>
|
||||
|
||||
3. set_GPIO_IRQ_edge() is obsolete, and should be replaced by set_irq_type.
|
||||
|
||||
@ -164,7 +158,7 @@ So, what's changed?
|
||||
be re-checked for pending events. (see the Neponset IRQ handler for
|
||||
details).
|
||||
|
||||
7. fixup_irq() is gone, as is include/asm-arm/arch-*/irq.h
|
||||
7. fixup_irq() is gone, as is arch/arm/mach-*/include/mach/irq.h
|
||||
|
||||
Please note that this will not solve all problems - some of them are
|
||||
hardware based. Mixing level-based and edge-based IRQs on the same
|
||||
|
@ -79,7 +79,7 @@ Machine/Platform support
|
||||
To this end, we now have arch/arm/mach-$(MACHINE) directories which are
|
||||
designed to house the non-driver files for a particular machine (eg, PCI,
|
||||
memory management, architecture definitions etc). For all future
|
||||
machines, there should be a corresponding include/asm-arm/arch-$(MACHINE)
|
||||
machines, there should be a corresponding arch/arm/mach-$(MACHINE)/include/mach
|
||||
directory.
|
||||
|
||||
|
||||
@ -176,7 +176,7 @@ Kernel entry (head.S)
|
||||
class typically based around one or more system on a chip devices, and
|
||||
acts as a natural container around the actual implementations. These
|
||||
classes are given directories - arch/arm/mach-<class> and
|
||||
include/asm-arm/arch-<class> - which contain the source files to
|
||||
arch/arm/mach-<class> - which contain the source files to/include/mach
|
||||
support the machine class. This directories also contain any machine
|
||||
specific supporting code.
|
||||
|
||||
|
@ -16,13 +16,13 @@ Introduction
|
||||
Headers
|
||||
-------
|
||||
|
||||
See include/asm-arm/arch-s3c2410/regs-gpio.h for the list
|
||||
See arch/arm/mach-s3c2410/include/mach/regs-gpio.h for the list
|
||||
of GPIO pins, and the configuration values for them. This
|
||||
is included by using #include <asm/arch/regs-gpio.h>
|
||||
is included by using #include <mach/regs-gpio.h>
|
||||
|
||||
The GPIO management functions are defined in the hardware
|
||||
header include/asm-arm/arch-s3c2410/hardware.h which can be
|
||||
included by #include <asm/arch/hardware.h>
|
||||
header arch/arm/mach-s3c2410/include/mach/hardware.h which can be
|
||||
included by #include <mach/hardware.h>
|
||||
|
||||
A useful amount of documentation can be found in the hardware
|
||||
header on how the GPIO functions (and others) work.
|
||||
|
@ -36,7 +36,7 @@ Layout
|
||||
in arch/arm/mach-s3c2410 and S3C2440 in arch/arm/mach-s3c2440
|
||||
|
||||
Register, kernel and platform data definitions are held in the
|
||||
include/asm-arm/arch-s3c2410 directory.
|
||||
arch/arm/mach-s3c2410 directory./include/mach
|
||||
|
||||
|
||||
Machines
|
||||
|
@ -49,7 +49,7 @@ Board Support
|
||||
Platform Data
|
||||
-------------
|
||||
|
||||
See linux/include/asm-arm/arch-s3c2410/usb-control.h for the
|
||||
See arch/arm/mach-s3c2410/include/mach/usb-control.h for the
|
||||
descriptions of the platform device data. An implementation
|
||||
can be found in linux/arch/arm/mach-s3c2410/usb-simtec.c .
|
||||
|
||||
|
10
Documentation/auxdisplay/Makefile
Normal file
10
Documentation/auxdisplay/Makefile
Normal file
@ -0,0 +1,10 @@
|
||||
# kbuild trick to avoid linker error. Can be omitted if a module is built.
|
||||
obj- := dummy.o
|
||||
|
||||
# List of programs to build
|
||||
hostprogs-y := cfag12864b-example
|
||||
|
||||
# Tell kbuild to always build the programs
|
||||
always := $(hostprogs-y)
|
||||
|
||||
HOSTCFLAGS_cfag12864b-example.o += -I$(objtree)/usr/include
|
67
Documentation/bt8xxgpio.txt
Normal file
67
Documentation/bt8xxgpio.txt
Normal file
@ -0,0 +1,67 @@
|
||||
===============================================================
|
||||
== BT8XXGPIO driver ==
|
||||
== ==
|
||||
== A driver for a selfmade cheap BT8xx based PCI GPIO-card ==
|
||||
== ==
|
||||
== For advanced documentation, see ==
|
||||
== http://www.bu3sch.de/btgpio.php ==
|
||||
===============================================================
|
||||
|
||||
|
||||
A generic digital 24-port PCI GPIO card can be built out of an ordinary
|
||||
Brooktree bt848, bt849, bt878 or bt879 based analog TV tuner card. The
|
||||
Brooktree chip is used in old analog Hauppauge WinTV PCI cards. You can easily
|
||||
find them used for low prices on the net.
|
||||
|
||||
The bt8xx chip does have 24 digital GPIO ports.
|
||||
These ports are accessible via 24 pins on the SMD chip package.
|
||||
|
||||
|
||||
==============================================
|
||||
== How to physically access the GPIO pins ==
|
||||
==============================================
|
||||
|
||||
The are several ways to access these pins. One might unsolder the whole chip
|
||||
and put it on a custom PCI board, or one might only unsolder each individual
|
||||
GPIO pin and solder that to some tiny wire. As the chip package really is tiny
|
||||
there are some advanced soldering skills needed in any case.
|
||||
|
||||
The physical pinouts are drawn in the following ASCII art.
|
||||
The GPIO pins are marked with G00-G23
|
||||
|
||||
G G G G G G G G G G G G G G G G G G
|
||||
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
|
||||
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
|
||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
||||
---------------------------------------------------------------------------
|
||||
--| ^ ^ |--
|
||||
--| pin 86 pin 67 |--
|
||||
--| |--
|
||||
--| pin 61 > |-- G18
|
||||
--| |-- G19
|
||||
--| |-- G20
|
||||
--| |-- G21
|
||||
--| |-- G22
|
||||
--| pin 56 > |-- G23
|
||||
--| |--
|
||||
--| Brooktree 878/879 |--
|
||||
--| |--
|
||||
--| |--
|
||||
--| |--
|
||||
--| |--
|
||||
--| |--
|
||||
--| |--
|
||||
--| |--
|
||||
--| |--
|
||||
--| |--
|
||||
--| |--
|
||||
--| |--
|
||||
--| |--
|
||||
--| |--
|
||||
--| O |--
|
||||
--| |--
|
||||
---------------------------------------------------------------------------
|
||||
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
||||
^
|
||||
This is pin 1
|
||||
|
@ -112,27 +112,18 @@ Hot plug support for SCSI tape drives
|
||||
|
||||
Hot plugging of SCSI tape drives is supported, with some caveats.
|
||||
The cciss driver must be informed that changes to the SCSI bus
|
||||
have been made, in addition to and prior to informing the SCSI
|
||||
mid layer. This may be done via the /proc filesystem. For example:
|
||||
have been made. This may be done via the /proc filesystem.
|
||||
For example:
|
||||
|
||||
echo "rescan" > /proc/scsi/cciss0/1
|
||||
|
||||
This causes the adapter to query the adapter about changes to the
|
||||
This causes the driver to query the adapter about changes to the
|
||||
physical SCSI buses and/or fibre channel arbitrated loop and the
|
||||
driver to make note of any new or removed sequential access devices
|
||||
or medium changers. The driver will output messages indicating what
|
||||
devices have been added or removed and the controller, bus, target and
|
||||
lun used to address the device. Once this is done, the SCSI mid layer
|
||||
can be informed of changes to the virtual SCSI bus which the driver
|
||||
presents to it in the usual way. For example:
|
||||
|
||||
echo scsi add-single-device 3 2 1 0 > /proc/scsi/scsi
|
||||
|
||||
to add a device on controller 3, bus 2, target 1, lun 0. Note that
|
||||
the driver makes an effort to preserve the devices positions
|
||||
in the virtual SCSI bus, so if you are only moving tape drives
|
||||
around on the same adapter and not adding or removing tape drives
|
||||
from the adapter, informing the SCSI mid layer may not be necessary.
|
||||
lun used to address the device. It then notifies the SCSI mid layer
|
||||
of these changes.
|
||||
|
||||
Note that the naming convention of the /proc filesystem entries
|
||||
contains a number in addition to the driver name. (E.g. "cciss0"
|
||||
|
@ -1,133 +0,0 @@
|
||||
|
||||
#### cli()/sti() removal guide, started by Ingo Molnar <mingo@redhat.com>
|
||||
|
||||
|
||||
as of 2.5.28, five popular macros have been removed on SMP, and
|
||||
are being phased out on UP:
|
||||
|
||||
cli(), sti(), save_flags(flags), save_flags_cli(flags), restore_flags(flags)
|
||||
|
||||
until now it was possible to protect driver code against interrupt
|
||||
handlers via a cli(), but from now on other, more lightweight methods
|
||||
have to be used for synchronization, such as spinlocks or semaphores.
|
||||
|
||||
for example, driver code that used to do something like:
|
||||
|
||||
struct driver_data;
|
||||
|
||||
irq_handler (...)
|
||||
{
|
||||
....
|
||||
driver_data.finish = 1;
|
||||
driver_data.new_work = 0;
|
||||
....
|
||||
}
|
||||
|
||||
...
|
||||
|
||||
ioctl_func (...)
|
||||
{
|
||||
...
|
||||
cli();
|
||||
...
|
||||
driver_data.finish = 0;
|
||||
driver_data.new_work = 2;
|
||||
...
|
||||
sti();
|
||||
...
|
||||
}
|
||||
|
||||
was SMP-correct because the cli() function ensured that no
|
||||
interrupt handler (amongst them the above irq_handler()) function
|
||||
would execute while the cli()-ed section is executing.
|
||||
|
||||
but from now on a more direct method of locking has to be used:
|
||||
|
||||
DEFINE_SPINLOCK(driver_lock);
|
||||
struct driver_data;
|
||||
|
||||
irq_handler (...)
|
||||
{
|
||||
unsigned long flags;
|
||||
....
|
||||
spin_lock_irqsave(&driver_lock, flags);
|
||||
....
|
||||
driver_data.finish = 1;
|
||||
driver_data.new_work = 0;
|
||||
....
|
||||
spin_unlock_irqrestore(&driver_lock, flags);
|
||||
....
|
||||
}
|
||||
|
||||
...
|
||||
|
||||
ioctl_func (...)
|
||||
{
|
||||
...
|
||||
spin_lock_irq(&driver_lock);
|
||||
...
|
||||
driver_data.finish = 0;
|
||||
driver_data.new_work = 2;
|
||||
...
|
||||
spin_unlock_irq(&driver_lock);
|
||||
...
|
||||
}
|
||||
|
||||
the above code has a number of advantages:
|
||||
|
||||
- the locking relation is easier to understand - actual lock usage
|
||||
pinpoints the critical sections. cli() usage is too opaque.
|
||||
Easier to understand means it's easier to debug.
|
||||
|
||||
- it's faster, because spinlocks are faster to acquire than the
|
||||
potentially heavily-used IRQ lock. Furthermore, your driver does
|
||||
not have to wait eg. for a big heavy SCSI interrupt to finish,
|
||||
because the driver_lock spinlock is only used by your driver.
|
||||
cli() on the other hand was used by many drivers, and extended
|
||||
the critical section to the whole IRQ handler function - creating
|
||||
serious lock contention.
|
||||
|
||||
|
||||
to make the transition easier, we've still kept the cli(), sti(),
|
||||
save_flags(), save_flags_cli() and restore_flags() macros defined
|
||||
on UP systems - but their usage will be phased out until 2.6 is
|
||||
released.
|
||||
|
||||
drivers that want to disable local interrupts (interrupts on the
|
||||
current CPU), can use the following five macros:
|
||||
|
||||
local_irq_disable(), local_irq_enable(), local_save_flags(flags),
|
||||
local_irq_save(flags), local_irq_restore(flags)
|
||||
|
||||
but beware, their meaning and semantics are much simpler, far from
|
||||
that of the old cli(), sti(), save_flags(flags) and restore_flags(flags)
|
||||
SMP meaning:
|
||||
|
||||
local_irq_disable() => turn local IRQs off
|
||||
|
||||
local_irq_enable() => turn local IRQs on
|
||||
|
||||
local_save_flags(flags) => save the current IRQ state into flags. The
|
||||
state can be on or off. (on some
|
||||
architectures there's even more bits in it.)
|
||||
|
||||
local_irq_save(flags) => save the current IRQ state into flags and
|
||||
disable interrupts.
|
||||
|
||||
local_irq_restore(flags) => restore the IRQ state from flags.
|
||||
|
||||
(local_irq_save can save both irqs on and irqs off state, and
|
||||
local_irq_restore can restore into both irqs on and irqs off state.)
|
||||
|
||||
another related change is that synchronize_irq() now takes a parameter:
|
||||
synchronize_irq(irq). This change too has the purpose of making SMP
|
||||
synchronization more lightweight - this way you can wait for your own
|
||||
interrupt handler to finish, no need to wait for other IRQ sources.
|
||||
|
||||
|
||||
why were these changes done? The main reason was the architectural burden
|
||||
of maintaining the cli()/sti() interface - it became a real problem. The
|
||||
new interrupt system is much more streamlined, easier to understand, debug,
|
||||
and it's also a bit faster - the same happened to it that will happen to
|
||||
cli()/sti() using drivers once they convert to spinlocks :-)
|
||||
|
11
Documentation/connector/Makefile
Normal file
11
Documentation/connector/Makefile
Normal file
@ -0,0 +1,11 @@
|
||||
ifneq ($(CONFIG_CONNECTOR),)
|
||||
obj-m += cn_test.o
|
||||
endif
|
||||
|
||||
# List of programs to build
|
||||
hostprogs-y := ucon
|
||||
|
||||
# Tell kbuild to always build the programs
|
||||
always := $(hostprogs-y)
|
||||
|
||||
HOSTCFLAGS_ucon.o += -I$(objtree)/usr/include
|
@ -242,8 +242,7 @@ rmdir() if there are no tasks.
|
||||
1. Add support for accounting huge pages (as a separate controller)
|
||||
2. Make per-cgroup scanner reclaim not-shared pages first
|
||||
3. Teach controller to account for shared-pages
|
||||
4. Start reclamation when the limit is lowered
|
||||
5. Start reclamation in the background when the limit is
|
||||
4. Start reclamation in the background when the limit is
|
||||
not yet hit but the usage is getting closer
|
||||
|
||||
Summary
|
||||
|
@ -122,7 +122,7 @@ around '10000' or more.
|
||||
show_sampling_rate_(min|max): the minimum and maximum sampling rates
|
||||
available that you may set 'sampling_rate' to.
|
||||
|
||||
up_threshold: defines what the average CPU usaged between the samplings
|
||||
up_threshold: defines what the average CPU usage between the samplings
|
||||
of 'sampling_rate' needs to be for the kernel to make a decision on
|
||||
whether it should increase the frequency. For example when it is set
|
||||
to its default value of '80' it means that between the checking
|
||||
|
@ -59,15 +59,10 @@ apicid values in those tables for disabled apics. In the event BIOS doesn't
|
||||
mark such hot-pluggable cpus as disabled entries, one could use this
|
||||
parameter "additional_cpus=x" to represent those cpus in the cpu_possible_map.
|
||||
|
||||
s390 uses the number of cpus it detects at IPL time to also the number of bits
|
||||
in cpu_possible_map. If it is desired to add additional cpus at a later time
|
||||
the number should be specified using this option or the possible_cpus option.
|
||||
|
||||
possible_cpus=n [s390 only] use this to set hotpluggable cpus.
|
||||
This option sets possible_cpus bits in
|
||||
cpu_possible_map. Thus keeping the numbers of bits set
|
||||
constant even if the machine gets rebooted.
|
||||
This option overrides additional_cpus.
|
||||
|
||||
CPU maps and such
|
||||
-----------------
|
||||
|
@ -2560,9 +2560,6 @@ Your cooperation is appreciated.
|
||||
96 = /dev/usb/hiddev0 1st USB HID device
|
||||
...
|
||||
111 = /dev/usb/hiddev15 16th USB HID device
|
||||
112 = /dev/usb/auer0 1st auerswald ISDN device
|
||||
...
|
||||
127 = /dev/usb/auer15 16th auerswald ISDN device
|
||||
128 = /dev/usb/brlvgr0 First Braille Voyager device
|
||||
...
|
||||
131 = /dev/usb/brlvgr3 Fourth Braille Voyager device
|
||||
|
@ -222,74 +222,9 @@ both csrow2 and csrow3 are populated, this indicates a dual ranked
|
||||
set of DIMMs for channels 0 and 1.
|
||||
|
||||
|
||||
Within each of the 'mc','mcX' and 'csrowX' directories are several
|
||||
Within each of the 'mcX' and 'csrowX' directories are several
|
||||
EDAC control and attribute files.
|
||||
|
||||
|
||||
============================================================================
|
||||
DIRECTORY 'mc'
|
||||
|
||||
In directory 'mc' are EDAC system overall control and attribute files:
|
||||
|
||||
|
||||
Panic on UE control file:
|
||||
|
||||
'edac_mc_panic_on_ue'
|
||||
|
||||
An uncorrectable error will cause a machine panic. This is usually
|
||||
desirable. It is a bad idea to continue when an uncorrectable error
|
||||
occurs - it is indeterminate what was uncorrected and the operating
|
||||
system context might be so mangled that continuing will lead to further
|
||||
corruption. If the kernel has MCE configured, then EDAC will never
|
||||
notice the UE.
|
||||
|
||||
LOAD TIME: module/kernel parameter: panic_on_ue=[0|1]
|
||||
|
||||
RUN TIME: echo "1" >/sys/devices/system/edac/mc/edac_mc_panic_on_ue
|
||||
|
||||
|
||||
Log UE control file:
|
||||
|
||||
'edac_mc_log_ue'
|
||||
|
||||
Generate kernel messages describing uncorrectable errors. These errors
|
||||
are reported through the system message log system. UE statistics
|
||||
will be accumulated even when UE logging is disabled.
|
||||
|
||||
LOAD TIME: module/kernel parameter: log_ue=[0|1]
|
||||
|
||||
RUN TIME: echo "1" >/sys/devices/system/edac/mc/edac_mc_log_ue
|
||||
|
||||
|
||||
Log CE control file:
|
||||
|
||||
'edac_mc_log_ce'
|
||||
|
||||
Generate kernel messages describing correctable errors. These
|
||||
errors are reported through the system message log system.
|
||||
CE statistics will be accumulated even when CE logging is disabled.
|
||||
|
||||
LOAD TIME: module/kernel parameter: log_ce=[0|1]
|
||||
|
||||
RUN TIME: echo "1" >/sys/devices/system/edac/mc/edac_mc_log_ce
|
||||
|
||||
|
||||
Polling period control file:
|
||||
|
||||
'edac_mc_poll_msec'
|
||||
|
||||
The time period, in milliseconds, for polling for error information.
|
||||
Too small a value wastes resources. Too large a value might delay
|
||||
necessary handling of errors and might loose valuable information for
|
||||
locating the error. 1000 milliseconds (once each second) is the current
|
||||
default. Systems which require all the bandwidth they can get, may
|
||||
increase this.
|
||||
|
||||
LOAD TIME: module/kernel parameter: poll_msec=[0|1]
|
||||
|
||||
RUN TIME: echo "1000" >/sys/devices/system/edac/mc/edac_mc_poll_msec
|
||||
|
||||
|
||||
============================================================================
|
||||
'mcX' DIRECTORIES
|
||||
|
||||
@ -392,7 +327,7 @@ Sdram memory scrubbing rate:
|
||||
'sdram_scrub_rate'
|
||||
|
||||
Read/Write attribute file that controls memory scrubbing. The scrubbing
|
||||
rate is set by writing a minimum bandwith in bytes/sec to the attribute
|
||||
rate is set by writing a minimum bandwidth in bytes/sec to the attribute
|
||||
file. The rate will be translated to an internal value that gives at
|
||||
least the specified rate.
|
||||
|
||||
@ -537,7 +472,6 @@ Channel 1 DIMM Label control file:
|
||||
motherboard specific and determination of this information
|
||||
must occur in userland at this time.
|
||||
|
||||
|
||||
============================================================================
|
||||
SYSTEM LOGGING
|
||||
|
||||
@ -570,7 +504,6 @@ error type, a notice of "no info" and then an optional,
|
||||
driver-specific error message.
|
||||
|
||||
|
||||
|
||||
============================================================================
|
||||
PCI Bus Parity Detection
|
||||
|
||||
@ -604,6 +537,74 @@ Enable/Disable PCI Parity checking control file:
|
||||
echo "0" >/sys/devices/system/edac/pci/check_pci_parity
|
||||
|
||||
|
||||
Parity Count:
|
||||
|
||||
'pci_parity_count'
|
||||
|
||||
This attribute file will display the number of parity errors that
|
||||
have been detected.
|
||||
|
||||
|
||||
============================================================================
|
||||
MODULE PARAMETERS
|
||||
|
||||
Panic on UE control file:
|
||||
|
||||
'edac_mc_panic_on_ue'
|
||||
|
||||
An uncorrectable error will cause a machine panic. This is usually
|
||||
desirable. It is a bad idea to continue when an uncorrectable error
|
||||
occurs - it is indeterminate what was uncorrected and the operating
|
||||
system context might be so mangled that continuing will lead to further
|
||||
corruption. If the kernel has MCE configured, then EDAC will never
|
||||
notice the UE.
|
||||
|
||||
LOAD TIME: module/kernel parameter: edac_mc_panic_on_ue=[0|1]
|
||||
|
||||
RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_panic_on_ue
|
||||
|
||||
|
||||
Log UE control file:
|
||||
|
||||
'edac_mc_log_ue'
|
||||
|
||||
Generate kernel messages describing uncorrectable errors. These errors
|
||||
are reported through the system message log system. UE statistics
|
||||
will be accumulated even when UE logging is disabled.
|
||||
|
||||
LOAD TIME: module/kernel parameter: edac_mc_log_ue=[0|1]
|
||||
|
||||
RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ue
|
||||
|
||||
|
||||
Log CE control file:
|
||||
|
||||
'edac_mc_log_ce'
|
||||
|
||||
Generate kernel messages describing correctable errors. These
|
||||
errors are reported through the system message log system.
|
||||
CE statistics will be accumulated even when CE logging is disabled.
|
||||
|
||||
LOAD TIME: module/kernel parameter: edac_mc_log_ce=[0|1]
|
||||
|
||||
RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ce
|
||||
|
||||
|
||||
Polling period control file:
|
||||
|
||||
'edac_mc_poll_msec'
|
||||
|
||||
The time period, in milliseconds, for polling for error information.
|
||||
Too small a value wastes resources. Too large a value might delay
|
||||
necessary handling of errors and might loose valuable information for
|
||||
locating the error. 1000 milliseconds (once each second) is the current
|
||||
default. Systems which require all the bandwidth they can get, may
|
||||
increase this.
|
||||
|
||||
LOAD TIME: module/kernel parameter: edac_mc_poll_msec=[0|1]
|
||||
|
||||
RUN TIME: echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll_msec
|
||||
|
||||
|
||||
Panic on PCI PARITY Error:
|
||||
|
||||
@ -614,21 +615,13 @@ Panic on PCI PARITY Error:
|
||||
error has been detected.
|
||||
|
||||
|
||||
module/kernel parameter: panic_on_pci_parity=[0|1]
|
||||
module/kernel parameter: edac_panic_on_pci_pe=[0|1]
|
||||
|
||||
Enable:
|
||||
echo "1" >/sys/devices/system/edac/pci/panic_on_pci_parity
|
||||
echo "1" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
|
||||
|
||||
Disable:
|
||||
echo "0" >/sys/devices/system/edac/pci/panic_on_pci_parity
|
||||
|
||||
|
||||
Parity Count:
|
||||
|
||||
'pci_parity_count'
|
||||
|
||||
This attribute file will display the number of parity errors that
|
||||
have been detected.
|
||||
echo "0" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
|
||||
|
||||
|
||||
|
||||
|
131
Documentation/fb/sh7760fb.txt
Normal file
131
Documentation/fb/sh7760fb.txt
Normal file
@ -0,0 +1,131 @@
|
||||
SH7760/SH7763 integrated LCDC Framebuffer driver
|
||||
================================================
|
||||
|
||||
0. Overwiew
|
||||
-----------
|
||||
The SH7760/SH7763 have an integrated LCD Display controller (LCDC) which
|
||||
supports (in theory) resolutions ranging from 1x1 to 1024x1024,
|
||||
with color depths ranging from 1 to 16 bits, on STN, DSTN and TFT Panels.
|
||||
|
||||
Caveats:
|
||||
* Framebuffer memory must be a large chunk allocated at the top
|
||||
of Area3 (HW requirement). Because of this requirement you should NOT
|
||||
make the driver a module since at runtime it may become impossible to
|
||||
get a large enough contiguous chunk of memory.
|
||||
|
||||
* The driver does not support changing resolution while loaded
|
||||
(displays aren't hotpluggable anyway)
|
||||
|
||||
* Heavy flickering may be observed
|
||||
a) if you're using 15/16bit color modes at >= 640x480 px resolutions,
|
||||
b) during PCMCIA (or any other slow bus) activity.
|
||||
|
||||
* Rotation works only 90degress clockwise, and only if horizontal
|
||||
resolution is <= 320 pixels.
|
||||
|
||||
files: drivers/video/sh7760fb.c
|
||||
include/asm-sh/sh7760fb.h
|
||||
Documentation/fb/sh7760fb.txt
|
||||
|
||||
1. Platform setup
|
||||
-----------------
|
||||
SH7760:
|
||||
Video data is fetched via the DMABRG DMA engine, so you have to
|
||||
configure the SH DMAC for DMABRG mode (write 0x94808080 to the
|
||||
DMARSRA register somewhere at boot).
|
||||
|
||||
PFC registers PCCR and PCDR must be set to peripheral mode.
|
||||
(write zeros to both).
|
||||
|
||||
The driver does NOT do the above for you since board setup is, well, job
|
||||
of the board setup code.
|
||||
|
||||
2. Panel definitions
|
||||
--------------------
|
||||
The LCDC must explicitly be told about the type of LCD panel
|
||||
attached. Data must be wrapped in a "struct sh7760fb_platdata" and
|
||||
passed to the driver as platform_data.
|
||||
|
||||
Suggest you take a closer look at the SH7760 Manual, Section 30.
|
||||
(http://documentation.renesas.com/eng/products/mpumcu/e602291_sh7760.pdf)
|
||||
|
||||
The following code illustrates what needs to be done to
|
||||
get the framebuffer working on a 640x480 TFT:
|
||||
|
||||
====================== cut here ======================================
|
||||
|
||||
#include <linux/fb.h>
|
||||
#include <asm/sh7760fb.h>
|
||||
|
||||
/*
|
||||
* NEC NL6440bc26-01 640x480 TFT
|
||||
* dotclock 25175 kHz
|
||||
* Xres 640 Yres 480
|
||||
* Htotal 800 Vtotal 525
|
||||
* HsynStart 656 VsynStart 490
|
||||
* HsynLenn 30 VsynLenn 2
|
||||
*
|
||||
* The linux framebuffer layer does not use the syncstart/synclen
|
||||
* values but right/left/upper/lower margin values. The comments
|
||||
* for the x_margin explain how to calculate those from given
|
||||
* panel sync timings.
|
||||
*/
|
||||
static struct fb_videomode nl6448bc26 = {
|
||||
.name = "NL6448BC26",
|
||||
.refresh = 60,
|
||||
.xres = 640,
|
||||
.yres = 480,
|
||||
.pixclock = 39683, /* in picoseconds! */
|
||||
.hsync_len = 30,
|
||||
.vsync_len = 2,
|
||||
.left_margin = 114, /* HTOT - (HSYNSLEN + HSYNSTART) */
|
||||
.right_margin = 16, /* HSYNSTART - XRES */
|
||||
.upper_margin = 33, /* VTOT - (VSYNLEN + VSYNSTART) */
|
||||
.lower_margin = 10, /* VSYNSTART - YRES */
|
||||
.sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
|
||||
.vmode = FB_VMODE_NONINTERLACED,
|
||||
.flag = 0,
|
||||
};
|
||||
|
||||
static struct sh7760fb_platdata sh7760fb_nl6448 = {
|
||||
.def_mode = &nl6448bc26,
|
||||
.ldmtr = LDMTR_TFT_COLOR_16, /* 16bit TFT panel */
|
||||
.lddfr = LDDFR_8BPP, /* we want 8bit output */
|
||||
.ldpmmr = 0x0070,
|
||||
.ldpspr = 0x0500,
|
||||
.ldaclnr = 0,
|
||||
.ldickr = LDICKR_CLKSRC(LCDC_CLKSRC_EXTERNAL) |
|
||||
LDICKR_CLKDIV(1),
|
||||
.rotate = 0,
|
||||
.novsync = 1,
|
||||
.blank = NULL,
|
||||
};
|
||||
|
||||
/* SH7760:
|
||||
* 0xFE300800: 256 * 4byte xRGB palette ram
|
||||
* 0xFE300C00: 42 bytes ctrl registers
|
||||
*/
|
||||
static struct resource sh7760_lcdc_res[] = {
|
||||
[0] = {
|
||||
.start = 0xFE300800,
|
||||
.end = 0xFE300CFF,
|
||||
.flags = IORESOURCE_MEM,
|
||||
},
|
||||
[1] = {
|
||||
.start = 65,
|
||||
.end = 65,
|
||||
.flags = IORESOURCE_IRQ,
|
||||
},
|
||||
};
|
||||
|
||||
static struct platform_device sh7760_lcdc_dev = {
|
||||
.dev = {
|
||||
.platform_data = &sh7760fb_nl6448,
|
||||
},
|
||||
.name = "sh7760-lcdc",
|
||||
.id = -1,
|
||||
.resource = sh7760_lcdc_res,
|
||||
.num_resources = ARRAY_SIZE(sh7760_lcdc_res),
|
||||
};
|
||||
|
||||
====================== cut here ======================================
|
@ -3,11 +3,25 @@ Tridentfb is a framebuffer driver for some Trident chip based cards.
|
||||
The following list of chips is thought to be supported although not all are
|
||||
tested:
|
||||
|
||||
those from the Image series with Cyber in their names - accelerated
|
||||
those with Blade in their names (Blade3D,CyberBlade...) - accelerated
|
||||
the newer CyberBladeXP family - nonaccelerated
|
||||
those from the TGUI series 9440/96XX and with Cyber in their names
|
||||
those from the Image series and with Cyber in their names
|
||||
those with Blade in their names (Blade3D,CyberBlade...)
|
||||
the newer CyberBladeXP family
|
||||
|
||||
Only PCI/AGP based cards are supported, none of the older Tridents.
|
||||
All families are accelerated. Only PCI/AGP based cards are supported,
|
||||
none of the older Tridents.
|
||||
The driver supports 8, 16 and 32 bits per pixel depths.
|
||||
The TGUI family requires a line length to be power of 2 if acceleration
|
||||
is enabled. This means that range of possible resolutions and bpp is
|
||||
limited comparing to the range if acceleration is disabled (see list
|
||||
of parameters below).
|
||||
|
||||
Known bugs:
|
||||
1. The driver randomly locks up on 3DImage975 chip with acceleration
|
||||
enabled. The same happens in X11 (Xorg).
|
||||
2. The ramdac speeds require some more fine tuning. It is possible to
|
||||
switch resolution which the chip does not support at some depths for
|
||||
older chips.
|
||||
|
||||
How to use it?
|
||||
==============
|
||||
@ -17,12 +31,11 @@ video=tridentfb
|
||||
|
||||
The parameters for tridentfb are concatenated with a ':' as in this example.
|
||||
|
||||
video=tridentfb:800x600,bpp=16,noaccel
|
||||
video=tridentfb:800x600-16@75,noaccel
|
||||
|
||||
The second level parameters that tridentfb understands are:
|
||||
|
||||
noaccel - turns off acceleration (when it doesn't work for your card)
|
||||
accel - force text acceleration (for boards which by default are noacceled)
|
||||
|
||||
fp - use flat panel related stuff
|
||||
crt - assume monitor is present instead of fp
|
||||
@ -31,21 +44,24 @@ center - for flat panels and resolutions smaller than native size center the
|
||||
image, otherwise use
|
||||
stretch
|
||||
|
||||
memsize - integer value in Kb, use if your card's memory size is misdetected.
|
||||
memsize - integer value in KB, use if your card's memory size is misdetected.
|
||||
look at the driver output to see what it says when initializing.
|
||||
memdiff - integer value in Kb,should be nonzero if your card reports
|
||||
|
||||
memdiff - integer value in KB, should be nonzero if your card reports
|
||||
more memory than it actually has. For instance mine is 192K less than
|
||||
detection says in all three BIOS selectable situations 2M, 4M, 8M.
|
||||
Only use if your video memory is taken from main memory hence of
|
||||
configurable size. Otherwise use memsize.
|
||||
If in some modes which barely fit the memory you see garbage at the bottom
|
||||
this might help by not letting change to that mode anymore.
|
||||
If in some modes which barely fit the memory you see garbage
|
||||
at the bottom this might help by not letting change to that mode
|
||||
anymore.
|
||||
|
||||
nativex - the width in pixels of the flat panel.If you know it (usually 1024
|
||||
800 or 1280) and it is not what the driver seems to detect use it.
|
||||
|
||||
bpp - bits per pixel (8,16 or 32)
|
||||
mode - a mode name like 800x600 (as described in Documentation/fb/modedb.txt)
|
||||
mode - a mode name like 800x600-8@75 as described in
|
||||
Documentation/fb/modedb.txt
|
||||
|
||||
Using insane values for the above parameters will probably result in driver
|
||||
misbehaviour so take care(for instance memsize=12345678 or memdiff=23784 or
|
||||
|
@ -19,15 +19,6 @@ Who: Pavel Machek <pavel@suse.cz>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: old NCR53C9x driver
|
||||
When: October 2007
|
||||
Why: Replaced by the much better esp_scsi driver. Actual low-level
|
||||
driver can be ported over almost trivially.
|
||||
Who: David Miller <davem@davemloft.net>
|
||||
Christoph Hellwig <hch@lst.de>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: Video4Linux API 1 ioctls and video_decoder.h from Video devices.
|
||||
When: December 2008
|
||||
Files: include/linux/video_decoder.h include/linux/videodev.h
|
||||
@ -47,6 +38,30 @@ Who: Mauro Carvalho Chehab <mchehab@infradead.org>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: old tuner-3036 i2c driver
|
||||
When: 2.6.28
|
||||
Why: This driver is for VERY old i2c-over-parallel port teletext receiver
|
||||
boxes. Rather then spending effort on converting this driver to V4L2,
|
||||
and since it is extremely unlikely that anyone still uses one of these
|
||||
devices, it was decided to drop it.
|
||||
Who: Hans Verkuil <hverkuil@xs4all.nl>
|
||||
Mauro Carvalho Chehab <mchehab@infradead.org>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: V4L2 dpc7146 driver
|
||||
When: 2.6.28
|
||||
Why: Old driver for the dpc7146 demonstration board that is no longer
|
||||
relevant. The last time this was tested on actual hardware was
|
||||
probably around 2002. Since this is a driver for a demonstration
|
||||
board the decision was made to remove it rather than spending a
|
||||
lot of effort continually updating this driver to stay in sync
|
||||
with the latest internal V4L2 or I2C API.
|
||||
Who: Hans Verkuil <hverkuil@xs4all.nl>
|
||||
Mauro Carvalho Chehab <mchehab@infradead.org>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: PCMCIA control ioctl (needed for pcmcia-cs [cardmgr, cardctl])
|
||||
When: November 2005
|
||||
Files: drivers/pcmcia/: pcmcia_ioctl.c
|
||||
@ -138,24 +153,6 @@ Who: Kay Sievers <kay.sievers@suse.de>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: find_task_by_pid
|
||||
When: 2.6.26
|
||||
Why: With pid namespaces, calling this funciton will return the
|
||||
wrong task when called from inside a namespace.
|
||||
|
||||
The best way to save a task pid and find a task by this
|
||||
pid later, is to find this task's struct pid pointer (or get
|
||||
it directly from the task) and call pid_task() later.
|
||||
|
||||
If someone really needs to get a task by its pid_t, then
|
||||
he most likely needs the find_task_by_vpid() to get the
|
||||
task from the same namespace as the current task is in, but
|
||||
this may be not so in general.
|
||||
|
||||
Who: Pavel Emelyanov <xemul@openvz.org>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: ACPI procfs interface
|
||||
When: July 2008
|
||||
Why: ACPI sysfs conversion should be finished by January 2008.
|
||||
@ -199,19 +196,6 @@ Who: Tejun Heo <htejun@gmail.com>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: The arch/ppc and include/asm-ppc directories
|
||||
When: Jun 2008
|
||||
Why: The arch/powerpc tree is the merged architecture for ppc32 and ppc64
|
||||
platforms. Currently there are efforts underway to port the remaining
|
||||
arch/ppc platforms to the merged tree. New submissions to the arch/ppc
|
||||
tree have been frozen with the 2.6.22 kernel release and that tree will
|
||||
remain in bug-fix only mode until its scheduled removal. Platforms
|
||||
that are not ported by June 2008 will be removed due to the lack of an
|
||||
interested maintainer.
|
||||
Who: linuxppc-dev@ozlabs.org
|
||||
|
||||
---------------------------
|
||||
|
||||
What: i386/x86_64 bzImage symlinks
|
||||
When: April 2010
|
||||
|
||||
@ -300,14 +284,6 @@ Who: ocfs2-devel@oss.oracle.com
|
||||
|
||||
---------------------------
|
||||
|
||||
What: asm/semaphore.h
|
||||
When: 2.6.26
|
||||
Why: Implementation became generic; users should now include
|
||||
linux/semaphore.h instead.
|
||||
Who: Matthew Wilcox <willy@linux.intel.com>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: SCTP_GET_PEER_ADDRS_NUM_OLD, SCTP_GET_PEER_ADDRS_OLD,
|
||||
SCTP_GET_LOCAL_ADDRS_NUM_OLD, SCTP_GET_LOCAL_ADDRS_OLD
|
||||
When: June 2009
|
||||
|
@ -510,6 +510,7 @@ prototypes:
|
||||
void (*close)(struct vm_area_struct*);
|
||||
int (*fault)(struct vm_area_struct*, struct vm_fault *);
|
||||
int (*page_mkwrite)(struct vm_area_struct *, struct page *);
|
||||
int (*access)(struct vm_area_struct *, unsigned long, void*, int, int);
|
||||
|
||||
locking rules:
|
||||
BKL mmap_sem PageLocked(page)
|
||||
@ -517,6 +518,7 @@ open: no yes
|
||||
close: no yes
|
||||
fault: no yes
|
||||
page_mkwrite: no yes no
|
||||
access: no yes
|
||||
|
||||
->page_mkwrite() is called when a previously read-only page is
|
||||
about to become writeable. The file system is responsible for
|
||||
@ -525,6 +527,11 @@ taking to lock out truncate, the page range should be verified to be
|
||||
within i_size. The page mapping should also be checked that it is not
|
||||
NULL.
|
||||
|
||||
->access() is called when get_user_pages() fails in
|
||||
acces_process_vm(), typically used to debug a process through
|
||||
/proc/pid/mem or ptrace. This function is needed only for
|
||||
VM_IO | VM_PFNMAP VMAs.
|
||||
|
||||
================================================================================
|
||||
Dubious stuff
|
||||
|
||||
|
3
Documentation/filesystems/configfs/Makefile
Normal file
3
Documentation/filesystems/configfs/Makefile
Normal file
@ -0,0 +1,3 @@
|
||||
ifneq ($(CONFIG_CONFIGFS_FS),)
|
||||
obj-m += configfs_example_explicit.o configfs_example_macros.o
|
||||
endif
|
@ -311,9 +311,20 @@ the subsystem must be ready for it.
|
||||
[An Example]
|
||||
|
||||
The best example of these basic concepts is the simple_children
|
||||
subsystem/group and the simple_child item in configfs_example.c It
|
||||
shows a trivial object displaying and storing an attribute, and a simple
|
||||
group creating and destroying these children.
|
||||
subsystem/group and the simple_child item in configfs_example_explicit.c
|
||||
and configfs_example_macros.c. It shows a trivial object displaying and
|
||||
storing an attribute, and a simple group creating and destroying these
|
||||
children.
|
||||
|
||||
The only difference between configfs_example_explicit.c and
|
||||
configfs_example_macros.c is how the attributes of the childless item
|
||||
are defined. The childless item has extended attributes, each with
|
||||
their own show()/store() operation. This follows a convention commonly
|
||||
used in sysfs. configfs_example_explicit.c creates these attributes
|
||||
by explicitly defining the structures involved. Conversely
|
||||
configfs_example_macros.c uses some convenience macros from configfs.h
|
||||
to define the attributes. These macros are similar to their sysfs
|
||||
counterparts.
|
||||
|
||||
[Hierarchy Navigation and the Subsystem Mutex]
|
||||
|
||||
|
@ -1,485 +0,0 @@
|
||||
/*
|
||||
* vim: noexpandtab ts=8 sts=0 sw=8:
|
||||
*
|
||||
* configfs_example.c - This file is a demonstration module containing
|
||||
* a number of configfs subsystems.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public
|
||||
* License along with this program; if not, write to the
|
||||
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||||
* Boston, MA 021110-1307, USA.
|
||||
*
|
||||
* Based on sysfs:
|
||||
* sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
|
||||
*
|
||||
* configfs Copyright (C) 2005 Oracle. All rights reserved.
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include <linux/configfs.h>
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* 01-childless
|
||||
*
|
||||
* This first example is a childless subsystem. It cannot create
|
||||
* any config_items. It just has attributes.
|
||||
*
|
||||
* Note that we are enclosing the configfs_subsystem inside a container.
|
||||
* This is not necessary if a subsystem has no attributes directly
|
||||
* on the subsystem. See the next example, 02-simple-children, for
|
||||
* such a subsystem.
|
||||
*/
|
||||
|
||||
struct childless {
|
||||
struct configfs_subsystem subsys;
|
||||
int showme;
|
||||
int storeme;
|
||||
};
|
||||
|
||||
struct childless_attribute {
|
||||
struct configfs_attribute attr;
|
||||
ssize_t (*show)(struct childless *, char *);
|
||||
ssize_t (*store)(struct childless *, const char *, size_t);
|
||||
};
|
||||
|
||||
static inline struct childless *to_childless(struct config_item *item)
|
||||
{
|
||||
return item ? container_of(to_configfs_subsystem(to_config_group(item)), struct childless, subsys) : NULL;
|
||||
}
|
||||
|
||||
static ssize_t childless_showme_read(struct childless *childless,
|
||||
char *page)
|
||||
{
|
||||
ssize_t pos;
|
||||
|
||||
pos = sprintf(page, "%d\n", childless->showme);
|
||||
childless->showme++;
|
||||
|
||||
return pos;
|
||||
}
|
||||
|
||||
static ssize_t childless_storeme_read(struct childless *childless,
|
||||
char *page)
|
||||
{
|
||||
return sprintf(page, "%d\n", childless->storeme);
|
||||
}
|
||||
|
||||
static ssize_t childless_storeme_write(struct childless *childless,
|
||||
const char *page,
|
||||
size_t count)
|
||||
{
|
||||
unsigned long tmp;
|
||||
char *p = (char *) page;
|
||||
|
||||
tmp = simple_strtoul(p, &p, 10);
|
||||
if (!p || (*p && (*p != '\n')))
|
||||
return -EINVAL;
|
||||
|
||||
if (tmp > INT_MAX)
|
||||
return -ERANGE;
|
||||
|
||||
childless->storeme = tmp;
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static ssize_t childless_description_read(struct childless *childless,
|
||||
char *page)
|
||||
{
|
||||
return sprintf(page,
|
||||
"[01-childless]\n"
|
||||
"\n"
|
||||
"The childless subsystem is the simplest possible subsystem in\n"
|
||||
"configfs. It does not support the creation of child config_items.\n"
|
||||
"It only has a few attributes. In fact, it isn't much different\n"
|
||||
"than a directory in /proc.\n");
|
||||
}
|
||||
|
||||
static struct childless_attribute childless_attr_showme = {
|
||||
.attr = { .ca_owner = THIS_MODULE, .ca_name = "showme", .ca_mode = S_IRUGO },
|
||||
.show = childless_showme_read,
|
||||
};
|
||||
static struct childless_attribute childless_attr_storeme = {
|
||||
.attr = { .ca_owner = THIS_MODULE, .ca_name = "storeme", .ca_mode = S_IRUGO | S_IWUSR },
|
||||
.show = childless_storeme_read,
|
||||
.store = childless_storeme_write,
|
||||
};
|
||||
static struct childless_attribute childless_attr_description = {
|
||||
.attr = { .ca_owner = THIS_MODULE, .ca_name = "description", .ca_mode = S_IRUGO },
|
||||
.show = childless_description_read,
|
||||
};
|
||||
|
||||
static struct configfs_attribute *childless_attrs[] = {
|
||||
&childless_attr_showme.attr,
|
||||
&childless_attr_storeme.attr,
|
||||
&childless_attr_description.attr,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static ssize_t childless_attr_show(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
char *page)
|
||||
{
|
||||
struct childless *childless = to_childless(item);
|
||||
struct childless_attribute *childless_attr =
|
||||
container_of(attr, struct childless_attribute, attr);
|
||||
ssize_t ret = 0;
|
||||
|
||||
if (childless_attr->show)
|
||||
ret = childless_attr->show(childless, page);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static ssize_t childless_attr_store(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
const char *page, size_t count)
|
||||
{
|
||||
struct childless *childless = to_childless(item);
|
||||
struct childless_attribute *childless_attr =
|
||||
container_of(attr, struct childless_attribute, attr);
|
||||
ssize_t ret = -EINVAL;
|
||||
|
||||
if (childless_attr->store)
|
||||
ret = childless_attr->store(childless, page, count);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static struct configfs_item_operations childless_item_ops = {
|
||||
.show_attribute = childless_attr_show,
|
||||
.store_attribute = childless_attr_store,
|
||||
};
|
||||
|
||||
static struct config_item_type childless_type = {
|
||||
.ct_item_ops = &childless_item_ops,
|
||||
.ct_attrs = childless_attrs,
|
||||
.ct_owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static struct childless childless_subsys = {
|
||||
.subsys = {
|
||||
.su_group = {
|
||||
.cg_item = {
|
||||
.ci_namebuf = "01-childless",
|
||||
.ci_type = &childless_type,
|
||||
},
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
|
||||
/* ----------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* 02-simple-children
|
||||
*
|
||||
* This example merely has a simple one-attribute child. Note that
|
||||
* there is no extra attribute structure, as the child's attribute is
|
||||
* known from the get-go. Also, there is no container for the
|
||||
* subsystem, as it has no attributes of its own.
|
||||
*/
|
||||
|
||||
struct simple_child {
|
||||
struct config_item item;
|
||||
int storeme;
|
||||
};
|
||||
|
||||
static inline struct simple_child *to_simple_child(struct config_item *item)
|
||||
{
|
||||
return item ? container_of(item, struct simple_child, item) : NULL;
|
||||
}
|
||||
|
||||
static struct configfs_attribute simple_child_attr_storeme = {
|
||||
.ca_owner = THIS_MODULE,
|
||||
.ca_name = "storeme",
|
||||
.ca_mode = S_IRUGO | S_IWUSR,
|
||||
};
|
||||
|
||||
static struct configfs_attribute *simple_child_attrs[] = {
|
||||
&simple_child_attr_storeme,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static ssize_t simple_child_attr_show(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
char *page)
|
||||
{
|
||||
ssize_t count;
|
||||
struct simple_child *simple_child = to_simple_child(item);
|
||||
|
||||
count = sprintf(page, "%d\n", simple_child->storeme);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static ssize_t simple_child_attr_store(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
const char *page, size_t count)
|
||||
{
|
||||
struct simple_child *simple_child = to_simple_child(item);
|
||||
unsigned long tmp;
|
||||
char *p = (char *) page;
|
||||
|
||||
tmp = simple_strtoul(p, &p, 10);
|
||||
if (!p || (*p && (*p != '\n')))
|
||||
return -EINVAL;
|
||||
|
||||
if (tmp > INT_MAX)
|
||||
return -ERANGE;
|
||||
|
||||
simple_child->storeme = tmp;
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static void simple_child_release(struct config_item *item)
|
||||
{
|
||||
kfree(to_simple_child(item));
|
||||
}
|
||||
|
||||
static struct configfs_item_operations simple_child_item_ops = {
|
||||
.release = simple_child_release,
|
||||
.show_attribute = simple_child_attr_show,
|
||||
.store_attribute = simple_child_attr_store,
|
||||
};
|
||||
|
||||
static struct config_item_type simple_child_type = {
|
||||
.ct_item_ops = &simple_child_item_ops,
|
||||
.ct_attrs = simple_child_attrs,
|
||||
.ct_owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
|
||||
struct simple_children {
|
||||
struct config_group group;
|
||||
};
|
||||
|
||||
static inline struct simple_children *to_simple_children(struct config_item *item)
|
||||
{
|
||||
return item ? container_of(to_config_group(item), struct simple_children, group) : NULL;
|
||||
}
|
||||
|
||||
static struct config_item *simple_children_make_item(struct config_group *group, const char *name)
|
||||
{
|
||||
struct simple_child *simple_child;
|
||||
|
||||
simple_child = kzalloc(sizeof(struct simple_child), GFP_KERNEL);
|
||||
if (!simple_child)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
|
||||
config_item_init_type_name(&simple_child->item, name,
|
||||
&simple_child_type);
|
||||
|
||||
simple_child->storeme = 0;
|
||||
|
||||
return &simple_child->item;
|
||||
}
|
||||
|
||||
static struct configfs_attribute simple_children_attr_description = {
|
||||
.ca_owner = THIS_MODULE,
|
||||
.ca_name = "description",
|
||||
.ca_mode = S_IRUGO,
|
||||
};
|
||||
|
||||
static struct configfs_attribute *simple_children_attrs[] = {
|
||||
&simple_children_attr_description,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static ssize_t simple_children_attr_show(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
char *page)
|
||||
{
|
||||
return sprintf(page,
|
||||
"[02-simple-children]\n"
|
||||
"\n"
|
||||
"This subsystem allows the creation of child config_items. These\n"
|
||||
"items have only one attribute that is readable and writeable.\n");
|
||||
}
|
||||
|
||||
static void simple_children_release(struct config_item *item)
|
||||
{
|
||||
kfree(to_simple_children(item));
|
||||
}
|
||||
|
||||
static struct configfs_item_operations simple_children_item_ops = {
|
||||
.release = simple_children_release,
|
||||
.show_attribute = simple_children_attr_show,
|
||||
};
|
||||
|
||||
/*
|
||||
* Note that, since no extra work is required on ->drop_item(),
|
||||
* no ->drop_item() is provided.
|
||||
*/
|
||||
static struct configfs_group_operations simple_children_group_ops = {
|
||||
.make_item = simple_children_make_item,
|
||||
};
|
||||
|
||||
static struct config_item_type simple_children_type = {
|
||||
.ct_item_ops = &simple_children_item_ops,
|
||||
.ct_group_ops = &simple_children_group_ops,
|
||||
.ct_attrs = simple_children_attrs,
|
||||
.ct_owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static struct configfs_subsystem simple_children_subsys = {
|
||||
.su_group = {
|
||||
.cg_item = {
|
||||
.ci_namebuf = "02-simple-children",
|
||||
.ci_type = &simple_children_type,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
|
||||
/* ----------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* 03-group-children
|
||||
*
|
||||
* This example reuses the simple_children group from above. However,
|
||||
* the simple_children group is not the subsystem itself, it is a
|
||||
* child of the subsystem. Creation of a group in the subsystem creates
|
||||
* a new simple_children group. That group can then have simple_child
|
||||
* children of its own.
|
||||
*/
|
||||
|
||||
static struct config_group *group_children_make_group(struct config_group *group, const char *name)
|
||||
{
|
||||
struct simple_children *simple_children;
|
||||
|
||||
simple_children = kzalloc(sizeof(struct simple_children),
|
||||
GFP_KERNEL);
|
||||
if (!simple_children)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
|
||||
config_group_init_type_name(&simple_children->group, name,
|
||||
&simple_children_type);
|
||||
|
||||
return &simple_children->group;
|
||||
}
|
||||
|
||||
static struct configfs_attribute group_children_attr_description = {
|
||||
.ca_owner = THIS_MODULE,
|
||||
.ca_name = "description",
|
||||
.ca_mode = S_IRUGO,
|
||||
};
|
||||
|
||||
static struct configfs_attribute *group_children_attrs[] = {
|
||||
&group_children_attr_description,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static ssize_t group_children_attr_show(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
char *page)
|
||||
{
|
||||
return sprintf(page,
|
||||
"[03-group-children]\n"
|
||||
"\n"
|
||||
"This subsystem allows the creation of child config_groups. These\n"
|
||||
"groups are like the subsystem simple-children.\n");
|
||||
}
|
||||
|
||||
static struct configfs_item_operations group_children_item_ops = {
|
||||
.show_attribute = group_children_attr_show,
|
||||
};
|
||||
|
||||
/*
|
||||
* Note that, since no extra work is required on ->drop_item(),
|
||||
* no ->drop_item() is provided.
|
||||
*/
|
||||
static struct configfs_group_operations group_children_group_ops = {
|
||||
.make_group = group_children_make_group,
|
||||
};
|
||||
|
||||
static struct config_item_type group_children_type = {
|
||||
.ct_item_ops = &group_children_item_ops,
|
||||
.ct_group_ops = &group_children_group_ops,
|
||||
.ct_attrs = group_children_attrs,
|
||||
.ct_owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static struct configfs_subsystem group_children_subsys = {
|
||||
.su_group = {
|
||||
.cg_item = {
|
||||
.ci_namebuf = "03-group-children",
|
||||
.ci_type = &group_children_type,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
/* ----------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* We're now done with our subsystem definitions.
|
||||
* For convenience in this module, here's a list of them all. It
|
||||
* allows the init function to easily register them. Most modules
|
||||
* will only have one subsystem, and will only call register_subsystem
|
||||
* on it directly.
|
||||
*/
|
||||
static struct configfs_subsystem *example_subsys[] = {
|
||||
&childless_subsys.subsys,
|
||||
&simple_children_subsys,
|
||||
&group_children_subsys,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static int __init configfs_example_init(void)
|
||||
{
|
||||
int ret;
|
||||
int i;
|
||||
struct configfs_subsystem *subsys;
|
||||
|
||||
for (i = 0; example_subsys[i]; i++) {
|
||||
subsys = example_subsys[i];
|
||||
|
||||
config_group_init(&subsys->su_group);
|
||||
mutex_init(&subsys->su_mutex);
|
||||
ret = configfs_register_subsystem(subsys);
|
||||
if (ret) {
|
||||
printk(KERN_ERR "Error %d while registering subsystem %s\n",
|
||||
ret,
|
||||
subsys->su_group.cg_item.ci_namebuf);
|
||||
goto out_unregister;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
out_unregister:
|
||||
for (; i >= 0; i--) {
|
||||
configfs_unregister_subsystem(example_subsys[i]);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void __exit configfs_example_exit(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; example_subsys[i]; i++) {
|
||||
configfs_unregister_subsystem(example_subsys[i]);
|
||||
}
|
||||
}
|
||||
|
||||
module_init(configfs_example_init);
|
||||
module_exit(configfs_example_exit);
|
||||
MODULE_LICENSE("GPL");
|
485
Documentation/filesystems/configfs/configfs_example_explicit.c
Normal file
485
Documentation/filesystems/configfs/configfs_example_explicit.c
Normal file
@ -0,0 +1,485 @@
|
||||
/*
|
||||
* vim: noexpandtab ts=8 sts=0 sw=8:
|
||||
*
|
||||
* configfs_example_explicit.c - This file is a demonstration module
|
||||
* containing a number of configfs subsystems. It explicitly defines
|
||||
* each structure without using the helper macros defined in
|
||||
* configfs.h.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public
|
||||
* License along with this program; if not, write to the
|
||||
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||||
* Boston, MA 021110-1307, USA.
|
||||
*
|
||||
* Based on sysfs:
|
||||
* sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
|
||||
*
|
||||
* configfs Copyright (C) 2005 Oracle. All rights reserved.
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include <linux/configfs.h>
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* 01-childless
|
||||
*
|
||||
* This first example is a childless subsystem. It cannot create
|
||||
* any config_items. It just has attributes.
|
||||
*
|
||||
* Note that we are enclosing the configfs_subsystem inside a container.
|
||||
* This is not necessary if a subsystem has no attributes directly
|
||||
* on the subsystem. See the next example, 02-simple-children, for
|
||||
* such a subsystem.
|
||||
*/
|
||||
|
||||
struct childless {
|
||||
struct configfs_subsystem subsys;
|
||||
int showme;
|
||||
int storeme;
|
||||
};
|
||||
|
||||
struct childless_attribute {
|
||||
struct configfs_attribute attr;
|
||||
ssize_t (*show)(struct childless *, char *);
|
||||
ssize_t (*store)(struct childless *, const char *, size_t);
|
||||
};
|
||||
|
||||
static inline struct childless *to_childless(struct config_item *item)
|
||||
{
|
||||
return item ? container_of(to_configfs_subsystem(to_config_group(item)), struct childless, subsys) : NULL;
|
||||
}
|
||||
|
||||
static ssize_t childless_showme_read(struct childless *childless,
|
||||
char *page)
|
||||
{
|
||||
ssize_t pos;
|
||||
|
||||
pos = sprintf(page, "%d\n", childless->showme);
|
||||
childless->showme++;
|
||||
|
||||
return pos;
|
||||
}
|
||||
|
||||
static ssize_t childless_storeme_read(struct childless *childless,
|
||||
char *page)
|
||||
{
|
||||
return sprintf(page, "%d\n", childless->storeme);
|
||||
}
|
||||
|
||||
static ssize_t childless_storeme_write(struct childless *childless,
|
||||
const char *page,
|
||||
size_t count)
|
||||
{
|
||||
unsigned long tmp;
|
||||
char *p = (char *) page;
|
||||
|
||||
tmp = simple_strtoul(p, &p, 10);
|
||||
if (!p || (*p && (*p != '\n')))
|
||||
return -EINVAL;
|
||||
|
||||
if (tmp > INT_MAX)
|
||||
return -ERANGE;
|
||||
|
||||
childless->storeme = tmp;
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static ssize_t childless_description_read(struct childless *childless,
|
||||
char *page)
|
||||
{
|
||||
return sprintf(page,
|
||||
"[01-childless]\n"
|
||||
"\n"
|
||||
"The childless subsystem is the simplest possible subsystem in\n"
|
||||
"configfs. It does not support the creation of child config_items.\n"
|
||||
"It only has a few attributes. In fact, it isn't much different\n"
|
||||
"than a directory in /proc.\n");
|
||||
}
|
||||
|
||||
static struct childless_attribute childless_attr_showme = {
|
||||
.attr = { .ca_owner = THIS_MODULE, .ca_name = "showme", .ca_mode = S_IRUGO },
|
||||
.show = childless_showme_read,
|
||||
};
|
||||
static struct childless_attribute childless_attr_storeme = {
|
||||
.attr = { .ca_owner = THIS_MODULE, .ca_name = "storeme", .ca_mode = S_IRUGO | S_IWUSR },
|
||||
.show = childless_storeme_read,
|
||||
.store = childless_storeme_write,
|
||||
};
|
||||
static struct childless_attribute childless_attr_description = {
|
||||
.attr = { .ca_owner = THIS_MODULE, .ca_name = "description", .ca_mode = S_IRUGO },
|
||||
.show = childless_description_read,
|
||||
};
|
||||
|
||||
static struct configfs_attribute *childless_attrs[] = {
|
||||
&childless_attr_showme.attr,
|
||||
&childless_attr_storeme.attr,
|
||||
&childless_attr_description.attr,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static ssize_t childless_attr_show(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
char *page)
|
||||
{
|
||||
struct childless *childless = to_childless(item);
|
||||
struct childless_attribute *childless_attr =
|
||||
container_of(attr, struct childless_attribute, attr);
|
||||
ssize_t ret = 0;
|
||||
|
||||
if (childless_attr->show)
|
||||
ret = childless_attr->show(childless, page);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static ssize_t childless_attr_store(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
const char *page, size_t count)
|
||||
{
|
||||
struct childless *childless = to_childless(item);
|
||||
struct childless_attribute *childless_attr =
|
||||
container_of(attr, struct childless_attribute, attr);
|
||||
ssize_t ret = -EINVAL;
|
||||
|
||||
if (childless_attr->store)
|
||||
ret = childless_attr->store(childless, page, count);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static struct configfs_item_operations childless_item_ops = {
|
||||
.show_attribute = childless_attr_show,
|
||||
.store_attribute = childless_attr_store,
|
||||
};
|
||||
|
||||
static struct config_item_type childless_type = {
|
||||
.ct_item_ops = &childless_item_ops,
|
||||
.ct_attrs = childless_attrs,
|
||||
.ct_owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static struct childless childless_subsys = {
|
||||
.subsys = {
|
||||
.su_group = {
|
||||
.cg_item = {
|
||||
.ci_namebuf = "01-childless",
|
||||
.ci_type = &childless_type,
|
||||
},
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
|
||||
/* ----------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* 02-simple-children
|
||||
*
|
||||
* This example merely has a simple one-attribute child. Note that
|
||||
* there is no extra attribute structure, as the child's attribute is
|
||||
* known from the get-go. Also, there is no container for the
|
||||
* subsystem, as it has no attributes of its own.
|
||||
*/
|
||||
|
||||
struct simple_child {
|
||||
struct config_item item;
|
||||
int storeme;
|
||||
};
|
||||
|
||||
static inline struct simple_child *to_simple_child(struct config_item *item)
|
||||
{
|
||||
return item ? container_of(item, struct simple_child, item) : NULL;
|
||||
}
|
||||
|
||||
static struct configfs_attribute simple_child_attr_storeme = {
|
||||
.ca_owner = THIS_MODULE,
|
||||
.ca_name = "storeme",
|
||||
.ca_mode = S_IRUGO | S_IWUSR,
|
||||
};
|
||||
|
||||
static struct configfs_attribute *simple_child_attrs[] = {
|
||||
&simple_child_attr_storeme,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static ssize_t simple_child_attr_show(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
char *page)
|
||||
{
|
||||
ssize_t count;
|
||||
struct simple_child *simple_child = to_simple_child(item);
|
||||
|
||||
count = sprintf(page, "%d\n", simple_child->storeme);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static ssize_t simple_child_attr_store(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
const char *page, size_t count)
|
||||
{
|
||||
struct simple_child *simple_child = to_simple_child(item);
|
||||
unsigned long tmp;
|
||||
char *p = (char *) page;
|
||||
|
||||
tmp = simple_strtoul(p, &p, 10);
|
||||
if (!p || (*p && (*p != '\n')))
|
||||
return -EINVAL;
|
||||
|
||||
if (tmp > INT_MAX)
|
||||
return -ERANGE;
|
||||
|
||||
simple_child->storeme = tmp;
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static void simple_child_release(struct config_item *item)
|
||||
{
|
||||
kfree(to_simple_child(item));
|
||||
}
|
||||
|
||||
static struct configfs_item_operations simple_child_item_ops = {
|
||||
.release = simple_child_release,
|
||||
.show_attribute = simple_child_attr_show,
|
||||
.store_attribute = simple_child_attr_store,
|
||||
};
|
||||
|
||||
static struct config_item_type simple_child_type = {
|
||||
.ct_item_ops = &simple_child_item_ops,
|
||||
.ct_attrs = simple_child_attrs,
|
||||
.ct_owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
|
||||
struct simple_children {
|
||||
struct config_group group;
|
||||
};
|
||||
|
||||
static inline struct simple_children *to_simple_children(struct config_item *item)
|
||||
{
|
||||
return item ? container_of(to_config_group(item), struct simple_children, group) : NULL;
|
||||
}
|
||||
|
||||
static struct config_item *simple_children_make_item(struct config_group *group, const char *name)
|
||||
{
|
||||
struct simple_child *simple_child;
|
||||
|
||||
simple_child = kzalloc(sizeof(struct simple_child), GFP_KERNEL);
|
||||
if (!simple_child)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
config_item_init_type_name(&simple_child->item, name,
|
||||
&simple_child_type);
|
||||
|
||||
simple_child->storeme = 0;
|
||||
|
||||
return &simple_child->item;
|
||||
}
|
||||
|
||||
static struct configfs_attribute simple_children_attr_description = {
|
||||
.ca_owner = THIS_MODULE,
|
||||
.ca_name = "description",
|
||||
.ca_mode = S_IRUGO,
|
||||
};
|
||||
|
||||
static struct configfs_attribute *simple_children_attrs[] = {
|
||||
&simple_children_attr_description,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static ssize_t simple_children_attr_show(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
char *page)
|
||||
{
|
||||
return sprintf(page,
|
||||
"[02-simple-children]\n"
|
||||
"\n"
|
||||
"This subsystem allows the creation of child config_items. These\n"
|
||||
"items have only one attribute that is readable and writeable.\n");
|
||||
}
|
||||
|
||||
static void simple_children_release(struct config_item *item)
|
||||
{
|
||||
kfree(to_simple_children(item));
|
||||
}
|
||||
|
||||
static struct configfs_item_operations simple_children_item_ops = {
|
||||
.release = simple_children_release,
|
||||
.show_attribute = simple_children_attr_show,
|
||||
};
|
||||
|
||||
/*
|
||||
* Note that, since no extra work is required on ->drop_item(),
|
||||
* no ->drop_item() is provided.
|
||||
*/
|
||||
static struct configfs_group_operations simple_children_group_ops = {
|
||||
.make_item = simple_children_make_item,
|
||||
};
|
||||
|
||||
static struct config_item_type simple_children_type = {
|
||||
.ct_item_ops = &simple_children_item_ops,
|
||||
.ct_group_ops = &simple_children_group_ops,
|
||||
.ct_attrs = simple_children_attrs,
|
||||
.ct_owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static struct configfs_subsystem simple_children_subsys = {
|
||||
.su_group = {
|
||||
.cg_item = {
|
||||
.ci_namebuf = "02-simple-children",
|
||||
.ci_type = &simple_children_type,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
|
||||
/* ----------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* 03-group-children
|
||||
*
|
||||
* This example reuses the simple_children group from above. However,
|
||||
* the simple_children group is not the subsystem itself, it is a
|
||||
* child of the subsystem. Creation of a group in the subsystem creates
|
||||
* a new simple_children group. That group can then have simple_child
|
||||
* children of its own.
|
||||
*/
|
||||
|
||||
static struct config_group *group_children_make_group(struct config_group *group, const char *name)
|
||||
{
|
||||
struct simple_children *simple_children;
|
||||
|
||||
simple_children = kzalloc(sizeof(struct simple_children),
|
||||
GFP_KERNEL);
|
||||
if (!simple_children)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
config_group_init_type_name(&simple_children->group, name,
|
||||
&simple_children_type);
|
||||
|
||||
return &simple_children->group;
|
||||
}
|
||||
|
||||
static struct configfs_attribute group_children_attr_description = {
|
||||
.ca_owner = THIS_MODULE,
|
||||
.ca_name = "description",
|
||||
.ca_mode = S_IRUGO,
|
||||
};
|
||||
|
||||
static struct configfs_attribute *group_children_attrs[] = {
|
||||
&group_children_attr_description,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static ssize_t group_children_attr_show(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
char *page)
|
||||
{
|
||||
return sprintf(page,
|
||||
"[03-group-children]\n"
|
||||
"\n"
|
||||
"This subsystem allows the creation of child config_groups. These\n"
|
||||
"groups are like the subsystem simple-children.\n");
|
||||
}
|
||||
|
||||
static struct configfs_item_operations group_children_item_ops = {
|
||||
.show_attribute = group_children_attr_show,
|
||||
};
|
||||
|
||||
/*
|
||||
* Note that, since no extra work is required on ->drop_item(),
|
||||
* no ->drop_item() is provided.
|
||||
*/
|
||||
static struct configfs_group_operations group_children_group_ops = {
|
||||
.make_group = group_children_make_group,
|
||||
};
|
||||
|
||||
static struct config_item_type group_children_type = {
|
||||
.ct_item_ops = &group_children_item_ops,
|
||||
.ct_group_ops = &group_children_group_ops,
|
||||
.ct_attrs = group_children_attrs,
|
||||
.ct_owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static struct configfs_subsystem group_children_subsys = {
|
||||
.su_group = {
|
||||
.cg_item = {
|
||||
.ci_namebuf = "03-group-children",
|
||||
.ci_type = &group_children_type,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
/* ----------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* We're now done with our subsystem definitions.
|
||||
* For convenience in this module, here's a list of them all. It
|
||||
* allows the init function to easily register them. Most modules
|
||||
* will only have one subsystem, and will only call register_subsystem
|
||||
* on it directly.
|
||||
*/
|
||||
static struct configfs_subsystem *example_subsys[] = {
|
||||
&childless_subsys.subsys,
|
||||
&simple_children_subsys,
|
||||
&group_children_subsys,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static int __init configfs_example_init(void)
|
||||
{
|
||||
int ret;
|
||||
int i;
|
||||
struct configfs_subsystem *subsys;
|
||||
|
||||
for (i = 0; example_subsys[i]; i++) {
|
||||
subsys = example_subsys[i];
|
||||
|
||||
config_group_init(&subsys->su_group);
|
||||
mutex_init(&subsys->su_mutex);
|
||||
ret = configfs_register_subsystem(subsys);
|
||||
if (ret) {
|
||||
printk(KERN_ERR "Error %d while registering subsystem %s\n",
|
||||
ret,
|
||||
subsys->su_group.cg_item.ci_namebuf);
|
||||
goto out_unregister;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
out_unregister:
|
||||
for (; i >= 0; i--) {
|
||||
configfs_unregister_subsystem(example_subsys[i]);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void __exit configfs_example_exit(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; example_subsys[i]; i++) {
|
||||
configfs_unregister_subsystem(example_subsys[i]);
|
||||
}
|
||||
}
|
||||
|
||||
module_init(configfs_example_init);
|
||||
module_exit(configfs_example_exit);
|
||||
MODULE_LICENSE("GPL");
|
448
Documentation/filesystems/configfs/configfs_example_macros.c
Normal file
448
Documentation/filesystems/configfs/configfs_example_macros.c
Normal file
@ -0,0 +1,448 @@
|
||||
/*
|
||||
* vim: noexpandtab ts=8 sts=0 sw=8:
|
||||
*
|
||||
* configfs_example_macros.c - This file is a demonstration module
|
||||
* containing a number of configfs subsystems. It uses the helper
|
||||
* macros defined by configfs.h
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public
|
||||
* License along with this program; if not, write to the
|
||||
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||||
* Boston, MA 021110-1307, USA.
|
||||
*
|
||||
* Based on sysfs:
|
||||
* sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel
|
||||
*
|
||||
* configfs Copyright (C) 2005 Oracle. All rights reserved.
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include <linux/configfs.h>
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* 01-childless
|
||||
*
|
||||
* This first example is a childless subsystem. It cannot create
|
||||
* any config_items. It just has attributes.
|
||||
*
|
||||
* Note that we are enclosing the configfs_subsystem inside a container.
|
||||
* This is not necessary if a subsystem has no attributes directly
|
||||
* on the subsystem. See the next example, 02-simple-children, for
|
||||
* such a subsystem.
|
||||
*/
|
||||
|
||||
struct childless {
|
||||
struct configfs_subsystem subsys;
|
||||
int showme;
|
||||
int storeme;
|
||||
};
|
||||
|
||||
static inline struct childless *to_childless(struct config_item *item)
|
||||
{
|
||||
return item ? container_of(to_configfs_subsystem(to_config_group(item)), struct childless, subsys) : NULL;
|
||||
}
|
||||
|
||||
CONFIGFS_ATTR_STRUCT(childless);
|
||||
#define CHILDLESS_ATTR(_name, _mode, _show, _store) \
|
||||
struct childless_attribute childless_attr_##_name = __CONFIGFS_ATTR(_name, _mode, _show, _store)
|
||||
#define CHILDLESS_ATTR_RO(_name, _show) \
|
||||
struct childless_attribute childless_attr_##_name = __CONFIGFS_ATTR_RO(_name, _show);
|
||||
|
||||
static ssize_t childless_showme_read(struct childless *childless,
|
||||
char *page)
|
||||
{
|
||||
ssize_t pos;
|
||||
|
||||
pos = sprintf(page, "%d\n", childless->showme);
|
||||
childless->showme++;
|
||||
|
||||
return pos;
|
||||
}
|
||||
|
||||
static ssize_t childless_storeme_read(struct childless *childless,
|
||||
char *page)
|
||||
{
|
||||
return sprintf(page, "%d\n", childless->storeme);
|
||||
}
|
||||
|
||||
static ssize_t childless_storeme_write(struct childless *childless,
|
||||
const char *page,
|
||||
size_t count)
|
||||
{
|
||||
unsigned long tmp;
|
||||
char *p = (char *) page;
|
||||
|
||||
tmp = simple_strtoul(p, &p, 10);
|
||||
if (!p || (*p && (*p != '\n')))
|
||||
return -EINVAL;
|
||||
|
||||
if (tmp > INT_MAX)
|
||||
return -ERANGE;
|
||||
|
||||
childless->storeme = tmp;
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static ssize_t childless_description_read(struct childless *childless,
|
||||
char *page)
|
||||
{
|
||||
return sprintf(page,
|
||||
"[01-childless]\n"
|
||||
"\n"
|
||||
"The childless subsystem is the simplest possible subsystem in\n"
|
||||
"configfs. It does not support the creation of child config_items.\n"
|
||||
"It only has a few attributes. In fact, it isn't much different\n"
|
||||
"than a directory in /proc.\n");
|
||||
}
|
||||
|
||||
CHILDLESS_ATTR_RO(showme, childless_showme_read);
|
||||
CHILDLESS_ATTR(storeme, S_IRUGO | S_IWUSR, childless_storeme_read,
|
||||
childless_storeme_write);
|
||||
CHILDLESS_ATTR_RO(description, childless_description_read);
|
||||
|
||||
static struct configfs_attribute *childless_attrs[] = {
|
||||
&childless_attr_showme.attr,
|
||||
&childless_attr_storeme.attr,
|
||||
&childless_attr_description.attr,
|
||||
NULL,
|
||||
};
|
||||
|
||||
CONFIGFS_ATTR_OPS(childless);
|
||||
static struct configfs_item_operations childless_item_ops = {
|
||||
.show_attribute = childless_attr_show,
|
||||
.store_attribute = childless_attr_store,
|
||||
};
|
||||
|
||||
static struct config_item_type childless_type = {
|
||||
.ct_item_ops = &childless_item_ops,
|
||||
.ct_attrs = childless_attrs,
|
||||
.ct_owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static struct childless childless_subsys = {
|
||||
.subsys = {
|
||||
.su_group = {
|
||||
.cg_item = {
|
||||
.ci_namebuf = "01-childless",
|
||||
.ci_type = &childless_type,
|
||||
},
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
|
||||
/* ----------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* 02-simple-children
|
||||
*
|
||||
* This example merely has a simple one-attribute child. Note that
|
||||
* there is no extra attribute structure, as the child's attribute is
|
||||
* known from the get-go. Also, there is no container for the
|
||||
* subsystem, as it has no attributes of its own.
|
||||
*/
|
||||
|
||||
struct simple_child {
|
||||
struct config_item item;
|
||||
int storeme;
|
||||
};
|
||||
|
||||
static inline struct simple_child *to_simple_child(struct config_item *item)
|
||||
{
|
||||
return item ? container_of(item, struct simple_child, item) : NULL;
|
||||
}
|
||||
|
||||
static struct configfs_attribute simple_child_attr_storeme = {
|
||||
.ca_owner = THIS_MODULE,
|
||||
.ca_name = "storeme",
|
||||
.ca_mode = S_IRUGO | S_IWUSR,
|
||||
};
|
||||
|
||||
static struct configfs_attribute *simple_child_attrs[] = {
|
||||
&simple_child_attr_storeme,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static ssize_t simple_child_attr_show(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
char *page)
|
||||
{
|
||||
ssize_t count;
|
||||
struct simple_child *simple_child = to_simple_child(item);
|
||||
|
||||
count = sprintf(page, "%d\n", simple_child->storeme);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static ssize_t simple_child_attr_store(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
const char *page, size_t count)
|
||||
{
|
||||
struct simple_child *simple_child = to_simple_child(item);
|
||||
unsigned long tmp;
|
||||
char *p = (char *) page;
|
||||
|
||||
tmp = simple_strtoul(p, &p, 10);
|
||||
if (!p || (*p && (*p != '\n')))
|
||||
return -EINVAL;
|
||||
|
||||
if (tmp > INT_MAX)
|
||||
return -ERANGE;
|
||||
|
||||
simple_child->storeme = tmp;
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static void simple_child_release(struct config_item *item)
|
||||
{
|
||||
kfree(to_simple_child(item));
|
||||
}
|
||||
|
||||
static struct configfs_item_operations simple_child_item_ops = {
|
||||
.release = simple_child_release,
|
||||
.show_attribute = simple_child_attr_show,
|
||||
.store_attribute = simple_child_attr_store,
|
||||
};
|
||||
|
||||
static struct config_item_type simple_child_type = {
|
||||
.ct_item_ops = &simple_child_item_ops,
|
||||
.ct_attrs = simple_child_attrs,
|
||||
.ct_owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
|
||||
struct simple_children {
|
||||
struct config_group group;
|
||||
};
|
||||
|
||||
static inline struct simple_children *to_simple_children(struct config_item *item)
|
||||
{
|
||||
return item ? container_of(to_config_group(item), struct simple_children, group) : NULL;
|
||||
}
|
||||
|
||||
static struct config_item *simple_children_make_item(struct config_group *group, const char *name)
|
||||
{
|
||||
struct simple_child *simple_child;
|
||||
|
||||
simple_child = kzalloc(sizeof(struct simple_child), GFP_KERNEL);
|
||||
if (!simple_child)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
config_item_init_type_name(&simple_child->item, name,
|
||||
&simple_child_type);
|
||||
|
||||
simple_child->storeme = 0;
|
||||
|
||||
return &simple_child->item;
|
||||
}
|
||||
|
||||
static struct configfs_attribute simple_children_attr_description = {
|
||||
.ca_owner = THIS_MODULE,
|
||||
.ca_name = "description",
|
||||
.ca_mode = S_IRUGO,
|
||||
};
|
||||
|
||||
static struct configfs_attribute *simple_children_attrs[] = {
|
||||
&simple_children_attr_description,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static ssize_t simple_children_attr_show(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
char *page)
|
||||
{
|
||||
return sprintf(page,
|
||||
"[02-simple-children]\n"
|
||||
"\n"
|
||||
"This subsystem allows the creation of child config_items. These\n"
|
||||
"items have only one attribute that is readable and writeable.\n");
|
||||
}
|
||||
|
||||
static void simple_children_release(struct config_item *item)
|
||||
{
|
||||
kfree(to_simple_children(item));
|
||||
}
|
||||
|
||||
static struct configfs_item_operations simple_children_item_ops = {
|
||||
.release = simple_children_release,
|
||||
.show_attribute = simple_children_attr_show,
|
||||
};
|
||||
|
||||
/*
|
||||
* Note that, since no extra work is required on ->drop_item(),
|
||||
* no ->drop_item() is provided.
|
||||
*/
|
||||
static struct configfs_group_operations simple_children_group_ops = {
|
||||
.make_item = simple_children_make_item,
|
||||
};
|
||||
|
||||
static struct config_item_type simple_children_type = {
|
||||
.ct_item_ops = &simple_children_item_ops,
|
||||
.ct_group_ops = &simple_children_group_ops,
|
||||
.ct_attrs = simple_children_attrs,
|
||||
.ct_owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static struct configfs_subsystem simple_children_subsys = {
|
||||
.su_group = {
|
||||
.cg_item = {
|
||||
.ci_namebuf = "02-simple-children",
|
||||
.ci_type = &simple_children_type,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
|
||||
/* ----------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* 03-group-children
|
||||
*
|
||||
* This example reuses the simple_children group from above. However,
|
||||
* the simple_children group is not the subsystem itself, it is a
|
||||
* child of the subsystem. Creation of a group in the subsystem creates
|
||||
* a new simple_children group. That group can then have simple_child
|
||||
* children of its own.
|
||||
*/
|
||||
|
||||
static struct config_group *group_children_make_group(struct config_group *group, const char *name)
|
||||
{
|
||||
struct simple_children *simple_children;
|
||||
|
||||
simple_children = kzalloc(sizeof(struct simple_children),
|
||||
GFP_KERNEL);
|
||||
if (!simple_children)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
config_group_init_type_name(&simple_children->group, name,
|
||||
&simple_children_type);
|
||||
|
||||
return &simple_children->group;
|
||||
}
|
||||
|
||||
static struct configfs_attribute group_children_attr_description = {
|
||||
.ca_owner = THIS_MODULE,
|
||||
.ca_name = "description",
|
||||
.ca_mode = S_IRUGO,
|
||||
};
|
||||
|
||||
static struct configfs_attribute *group_children_attrs[] = {
|
||||
&group_children_attr_description,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static ssize_t group_children_attr_show(struct config_item *item,
|
||||
struct configfs_attribute *attr,
|
||||
char *page)
|
||||
{
|
||||
return sprintf(page,
|
||||
"[03-group-children]\n"
|
||||
"\n"
|
||||
"This subsystem allows the creation of child config_groups. These\n"
|
||||
"groups are like the subsystem simple-children.\n");
|
||||
}
|
||||
|
||||
static struct configfs_item_operations group_children_item_ops = {
|
||||
.show_attribute = group_children_attr_show,
|
||||
};
|
||||
|
||||
/*
|
||||
* Note that, since no extra work is required on ->drop_item(),
|
||||
* no ->drop_item() is provided.
|
||||
*/
|
||||
static struct configfs_group_operations group_children_group_ops = {
|
||||
.make_group = group_children_make_group,
|
||||
};
|
||||
|
||||
static struct config_item_type group_children_type = {
|
||||
.ct_item_ops = &group_children_item_ops,
|
||||
.ct_group_ops = &group_children_group_ops,
|
||||
.ct_attrs = group_children_attrs,
|
||||
.ct_owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static struct configfs_subsystem group_children_subsys = {
|
||||
.su_group = {
|
||||
.cg_item = {
|
||||
.ci_namebuf = "03-group-children",
|
||||
.ci_type = &group_children_type,
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
/* ----------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* We're now done with our subsystem definitions.
|
||||
* For convenience in this module, here's a list of them all. It
|
||||
* allows the init function to easily register them. Most modules
|
||||
* will only have one subsystem, and will only call register_subsystem
|
||||
* on it directly.
|
||||
*/
|
||||
static struct configfs_subsystem *example_subsys[] = {
|
||||
&childless_subsys.subsys,
|
||||
&simple_children_subsys,
|
||||
&group_children_subsys,
|
||||
NULL,
|
||||
};
|
||||
|
||||
static int __init configfs_example_init(void)
|
||||
{
|
||||
int ret;
|
||||
int i;
|
||||
struct configfs_subsystem *subsys;
|
||||
|
||||
for (i = 0; example_subsys[i]; i++) {
|
||||
subsys = example_subsys[i];
|
||||
|
||||
config_group_init(&subsys->su_group);
|
||||
mutex_init(&subsys->su_mutex);
|
||||
ret = configfs_register_subsystem(subsys);
|
||||
if (ret) {
|
||||
printk(KERN_ERR "Error %d while registering subsystem %s\n",
|
||||
ret,
|
||||
subsys->su_group.cg_item.ci_namebuf);
|
||||
goto out_unregister;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
out_unregister:
|
||||
for (; i >= 0; i--) {
|
||||
configfs_unregister_subsystem(example_subsys[i]);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void __exit configfs_example_exit(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; example_subsys[i]; i++) {
|
||||
configfs_unregister_subsystem(example_subsys[i]);
|
||||
}
|
||||
}
|
||||
|
||||
module_init(configfs_example_init);
|
||||
module_exit(configfs_example_exit);
|
||||
MODULE_LICENSE("GPL");
|
106
Documentation/filesystems/omfs.txt
Normal file
106
Documentation/filesystems/omfs.txt
Normal file
@ -0,0 +1,106 @@
|
||||
Optimized MPEG Filesystem (OMFS)
|
||||
|
||||
Overview
|
||||
========
|
||||
|
||||
OMFS is a filesystem created by SonicBlue for use in the ReplayTV DVR
|
||||
and Rio Karma MP3 player. The filesystem is extent-based, utilizing
|
||||
block sizes from 2k to 8k, with hash-based directories. This
|
||||
filesystem driver may be used to read and write disks from these
|
||||
devices.
|
||||
|
||||
Note, it is not recommended that this FS be used in place of a general
|
||||
filesystem for your own streaming media device. Native Linux filesystems
|
||||
will likely perform better.
|
||||
|
||||
More information is available at:
|
||||
|
||||
http://linux-karma.sf.net/
|
||||
|
||||
Various utilities, including mkomfs and omfsck, are included with
|
||||
omfsprogs, available at:
|
||||
|
||||
http://bobcopeland.com/karma/
|
||||
|
||||
Instructions are included in its README.
|
||||
|
||||
Options
|
||||
=======
|
||||
|
||||
OMFS supports the following mount-time options:
|
||||
|
||||
uid=n - make all files owned by specified user
|
||||
gid=n - make all files owned by specified group
|
||||
umask=xxx - set permission umask to xxx
|
||||
fmask=xxx - set umask to xxx for files
|
||||
dmask=xxx - set umask to xxx for directories
|
||||
|
||||
Disk format
|
||||
===========
|
||||
|
||||
OMFS discriminates between "sysblocks" and normal data blocks. The sysblock
|
||||
group consists of super block information, file metadata, directory structures,
|
||||
and extents. Each sysblock has a header containing CRCs of the entire
|
||||
sysblock, and may be mirrored in successive blocks on the disk. A sysblock may
|
||||
have a smaller size than a data block, but since they are both addressed by the
|
||||
same 64-bit block number, any remaining space in the smaller sysblock is
|
||||
unused.
|
||||
|
||||
Sysblock header information:
|
||||
|
||||
struct omfs_header {
|
||||
__be64 h_self; /* FS block where this is located */
|
||||
__be32 h_body_size; /* size of useful data after header */
|
||||
__be16 h_crc; /* crc-ccitt of body_size bytes */
|
||||
char h_fill1[2];
|
||||
u8 h_version; /* version, always 1 */
|
||||
char h_type; /* OMFS_INODE_X */
|
||||
u8 h_magic; /* OMFS_IMAGIC */
|
||||
u8 h_check_xor; /* XOR of header bytes before this */
|
||||
__be32 h_fill2;
|
||||
};
|
||||
|
||||
Files and directories are both represented by omfs_inode:
|
||||
|
||||
struct omfs_inode {
|
||||
struct omfs_header i_head; /* header */
|
||||
__be64 i_parent; /* parent containing this inode */
|
||||
__be64 i_sibling; /* next inode in hash bucket */
|
||||
__be64 i_ctime; /* ctime, in milliseconds */
|
||||
char i_fill1[35];
|
||||
char i_type; /* OMFS_[DIR,FILE] */
|
||||
__be32 i_fill2;
|
||||
char i_fill3[64];
|
||||
char i_name[OMFS_NAMELEN]; /* filename */
|
||||
__be64 i_size; /* size of file, in bytes */
|
||||
};
|
||||
|
||||
Directories in OMFS are implemented as a large hash table. Filenames are
|
||||
hashed then prepended into the bucket list beginning at OMFS_DIR_START.
|
||||
Lookup requires hashing the filename, then seeking across i_sibling pointers
|
||||
until a match is found on i_name. Empty buckets are represented by block
|
||||
pointers with all-1s (~0).
|
||||
|
||||
A file is an omfs_inode structure followed by an extent table beginning at
|
||||
OMFS_EXTENT_START:
|
||||
|
||||
struct omfs_extent_entry {
|
||||
__be64 e_cluster; /* start location of a set of blocks */
|
||||
__be64 e_blocks; /* number of blocks after e_cluster */
|
||||
};
|
||||
|
||||
struct omfs_extent {
|
||||
__be64 e_next; /* next extent table location */
|
||||
__be32 e_extent_count; /* total # extents in this table */
|
||||
__be32 e_fill;
|
||||
struct omfs_extent_entry e_entry; /* start of extent entries */
|
||||
};
|
||||
|
||||
Each extent holds the block offset followed by number of blocks allocated to
|
||||
the extent. The final extent in each table is a terminator with e_cluster
|
||||
being ~0 and e_blocks being ones'-complement of the total number of blocks
|
||||
in the table.
|
||||
|
||||
If this table overflows, a continuation inode is written and pointed to by
|
||||
e_next. These have a header but lack the rest of the inode structure.
|
||||
|
@ -296,6 +296,7 @@ Table 1-4: Kernel info in /proc
|
||||
uptime System uptime
|
||||
version Kernel version
|
||||
video bttv info of video resources (2.4)
|
||||
vmallocinfo Show vmalloced areas
|
||||
..............................................................................
|
||||
|
||||
You can, for example, check which interrupts are currently in use and what
|
||||
@ -557,6 +558,49 @@ VmallocTotal: total size of vmalloc memory area
|
||||
VmallocUsed: amount of vmalloc area which is used
|
||||
VmallocChunk: largest contigious block of vmalloc area which is free
|
||||
|
||||
..............................................................................
|
||||
|
||||
vmallocinfo:
|
||||
|
||||
Provides information about vmalloced/vmaped areas. One line per area,
|
||||
containing the virtual address range of the area, size in bytes,
|
||||
caller information of the creator, and optional information depending
|
||||
on the kind of area :
|
||||
|
||||
pages=nr number of pages
|
||||
phys=addr if a physical address was specified
|
||||
ioremap I/O mapping (ioremap() and friends)
|
||||
vmalloc vmalloc() area
|
||||
vmap vmap()ed pages
|
||||
user VM_USERMAP area
|
||||
vpages buffer for pages pointers was vmalloced (huge area)
|
||||
N<node>=nr (Only on NUMA kernels)
|
||||
Number of pages allocated on memory node <node>
|
||||
|
||||
> cat /proc/vmallocinfo
|
||||
0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204 ...
|
||||
/0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128
|
||||
0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204 ...
|
||||
/0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64
|
||||
0xffffc20000302000-0xffffc20000304000 8192 acpi_tb_verify_table+0x21/0x4f...
|
||||
phys=7fee8000 ioremap
|
||||
0xffffc20000304000-0xffffc20000307000 12288 acpi_tb_verify_table+0x21/0x4f...
|
||||
phys=7fee7000 ioremap
|
||||
0xffffc2000031d000-0xffffc2000031f000 8192 init_vdso_vars+0x112/0x210
|
||||
0xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e ...
|
||||
/0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3
|
||||
0xffffc2000033a000-0xffffc2000033d000 12288 sys_swapon+0x640/0xac0 ...
|
||||
pages=2 vmalloc N1=2
|
||||
0xffffc20000347000-0xffffc2000034c000 20480 xt_alloc_table_info+0xfe ...
|
||||
/0x130 [x_tables] pages=4 vmalloc N0=4
|
||||
0xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 ...
|
||||
pages=14 vmalloc N2=14
|
||||
0xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 ...
|
||||
pages=4 vmalloc N1=4
|
||||
0xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 ...
|
||||
pages=2 vmalloc N1=2
|
||||
0xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 ...
|
||||
pages=10 vmalloc N0=10
|
||||
|
||||
1.3 IDE devices in /proc/ide
|
||||
----------------------------
|
||||
@ -887,7 +931,7 @@ group_prealloc max_to_scan mb_groups mb_history min_to_scan order2_req
|
||||
stats stream_req
|
||||
|
||||
mb_groups:
|
||||
This file gives the details of mutiblock allocator buddy cache of free blocks
|
||||
This file gives the details of multiblock allocator buddy cache of free blocks
|
||||
|
||||
mb_history:
|
||||
Multiblock allocation history.
|
||||
@ -1430,7 +1474,7 @@ used because pages_free(1355) is smaller than watermark + protection[2]
|
||||
normal page requirement. If requirement is DMA zone(index=0), protection[0]
|
||||
(=0) is used.
|
||||
|
||||
zone[i]'s protection[j] is calculated by following exprssion.
|
||||
zone[i]'s protection[j] is calculated by following expression.
|
||||
|
||||
(i < j):
|
||||
zone[i]->protection[j]
|
||||
|
@ -3,14 +3,14 @@ Quota subsystem
|
||||
===============
|
||||
|
||||
Quota subsystem allows system administrator to set limits on used space and
|
||||
number of used inodes (inode is a filesystem structure which is associated
|
||||
with each file or directory) for users and/or groups. For both used space and
|
||||
number of used inodes there are actually two limits. The first one is called
|
||||
softlimit and the second one hardlimit. An user can never exceed a hardlimit
|
||||
for any resource. User is allowed to exceed softlimit but only for limited
|
||||
period of time. This period is called "grace period" or "grace time". When
|
||||
grace time is over, user is not able to allocate more space/inodes until he
|
||||
frees enough of them to get below softlimit.
|
||||
number of used inodes (inode is a filesystem structure which is associated with
|
||||
each file or directory) for users and/or groups. For both used space and number
|
||||
of used inodes there are actually two limits. The first one is called softlimit
|
||||
and the second one hardlimit. An user can never exceed a hardlimit for any
|
||||
resource (unless he has CAP_SYS_RESOURCE capability). User is allowed to exceed
|
||||
softlimit but only for limited period of time. This period is called "grace
|
||||
period" or "grace time". When grace time is over, user is not able to allocate
|
||||
more space/inodes until he frees enough of them to get below softlimit.
|
||||
|
||||
Quota limits (and amount of grace time) are set independently for each
|
||||
filesystem.
|
||||
@ -53,6 +53,12 @@ in parentheses):
|
||||
QUOTA_NL_BSOFTLONGWARN - space (block) softlimit is exceeded
|
||||
longer than given grace period.
|
||||
QUOTA_NL_BSOFTWARN - space (block) softlimit
|
||||
- four warnings are also defined for the event when user stops
|
||||
exceeding some limit:
|
||||
QUOTA_NL_IHARDBELOW - inode hardlimit
|
||||
QUOTA_NL_ISOFTBELOW - inode softlimit
|
||||
QUOTA_NL_BHARDBELOW - space (block) hardlimit
|
||||
QUOTA_NL_BSOFTBELOW - space (block) softlimit
|
||||
QUOTA_NL_A_DEV_MAJOR (u32)
|
||||
- major number of a device with the affected filesystem
|
||||
QUOTA_NL_A_DEV_MINOR (u32)
|
||||
|
@ -294,6 +294,16 @@ user-defined data with a channel, and is immediately available
|
||||
(including in create_buf_file()) via chan->private_data or
|
||||
buf->chan->private_data.
|
||||
|
||||
Buffer-only channels
|
||||
--------------------
|
||||
|
||||
These channels have no files associated and can be created with
|
||||
relay_open(NULL, NULL, ...). Such channels are useful in scenarios such
|
||||
as when doing early tracing in the kernel, before the VFS is up. In these
|
||||
cases, one may open a buffer-only channel and then call
|
||||
relay_late_setup_files() when the kernel is ready to handle files,
|
||||
to expose the buffered data to the userspace.
|
||||
|
||||
Channel 'modes'
|
||||
---------------
|
||||
|
||||
|
@ -96,6 +96,14 @@ shortname=lower|win95|winnt|mixed
|
||||
emulate the Windows 95 rule for create.
|
||||
Default setting is `lower'.
|
||||
|
||||
tz=UTC -- Interpret timestamps as UTC rather than local time.
|
||||
This option disables the conversion of timestamps
|
||||
between local time (as used by Windows on FAT) and UTC
|
||||
(which Linux uses internally). This is particuluarly
|
||||
useful when mounting devices (like digital cameras)
|
||||
that are set to UTC in order to avoid the pitfalls of
|
||||
local time.
|
||||
|
||||
<bool>: 0,1,yes,no,true,false
|
||||
|
||||
TODO
|
||||
|
@ -143,7 +143,7 @@ struct file_system_type {
|
||||
|
||||
The get_sb() method has the following arguments:
|
||||
|
||||
struct file_system_type *fs_type: decribes the filesystem, partly initialized
|
||||
struct file_system_type *fs_type: describes the filesystem, partly initialized
|
||||
by the specific filesystem code
|
||||
|
||||
int flags: mount flags
|
||||
@ -895,9 +895,9 @@ struct dentry_operations {
|
||||
iput() yourself
|
||||
|
||||
d_dname: called when the pathname of a dentry should be generated.
|
||||
Usefull for some pseudo filesystems (sockfs, pipefs, ...) to delay
|
||||
Useful for some pseudo filesystems (sockfs, pipefs, ...) to delay
|
||||
pathname generation. (Instead of doing it when dentry is created,
|
||||
its done only when the path is needed.). Real filesystems probably
|
||||
it's done only when the path is needed.). Real filesystems probably
|
||||
dont want to use it, because their dentries are present in global
|
||||
dcache hash, so their hash should be an invariant. As no lock is
|
||||
held, d_dname() should not try to modify the dentry itself, unless
|
||||
|
@ -4,6 +4,7 @@
|
||||
Copyright 2008 Red Hat Inc.
|
||||
Author: Steven Rostedt <srostedt@redhat.com>
|
||||
License: The GNU Free Documentation License, Version 1.2
|
||||
(dual licensed under the GPL v2)
|
||||
Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
|
||||
John Kacur, and David Teigland.
|
||||
|
||||
|
@ -347,15 +347,12 @@ necessarily be nonportable.
|
||||
Dynamic definition of GPIOs is not currently standard; for example, as
|
||||
a side effect of configuring an add-on board with some GPIO expanders.
|
||||
|
||||
These calls are purely for kernel space, but a userspace API could be built
|
||||
on top of them.
|
||||
|
||||
|
||||
GPIO implementor's framework (OPTIONAL)
|
||||
=======================================
|
||||
As noted earlier, there is an optional implementation framework making it
|
||||
easier for platforms to support different kinds of GPIO controller using
|
||||
the same programming interface.
|
||||
the same programming interface. This framework is called "gpiolib".
|
||||
|
||||
As a debugging aid, if debugfs is available a /sys/kernel/debug/gpio file
|
||||
will be found there. That will list all the controllers registered through
|
||||
@ -392,11 +389,21 @@ either NULL or the label associated with that GPIO when it was requested.
|
||||
|
||||
Platform Support
|
||||
----------------
|
||||
To support this framework, a platform's Kconfig will "select HAVE_GPIO_LIB"
|
||||
To support this framework, a platform's Kconfig will "select" either
|
||||
ARCH_REQUIRE_GPIOLIB or ARCH_WANT_OPTIONAL_GPIOLIB
|
||||
and arrange that its <asm/gpio.h> includes <asm-generic/gpio.h> and defines
|
||||
three functions: gpio_get_value(), gpio_set_value(), and gpio_cansleep().
|
||||
They may also want to provide a custom value for ARCH_NR_GPIOS.
|
||||
|
||||
ARCH_REQUIRE_GPIOLIB means that the gpio-lib code will always get compiled
|
||||
into the kernel on that architecture.
|
||||
|
||||
ARCH_WANT_OPTIONAL_GPIOLIB means the gpio-lib code defaults to off and the user
|
||||
can enable it and build it into the kernel optionally.
|
||||
|
||||
If neither of these options are selected, the platform does not support
|
||||
GPIOs through GPIO-lib and the code cannot be enabled by the user.
|
||||
|
||||
Trivial implementations of those functions can directly use framework
|
||||
code, which always dispatches through the gpio_chip:
|
||||
|
||||
@ -439,4 +446,120 @@ becomes available. That may mean the device should not be registered until
|
||||
calls for that GPIO can work. One way to address such dependencies is for
|
||||
such gpio_chip controllers to provide setup() and teardown() callbacks to
|
||||
board specific code; those board specific callbacks would register devices
|
||||
once all the necessary resources are available.
|
||||
once all the necessary resources are available, and remove them later when
|
||||
the GPIO controller device becomes unavailable.
|
||||
|
||||
|
||||
Sysfs Interface for Userspace (OPTIONAL)
|
||||
========================================
|
||||
Platforms which use the "gpiolib" implementors framework may choose to
|
||||
configure a sysfs user interface to GPIOs. This is different from the
|
||||
debugfs interface, since it provides control over GPIO direction and
|
||||
value instead of just showing a gpio state summary. Plus, it could be
|
||||
present on production systems without debugging support.
|
||||
|
||||
Given approprate hardware documentation for the system, userspace could
|
||||
know for example that GPIO #23 controls the write protect line used to
|
||||
protect boot loader segments in flash memory. System upgrade procedures
|
||||
may need to temporarily remove that protection, first importing a GPIO,
|
||||
then changing its output state, then updating the code before re-enabling
|
||||
the write protection. In normal use, GPIO #23 would never be touched,
|
||||
and the kernel would have no need to know about it.
|
||||
|
||||
Again depending on appropriate hardware documentation, on some systems
|
||||
userspace GPIO can be used to determine system configuration data that
|
||||
standard kernels won't know about. And for some tasks, simple userspace
|
||||
GPIO drivers could be all that the system really needs.
|
||||
|
||||
Note that standard kernel drivers exist for common "LEDs and Buttons"
|
||||
GPIO tasks: "leds-gpio" and "gpio_keys", respectively. Use those
|
||||
instead of talking directly to the GPIOs; they integrate with kernel
|
||||
frameworks better than your userspace code could.
|
||||
|
||||
|
||||
Paths in Sysfs
|
||||
--------------
|
||||
There are three kinds of entry in /sys/class/gpio:
|
||||
|
||||
- Control interfaces used to get userspace control over GPIOs;
|
||||
|
||||
- GPIOs themselves; and
|
||||
|
||||
- GPIO controllers ("gpio_chip" instances).
|
||||
|
||||
That's in addition to standard files including the "device" symlink.
|
||||
|
||||
The control interfaces are write-only:
|
||||
|
||||
/sys/class/gpio/
|
||||
|
||||
"export" ... Userspace may ask the kernel to export control of
|
||||
a GPIO to userspace by writing its number to this file.
|
||||
|
||||
Example: "echo 19 > export" will create a "gpio19" node
|
||||
for GPIO #19, if that's not requested by kernel code.
|
||||
|
||||
"unexport" ... Reverses the effect of exporting to userspace.
|
||||
|
||||
Example: "echo 19 > unexport" will remove a "gpio19"
|
||||
node exported using the "export" file.
|
||||
|
||||
GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42)
|
||||
and have the following read/write attributes:
|
||||
|
||||
/sys/class/gpio/gpioN/
|
||||
|
||||
"direction" ... reads as either "in" or "out". This value may
|
||||
normally be written. Writing as "out" defaults to
|
||||
initializing the value as low. To ensure glitch free
|
||||
operation, values "low" and "high" may be written to
|
||||
configure the GPIO as an output with that initial value.
|
||||
|
||||
Note that this attribute *will not exist* if the kernel
|
||||
doesn't support changing the direction of a GPIO, or
|
||||
it was exported by kernel code that didn't explicitly
|
||||
allow userspace to reconfigure this GPIO's direction.
|
||||
|
||||
"value" ... reads as either 0 (low) or 1 (high). If the GPIO
|
||||
is configured as an output, this value may be written;
|
||||
any nonzero value is treated as high.
|
||||
|
||||
GPIO controllers have paths like /sys/class/gpio/chipchip42/ (for the
|
||||
controller implementing GPIOs starting at #42) and have the following
|
||||
read-only attributes:
|
||||
|
||||
/sys/class/gpio/gpiochipN/
|
||||
|
||||
"base" ... same as N, the first GPIO managed by this chip
|
||||
|
||||
"label" ... provided for diagnostics (not always unique)
|
||||
|
||||
"ngpio" ... how many GPIOs this manges (N to N + ngpio - 1)
|
||||
|
||||
Board documentation should in most cases cover what GPIOs are used for
|
||||
what purposes. However, those numbers are not always stable; GPIOs on
|
||||
a daughtercard might be different depending on the base board being used,
|
||||
or other cards in the stack. In such cases, you may need to use the
|
||||
gpiochip nodes (possibly in conjunction with schematics) to determine
|
||||
the correct GPIO number to use for a given signal.
|
||||
|
||||
|
||||
Exporting from Kernel code
|
||||
--------------------------
|
||||
Kernel code can explicitly manage exports of GPIOs which have already been
|
||||
requested using gpio_request():
|
||||
|
||||
/* export the GPIO to userspace */
|
||||
int gpio_export(unsigned gpio, bool direction_may_change);
|
||||
|
||||
/* reverse gpio_export() */
|
||||
void gpio_unexport();
|
||||
|
||||
After a kernel driver requests a GPIO, it may only be made available in
|
||||
the sysfs interface by gpio_export(). The driver can control whether the
|
||||
signal direction may change. This helps drivers prevent userspace code
|
||||
from accidentally clobbering important system state.
|
||||
|
||||
This explicit exporting can help with debugging (by making some kinds
|
||||
of experiments easier), or can provide an always-there interface that's
|
||||
suitable for documenting as part of a board support package.
|
||||
|
@ -10,6 +10,10 @@ Supported chips:
|
||||
Prefix: 'sch311x'
|
||||
Addresses scanned: none, address read from Super-I/O config space
|
||||
Datasheet: http://www.nuhorizons.com/FeaturedProducts/Volume1/SMSC/311x.pdf
|
||||
* SMSC SCH5027
|
||||
Prefix: 'sch5027'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: Provided by SMSC upon request and under NDA
|
||||
|
||||
Authors:
|
||||
Juerg Haefliger <juergh@gmail.com>
|
||||
@ -22,34 +26,36 @@ Module Parameters
|
||||
and PWM output control functions. Using this parameter
|
||||
shouldn't be required since the BIOS usually takes care
|
||||
of this.
|
||||
|
||||
Note that there is no need to use this parameter if the driver loads without
|
||||
complaining. The driver will say so if it is necessary.
|
||||
* probe_all_addr: bool Include non-standard LPC addresses 0x162e and 0x164e
|
||||
when probing for ISA devices. This is required for the
|
||||
following boards:
|
||||
- VIA EPIA SN18000
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the hardware monitoring capabilities of the
|
||||
SMSC DME1737 and Asus A8000 (which are the same) and SMSC SCH311x Super-I/O
|
||||
chips. These chips feature monitoring of 3 temp sensors temp[1-3] (2 remote
|
||||
diodes and 1 internal), 7 voltages in[0-6] (6 external and 1 internal) and up
|
||||
to 6 fan speeds fan[1-6]. Additionally, the chips implement up to 5 PWM
|
||||
outputs pwm[1-3,5-6] for controlling fan speeds both manually and
|
||||
SMSC DME1737 and Asus A8000 (which are the same), SMSC SCH5027, and SMSC
|
||||
SCH311x Super-I/O chips. These chips feature monitoring of 3 temp sensors
|
||||
temp[1-3] (2 remote diodes and 1 internal), 7 voltages in[0-6] (6 external and
|
||||
1 internal) and up to 6 fan speeds fan[1-6]. Additionally, the chips implement
|
||||
up to 5 PWM outputs pwm[1-3,5-6] for controlling fan speeds both manually and
|
||||
automatically.
|
||||
|
||||
For the DME1737 and A8000, fan[1-2] and pwm[1-2] are always present. Fan[3-6]
|
||||
and pwm[3,5-6] are optional features and their availability depends on the
|
||||
configuration of the chip. The driver will detect which features are present
|
||||
during initialization and create the sysfs attributes accordingly.
|
||||
For the DME1737, A8000 and SCH5027, fan[1-2] and pwm[1-2] are always present.
|
||||
Fan[3-6] and pwm[3,5-6] are optional features and their availability depends on
|
||||
the configuration of the chip. The driver will detect which features are
|
||||
present during initialization and create the sysfs attributes accordingly.
|
||||
|
||||
For the SCH311x, fan[1-3] and pwm[1-3] are always present and fan[4-6] and
|
||||
pwm[5-6] don't exist.
|
||||
|
||||
The hardware monitoring features of the DME1737 and A8000 are only accessible
|
||||
via SMBus, while the SCH311x only provides access via the ISA bus. The driver
|
||||
will therefore register itself as an I2C client driver if it detects a DME1737
|
||||
or A8000 and as a platform driver if it detects a SCH311x chip.
|
||||
The hardware monitoring features of the DME1737, A8000, and SCH5027 are only
|
||||
accessible via SMBus, while the SCH311x only provides access via the ISA bus.
|
||||
The driver will therefore register itself as an I2C client driver if it detects
|
||||
a DME1737, A8000, or SCH5027 and as a platform driver if it detects a SCH311x
|
||||
chip.
|
||||
|
||||
|
||||
Voltage Monitoring
|
||||
@ -60,6 +66,7 @@ scaling resistors. The values returned by the driver therefore reflect true
|
||||
millivolts and don't need scaling. The voltage inputs are mapped as follows
|
||||
(the last column indicates the input ranges):
|
||||
|
||||
DME1737, A8000:
|
||||
in0: +5VTR (+5V standby) 0V - 6.64V
|
||||
in1: Vccp (processor core) 0V - 3V
|
||||
in2: VCC (internal +3.3V) 0V - 4.38V
|
||||
@ -68,6 +75,24 @@ millivolts and don't need scaling. The voltage inputs are mapped as follows
|
||||
in5: VTR (+3.3V standby) 0V - 4.38V
|
||||
in6: Vbat (+3.0V) 0V - 4.38V
|
||||
|
||||
SCH311x:
|
||||
in0: +2.5V 0V - 6.64V
|
||||
in1: Vccp (processor core) 0V - 2V
|
||||
in2: VCC (internal +3.3V) 0V - 4.38V
|
||||
in3: +5V 0V - 6.64V
|
||||
in4: +12V 0V - 16V
|
||||
in5: VTR (+3.3V standby) 0V - 4.38V
|
||||
in6: Vbat (+3.0V) 0V - 4.38V
|
||||
|
||||
SCH5027:
|
||||
in0: +5VTR (+5V standby) 0V - 6.64V
|
||||
in1: Vccp (processor core) 0V - 3V
|
||||
in2: VCC (internal +3.3V) 0V - 4.38V
|
||||
in3: V2_IN 0V - 1.5V
|
||||
in4: V1_IN 0V - 1.5V
|
||||
in5: VTR (+3.3V standby) 0V - 4.38V
|
||||
in6: Vbat (+3.0V) 0V - 4.38V
|
||||
|
||||
Each voltage input has associated min and max limits which trigger an alarm
|
||||
when crossed.
|
||||
|
||||
|
@ -6,12 +6,14 @@ Supported chips:
|
||||
Prefix: 'it87'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Publicly available at the ITE website
|
||||
http://www.ite.com.tw/
|
||||
http://www.ite.com.tw/product_info/file/pc/IT8705F_V.0.4.1.pdf
|
||||
* IT8712F
|
||||
Prefix: 'it8712'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Publicly available at the ITE website
|
||||
http://www.ite.com.tw/
|
||||
http://www.ite.com.tw/product_info/file/pc/IT8712F_V0.9.1.pdf
|
||||
http://www.ite.com.tw/product_info/file/pc/Errata%20V0.1%20for%20IT8712F%20V0.9.1.pdf
|
||||
http://www.ite.com.tw/product_info/file/pc/IT8712F_V0.9.3.pdf
|
||||
* IT8716F/IT8726F
|
||||
Prefix: 'it8716'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
@ -90,14 +92,13 @@ upper VID bits share their pins with voltage inputs (in5 and in6) so you
|
||||
can't have both on a given board.
|
||||
|
||||
The IT8716F, IT8718F and later IT8712F revisions have support for
|
||||
2 additional fans. They are supported by the driver for the IT8716F and
|
||||
IT8718F but not for the IT8712F
|
||||
2 additional fans. The additional fans are supported by the driver.
|
||||
|
||||
The IT8716F and IT8718F, and late IT8712F and IT8705F also have optional
|
||||
16-bit tachometer counters for fans 1 to 3. This is better (no more fan
|
||||
clock divider mess) but not compatible with the older chips and
|
||||
revisions. For now, the driver only uses the 16-bit mode on the
|
||||
IT8716F and IT8718F.
|
||||
revisions. The 16-bit tachometer mode is enabled by the driver when one
|
||||
of the above chips is detected.
|
||||
|
||||
The IT8726F is just bit enhanced IT8716F with additional hardware
|
||||
for AMD power sequencing. Therefore the chip will appear as IT8716F
|
||||
|
@ -96,11 +96,6 @@ initial testing of the ADM1027 it was 1.00 degC steps. Analog Devices has
|
||||
confirmed this "bug". The ADT7463 is reported to work as described in the
|
||||
documentation. The current lm85 driver does not show the offset register.
|
||||
|
||||
The ADT7463 has a THERM asserted counter. This counter has a 22.76ms
|
||||
resolution and a range of 5.8 seconds. The driver implements a 32-bit
|
||||
accumulator of the counter value to extend the range to over a year. The
|
||||
counter will stay at it's max value until read.
|
||||
|
||||
See the vendor datasheets for more information. There is application note
|
||||
from National (AN-1260) with some additional information about the LM85.
|
||||
The Analog Devices datasheet is very detailed and describes a procedure for
|
||||
@ -206,13 +201,15 @@ Configuration choices:
|
||||
|
||||
The National LM85's have two vendor specific configuration
|
||||
features. Tach. mode and Spinup Control. For more details on these,
|
||||
see the LM85 datasheet or Application Note AN-1260.
|
||||
see the LM85 datasheet or Application Note AN-1260. These features
|
||||
are not currently supported by the lm85 driver.
|
||||
|
||||
The Analog Devices ADM1027 has several vendor specific enhancements.
|
||||
The number of pulses-per-rev of the fans can be set, Tach monitoring
|
||||
can be optimized for PWM operation, and an offset can be applied to
|
||||
the temperatures to compensate for systemic errors in the
|
||||
measurements.
|
||||
measurements. These features are not currently supported by the lm85
|
||||
driver.
|
||||
|
||||
In addition to the ADM1027 features, the ADT7463 also has Tmin control
|
||||
and THERM asserted counts. Automatic Tmin control acts to adjust the
|
||||
|
@ -40,10 +40,6 @@ Module Parameters
|
||||
(default is 1)
|
||||
Use 'init=0' to bypass initializing the chip.
|
||||
Try this if your computer crashes when you load the module.
|
||||
* reset: int
|
||||
(default is 0)
|
||||
The driver used to reset the chip on load, but does no more. Use
|
||||
'reset=1' to restore the old behavior. Report if you need to do this.
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
@ -22,6 +22,7 @@ Credits:
|
||||
|
||||
Additional contributors:
|
||||
Sven Anders <anders@anduras.de>
|
||||
Marc Hulsman <m.hulsman@tudelft.nl>
|
||||
|
||||
Module Parameters
|
||||
-----------------
|
||||
@ -67,9 +68,8 @@ on until the temperature falls below the Hysteresis value.
|
||||
|
||||
Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
|
||||
triggered if the rotation speed has dropped below a programmable limit. Fan
|
||||
readings can be divided by a programmable divider (1, 2, 4, 8 for fan 1/2/3
|
||||
and 1, 2, 4, 8, 16, 32, 64 or 128 for fan 4/5) to give the readings more
|
||||
range or accuracy.
|
||||
readings can be divided by a programmable divider (1, 2, 4, 8, 16,
|
||||
32, 64 or 128 for all fans) to give the readings more range or accuracy.
|
||||
|
||||
Voltage sensors (also known as IN sensors) report their values in millivolts.
|
||||
An alarm is triggered if the voltage has crossed a programmable minimum
|
||||
|
281
Documentation/i2c/upgrading-clients
Normal file
281
Documentation/i2c/upgrading-clients
Normal file
@ -0,0 +1,281 @@
|
||||
Upgrading I2C Drivers to the new 2.6 Driver Model
|
||||
=================================================
|
||||
|
||||
Ben Dooks <ben-linux@fluff.org>
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
This guide outlines how to alter existing Linux 2.6 client drivers from
|
||||
the old to the new new binding methods.
|
||||
|
||||
|
||||
Example old-style driver
|
||||
------------------------
|
||||
|
||||
|
||||
struct example_state {
|
||||
struct i2c_client client;
|
||||
....
|
||||
};
|
||||
|
||||
static struct i2c_driver example_driver;
|
||||
|
||||
static unsigned short ignore[] = { I2C_CLIENT_END };
|
||||
static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END };
|
||||
|
||||
I2C_CLIENT_INSMOD;
|
||||
|
||||
static int example_attach(struct i2c_adapter *adap, int addr, int kind)
|
||||
{
|
||||
struct example_state *state;
|
||||
struct device *dev = &adap->dev; /* to use for dev_ reports */
|
||||
int ret;
|
||||
|
||||
state = kzalloc(sizeof(struct example_state), GFP_KERNEL);
|
||||
if (state == NULL) {
|
||||
dev_err(dev, "failed to create our state\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
example->client.addr = addr;
|
||||
example->client.flags = 0;
|
||||
example->client.adapter = adap;
|
||||
|
||||
i2c_set_clientdata(&state->i2c_client, state);
|
||||
strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE);
|
||||
|
||||
ret = i2c_attach_client(&state->i2c_client);
|
||||
if (ret < 0) {
|
||||
dev_err(dev, "failed to attach client\n");
|
||||
kfree(state);
|
||||
return ret;
|
||||
}
|
||||
|
||||
dev = &state->i2c_client.dev;
|
||||
|
||||
/* rest of the initialisation goes here. */
|
||||
|
||||
dev_info(dev, "example client created\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __devexit example_detach(struct i2c_client *client)
|
||||
{
|
||||
struct example_state *state = i2c_get_clientdata(client);
|
||||
|
||||
i2c_detach_client(client);
|
||||
kfree(state);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int example_attach_adapter(struct i2c_adapter *adap)
|
||||
{
|
||||
return i2c_probe(adap, &addr_data, example_attach);
|
||||
}
|
||||
|
||||
static struct i2c_driver example_driver = {
|
||||
.driver = {
|
||||
.owner = THIS_MODULE,
|
||||
.name = "example",
|
||||
},
|
||||
.attach_adapter = example_attach_adapter,
|
||||
.detach_client = __devexit_p(example_detach),
|
||||
.suspend = example_suspend,
|
||||
.resume = example_resume,
|
||||
};
|
||||
|
||||
|
||||
Updating the client
|
||||
-------------------
|
||||
|
||||
The new style binding model will check against a list of supported
|
||||
devices and their associated address supplied by the code registering
|
||||
the busses. This means that the driver .attach_adapter and
|
||||
.detach_adapter methods can be removed, along with the addr_data,
|
||||
as follows:
|
||||
|
||||
- static struct i2c_driver example_driver;
|
||||
|
||||
- static unsigned short ignore[] = { I2C_CLIENT_END };
|
||||
- static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END };
|
||||
|
||||
- I2C_CLIENT_INSMOD;
|
||||
|
||||
- static int example_attach_adapter(struct i2c_adapter *adap)
|
||||
- {
|
||||
- return i2c_probe(adap, &addr_data, example_attach);
|
||||
- }
|
||||
|
||||
static struct i2c_driver example_driver = {
|
||||
- .attach_adapter = example_attach_adapter,
|
||||
- .detach_client = __devexit_p(example_detach),
|
||||
}
|
||||
|
||||
Add the probe and remove methods to the i2c_driver, as so:
|
||||
|
||||
static struct i2c_driver example_driver = {
|
||||
+ .probe = example_probe,
|
||||
+ .remove = __devexit_p(example_remove),
|
||||
}
|
||||
|
||||
Change the example_attach method to accept the new parameters
|
||||
which include the i2c_client that it will be working with:
|
||||
|
||||
- static int example_attach(struct i2c_adapter *adap, int addr, int kind)
|
||||
+ static int example_probe(struct i2c_client *client,
|
||||
+ const struct i2c_device_id *id)
|
||||
|
||||
Change the name of example_attach to example_probe to align it with the
|
||||
i2c_driver entry names. The rest of the probe routine will now need to be
|
||||
changed as the i2c_client has already been setup for use.
|
||||
|
||||
The necessary client fields have already been setup before
|
||||
the probe function is called, so the following client setup
|
||||
can be removed:
|
||||
|
||||
- example->client.addr = addr;
|
||||
- example->client.flags = 0;
|
||||
- example->client.adapter = adap;
|
||||
-
|
||||
- strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE);
|
||||
|
||||
The i2c_set_clientdata is now:
|
||||
|
||||
- i2c_set_clientdata(&state->client, state);
|
||||
+ i2c_set_clientdata(client, state);
|
||||
|
||||
The call to i2c_attach_client is no longer needed, if the probe
|
||||
routine exits successfully, then the driver will be automatically
|
||||
attached by the core. Change the probe routine as so:
|
||||
|
||||
- ret = i2c_attach_client(&state->i2c_client);
|
||||
- if (ret < 0) {
|
||||
- dev_err(dev, "failed to attach client\n");
|
||||
- kfree(state);
|
||||
- return ret;
|
||||
- }
|
||||
|
||||
|
||||
Remove the storage of 'struct i2c_client' from the 'struct example_state'
|
||||
as we are provided with the i2c_client in our example_probe. Instead we
|
||||
store a pointer to it for when it is needed.
|
||||
|
||||
struct example_state {
|
||||
- struct i2c_client client;
|
||||
+ struct i2c_client *client;
|
||||
|
||||
the new i2c client as so:
|
||||
|
||||
- struct device *dev = &adap->dev; /* to use for dev_ reports */
|
||||
+ struct device *dev = &i2c_client->dev; /* to use for dev_ reports */
|
||||
|
||||
And remove the change after our client is attached, as the driver no
|
||||
longer needs to register a new client structure with the core:
|
||||
|
||||
- dev = &state->i2c_client.dev;
|
||||
|
||||
In the probe routine, ensure that the new state has the client stored
|
||||
in it:
|
||||
|
||||
static int example_probe(struct i2c_client *i2c_client,
|
||||
const struct i2c_device_id *id)
|
||||
{
|
||||
struct example_state *state;
|
||||
struct device *dev = &i2c_client->dev;
|
||||
int ret;
|
||||
|
||||
state = kzalloc(sizeof(struct example_state), GFP_KERNEL);
|
||||
if (state == NULL) {
|
||||
dev_err(dev, "failed to create our state\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
+ state->client = i2c_client;
|
||||
|
||||
Update the detach method, by changing the name to _remove and
|
||||
to delete the i2c_detach_client call. It is possible that you
|
||||
can also remove the ret variable as it is not not needed for
|
||||
any of the core functions.
|
||||
|
||||
- static int __devexit example_detach(struct i2c_client *client)
|
||||
+ static int __devexit example_remove(struct i2c_client *client)
|
||||
{
|
||||
struct example_state *state = i2c_get_clientdata(client);
|
||||
|
||||
- i2c_detach_client(client);
|
||||
|
||||
And finally ensure that we have the correct ID table for the i2c-core
|
||||
and other utilities:
|
||||
|
||||
+ struct i2c_device_id example_idtable[] = {
|
||||
+ { "example", 0 },
|
||||
+ { }
|
||||
+};
|
||||
+
|
||||
+MODULE_DEVICE_TABLE(i2c, example_idtable);
|
||||
|
||||
static struct i2c_driver example_driver = {
|
||||
.driver = {
|
||||
.owner = THIS_MODULE,
|
||||
.name = "example",
|
||||
},
|
||||
+ .id_table = example_ids,
|
||||
|
||||
|
||||
Our driver should now look like this:
|
||||
|
||||
struct example_state {
|
||||
struct i2c_client *client;
|
||||
....
|
||||
};
|
||||
|
||||
static int example_probe(struct i2c_client *client,
|
||||
const struct i2c_device_id *id)
|
||||
{
|
||||
struct example_state *state;
|
||||
struct device *dev = &client->dev;
|
||||
|
||||
state = kzalloc(sizeof(struct example_state), GFP_KERNEL);
|
||||
if (state == NULL) {
|
||||
dev_err(dev, "failed to create our state\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
state->client = client;
|
||||
i2c_set_clientdata(client, state);
|
||||
|
||||
/* rest of the initialisation goes here. */
|
||||
|
||||
dev_info(dev, "example client created\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __devexit example_remove(struct i2c_client *client)
|
||||
{
|
||||
struct example_state *state = i2c_get_clientdata(client);
|
||||
|
||||
kfree(state);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct i2c_device_id example_idtable[] = {
|
||||
{ "example", 0 },
|
||||
{ }
|
||||
};
|
||||
|
||||
MODULE_DEVICE_TABLE(i2c, example_idtable);
|
||||
|
||||
static struct i2c_driver example_driver = {
|
||||
.driver = {
|
||||
.owner = THIS_MODULE,
|
||||
.name = "example",
|
||||
},
|
||||
.id_table = example_idtable,
|
||||
.probe = example_probe,
|
||||
.remove = __devexit_p(example_remove),
|
||||
.suspend = example_suspend,
|
||||
.resume = example_resume,
|
||||
};
|
8
Documentation/ia64/Makefile
Normal file
8
Documentation/ia64/Makefile
Normal file
@ -0,0 +1,8 @@
|
||||
# kbuild trick to avoid linker error. Can be omitted if a module is built.
|
||||
obj- := dummy.o
|
||||
|
||||
# List of programs to build
|
||||
hostprogs-y := aliasing-test
|
||||
|
||||
# Tell kbuild to always build the programs
|
||||
always := $(hostprogs-y)
|
@ -50,9 +50,9 @@ Note: For step 2, please make sure that host page size == TARGET_PAGE_SIZE of qe
|
||||
/usr/local/bin/qemu-system-ia64 -smp xx -m 512 -hda $your_image
|
||||
(xx is the number of virtual processors for the guest, now the maximum value is 4)
|
||||
|
||||
5. Known possibile issue on some platforms with old Firmware.
|
||||
5. Known possible issue on some platforms with old Firmware.
|
||||
|
||||
If meet strange host crashe issues, try to solve it through either of the following ways:
|
||||
In the event of strange host crash issues, try to solve it through either of the following ways:
|
||||
|
||||
(1): Upgrade your Firmware to the latest one.
|
||||
|
||||
@ -65,8 +65,8 @@ index 0b53344..f02b0f7 100644
|
||||
mov ar.pfs = loc1
|
||||
mov rp = loc0
|
||||
;;
|
||||
- srlz.d // seralize restoration of psr.l
|
||||
+ srlz.i // seralize restoration of psr.l
|
||||
- srlz.d // serialize restoration of psr.l
|
||||
+ srlz.i // serialize restoration of psr.l
|
||||
+ ;;
|
||||
br.ret.sptk.many b0
|
||||
END(ia64_pal_call_static)
|
||||
|
@ -31,7 +31,7 @@ The driver works with ALSA drivers simultaneously. For example, the xracer
|
||||
uses joystick as input device and PCM device as sound output in one time.
|
||||
There are no sound or input collisions detected. The source code have
|
||||
comments about them; but I've found the joystick can be initialized
|
||||
separately of ALSA modules. So, you canm use only one joystick driver
|
||||
separately of ALSA modules. So, you can use only one joystick driver
|
||||
without ALSA drivers. The ALSA drivers are not needed to compile or
|
||||
run this driver.
|
||||
|
||||
|
@ -105,7 +105,6 @@ Code Seq# Include File Comments
|
||||
'T' all linux/soundcard.h conflict!
|
||||
'T' all asm-i386/ioctls.h conflict!
|
||||
'U' 00-EF linux/drivers/usb/usb.h
|
||||
'U' F0-FF drivers/usb/auerswald.c
|
||||
'V' all linux/vt.h
|
||||
'W' 00-1F linux/watchdog.h conflict!
|
||||
'W' 00-1F linux/wanrouter.h conflict!
|
||||
|
@ -1,6 +1,6 @@
|
||||
To decode a hex IOCTL code:
|
||||
|
||||
Most architecures use this generic format, but check
|
||||
Most architectures use this generic format, but check
|
||||
include/ARCH/ioctl.h for specifics, e.g. powerpc
|
||||
uses 3 bits to encode read/write and 13 bits for size.
|
||||
|
||||
|
@ -143,7 +143,7 @@ disk and partition statistics are consistent again. Since we still don't
|
||||
keep record of the partition-relative address, an operation is attributed to
|
||||
the partition which contains the first sector of the request after the
|
||||
eventual merges. As requests can be merged across partition, this could lead
|
||||
to some (probably insignificant) innacuracy.
|
||||
to some (probably insignificant) inaccuracy.
|
||||
|
||||
Additional notes
|
||||
----------------
|
||||
|
6
Documentation/isdn/README.mISDN
Normal file
6
Documentation/isdn/README.mISDN
Normal file
@ -0,0 +1,6 @@
|
||||
mISDN is a new modular ISDN driver, in the long term it should replace
|
||||
the old I4L driver architecture for passiv ISDN cards.
|
||||
It was designed to allow a broad range of applications and interfaces
|
||||
but only have the basic function in kernel, the interface to the user
|
||||
space is based on sockets with a own address family AF_ISDN.
|
||||
|
@ -65,26 +65,26 @@ Install kexec-tools
|
||||
|
||||
2) Download the kexec-tools user-space package from the following URL:
|
||||
|
||||
http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/kexec-tools-testing.tar.gz
|
||||
http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/kexec-tools.tar.gz
|
||||
|
||||
This is a symlink to the latest version, which at the time of writing is
|
||||
20061214, the only release of kexec-tools-testing so far. As other versions
|
||||
are released, the older ones will remain available at
|
||||
http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/
|
||||
This is a symlink to the latest version.
|
||||
|
||||
Note: Latest kexec-tools-testing git tree is available at
|
||||
The latest kexec-tools git tree is available at:
|
||||
|
||||
git://git.kernel.org/pub/scm/linux/kernel/git/horms/kexec-tools-testing.git
|
||||
git://git.kernel.org/pub/scm/linux/kernel/git/horms/kexec-tools.git
|
||||
or
|
||||
http://www.kernel.org/git/?p=linux/kernel/git/horms/kexec-tools-testing.git;a=summary
|
||||
http://www.kernel.org/git/?p=linux/kernel/git/horms/kexec-tools.git
|
||||
|
||||
More information about kexec-tools can be found at
|
||||
http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/README.html
|
||||
|
||||
3) Unpack the tarball with the tar command, as follows:
|
||||
|
||||
tar xvpzf kexec-tools-testing.tar.gz
|
||||
tar xvpzf kexec-tools.tar.gz
|
||||
|
||||
4) Change to the kexec-tools directory, as follows:
|
||||
|
||||
cd kexec-tools-testing-VERSION
|
||||
cd kexec-tools-VERSION
|
||||
|
||||
5) Configure the package, as follows:
|
||||
|
||||
|
@ -87,7 +87,8 @@ parameter is applicable:
|
||||
SH SuperH architecture is enabled.
|
||||
SMP The kernel is an SMP kernel.
|
||||
SPARC Sparc architecture is enabled.
|
||||
SWSUSP Software suspend is enabled.
|
||||
SWSUSP Software suspend (hibernation) is enabled.
|
||||
SUSPEND System suspend states are enabled.
|
||||
TS Appropriate touchscreen support is enabled.
|
||||
USB USB support is enabled.
|
||||
USBHID USB Human Interface Device support is enabled.
|
||||
@ -147,10 +148,12 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
default: 0
|
||||
|
||||
acpi_sleep= [HW,ACPI] Sleep options
|
||||
Format: { s3_bios, s3_mode, s3_beep, old_ordering }
|
||||
Format: { s3_bios, s3_mode, s3_beep, s4_nohwsig, old_ordering }
|
||||
See Documentation/power/video.txt for s3_bios and s3_mode.
|
||||
s3_beep is for debugging; it makes the PC's speaker beep
|
||||
as soon as the kernel's real-mode entry point is called.
|
||||
s4_nohwsig prevents ACPI hardware signature from being
|
||||
used during resume from hibernation.
|
||||
old_ordering causes the ACPI 1.0 ordering of the _PTS
|
||||
control method, wrt putting devices into low power
|
||||
states, to be enforced (the ACPI 2.0 ordering of _PTS is
|
||||
@ -774,8 +777,22 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
hisax= [HW,ISDN]
|
||||
See Documentation/isdn/README.HiSax.
|
||||
|
||||
hugepages= [HW,X86-32,IA-64] Maximal number of HugeTLB pages.
|
||||
hugepagesz= [HW,IA-64,PPC] The size of the HugeTLB pages.
|
||||
hugepages= [HW,X86-32,IA-64] HugeTLB pages to allocate at boot.
|
||||
hugepagesz= [HW,IA-64,PPC,X86-64] The size of the HugeTLB pages.
|
||||
On x86-64 and powerpc, this option can be specified
|
||||
multiple times interleaved with hugepages= to reserve
|
||||
huge pages of different sizes. Valid pages sizes on
|
||||
x86-64 are 2M (when the CPU supports "pse") and 1G
|
||||
(when the CPU supports the "pdpe1gb" cpuinfo flag)
|
||||
Note that 1GB pages can only be allocated at boot time
|
||||
using hugepages= and not freed afterwards.
|
||||
default_hugepagesz=
|
||||
[same as hugepagesz=] The size of the default
|
||||
HugeTLB page size. This is the size represented by
|
||||
the legacy /proc/ hugepages APIs, used for SHM, and
|
||||
default size when mounting hugetlbfs filesystems.
|
||||
Defaults to the default architecture's huge page size
|
||||
if not specified.
|
||||
|
||||
i8042.direct [HW] Put keyboard port into non-translated mode
|
||||
i8042.dumbkbd [HW] Pretend that controller can only read data from
|
||||
@ -1225,6 +1242,14 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
|
||||
mga= [HW,DRM]
|
||||
|
||||
mminit_loglevel=
|
||||
[KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
|
||||
parameter allows control of the logging verbosity for
|
||||
the additional memory initialisation checks. A value
|
||||
of 0 disables mminit logging and a level of 4 will
|
||||
log everything. Information is printed at KERN_DEBUG
|
||||
so loglevel=8 may also need to be specified.
|
||||
|
||||
mousedev.tap_time=
|
||||
[MOUSE] Maximum time between finger touching and
|
||||
leaving touchpad surface for touch to be considered
|
||||
@ -1395,6 +1420,12 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
|
||||
nolapic_timer [X86-32,APIC] Do not use the local APIC timer.
|
||||
|
||||
nox2apic [X86-64,APIC] Do not enable x2APIC mode.
|
||||
|
||||
x2apic_phys [X86-64,APIC] Use x2apic physical mode instead of
|
||||
default x2apic cluster mode on platforms
|
||||
supporting x2apic.
|
||||
|
||||
noltlbs [PPC] Do not use large page/tlb entries for kernel
|
||||
lowmem mapping on PPC40x.
|
||||
|
||||
@ -2101,6 +2132,12 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
|
||||
tdfx= [HW,DRM]
|
||||
|
||||
test_suspend= [SUSPEND]
|
||||
Specify "mem" (for Suspend-to-RAM) or "standby" (for
|
||||
standby suspend) as the system sleep state to briefly
|
||||
enter during system startup. The system is woken from
|
||||
this state using a wakeup-capable RTC alarm.
|
||||
|
||||
thash_entries= [KNL,NET]
|
||||
Set number of hash buckets for TCP connection
|
||||
|
||||
@ -2128,13 +2165,6 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
<deci-seconds>: poll all this frequency
|
||||
0: no polling (default)
|
||||
|
||||
tipar.timeout= [HW,PPT]
|
||||
Set communications timeout in tenths of a second
|
||||
(default 15).
|
||||
|
||||
tipar.delay= [HW,PPT]
|
||||
Set inter-bit delay in microseconds (default 10).
|
||||
|
||||
tmscsim= [HW,SCSI]
|
||||
See comment before function dc390_setup() in
|
||||
drivers/scsi/tmscsim.c.
|
||||
|
@ -864,7 +864,7 @@ payload contents" for more information.
|
||||
request_key_with_auxdata() respectively.
|
||||
|
||||
These two functions return with the key potentially still under
|
||||
construction. To wait for contruction completion, the following should be
|
||||
construction. To wait for construction completion, the following should be
|
||||
called:
|
||||
|
||||
int wait_for_key_construction(struct key *key, bool intr);
|
||||
|
@ -1,7 +1,7 @@
|
||||
ThinkPad ACPI Extras Driver
|
||||
|
||||
Version 0.20
|
||||
April 09th, 2008
|
||||
Version 0.21
|
||||
May 29th, 2008
|
||||
|
||||
Borislav Deianov <borislav@users.sf.net>
|
||||
Henrique de Moraes Holschuh <hmh@hmh.eng.br>
|
||||
@ -621,7 +621,8 @@ Bluetooth
|
||||
---------
|
||||
|
||||
procfs: /proc/acpi/ibm/bluetooth
|
||||
sysfs device attribute: bluetooth_enable
|
||||
sysfs device attribute: bluetooth_enable (deprecated)
|
||||
sysfs rfkill class: switch "tpacpi_bluetooth_sw"
|
||||
|
||||
This feature shows the presence and current state of a ThinkPad
|
||||
Bluetooth device in the internal ThinkPad CDC slot.
|
||||
@ -643,8 +644,12 @@ Sysfs notes:
|
||||
0: disables Bluetooth / Bluetooth is disabled
|
||||
1: enables Bluetooth / Bluetooth is enabled.
|
||||
|
||||
Note: this interface will be probably be superseded by the
|
||||
generic rfkill class, so it is NOT to be considered stable yet.
|
||||
Note: this interface has been superseded by the generic rfkill
|
||||
class. It has been deprecated, and it will be removed in year
|
||||
2010.
|
||||
|
||||
rfkill controller switch "tpacpi_bluetooth_sw": refer to
|
||||
Documentation/rfkill.txt for details.
|
||||
|
||||
Video output control -- /proc/acpi/ibm/video
|
||||
--------------------------------------------
|
||||
@ -1374,7 +1379,8 @@ EXPERIMENTAL: WAN
|
||||
-----------------
|
||||
|
||||
procfs: /proc/acpi/ibm/wan
|
||||
sysfs device attribute: wwan_enable
|
||||
sysfs device attribute: wwan_enable (deprecated)
|
||||
sysfs rfkill class: switch "tpacpi_wwan_sw"
|
||||
|
||||
This feature is marked EXPERIMENTAL because the implementation
|
||||
directly accesses hardware registers and may not work as expected. USE
|
||||
@ -1404,8 +1410,12 @@ Sysfs notes:
|
||||
0: disables WWAN card / WWAN card is disabled
|
||||
1: enables WWAN card / WWAN card is enabled.
|
||||
|
||||
Note: this interface will be probably be superseded by the
|
||||
generic rfkill class, so it is NOT to be considered stable yet.
|
||||
Note: this interface has been superseded by the generic rfkill
|
||||
class. It has been deprecated, and it will be removed in year
|
||||
2010.
|
||||
|
||||
rfkill controller switch "tpacpi_wwan_sw": refer to
|
||||
Documentation/rfkill.txt for details.
|
||||
|
||||
Multiple Commands, Module Parameters
|
||||
------------------------------------
|
||||
|
@ -59,7 +59,7 @@ Hardware accelerated blink of LEDs
|
||||
|
||||
Some LEDs can be programmed to blink without any CPU interaction. To
|
||||
support this feature, a LED driver can optionally implement the
|
||||
blink_set() function (see <linux/leds.h>). If implemeted, triggers can
|
||||
blink_set() function (see <linux/leds.h>). If implemented, triggers can
|
||||
attempt to use it before falling back to software timers. The blink_set()
|
||||
function should return 0 if the blink setting is supported, or -EINVAL
|
||||
otherwise, which means that LED blinking will be handled by software.
|
||||
|
@ -36,11 +36,13 @@
|
||||
#include <sched.h>
|
||||
#include <limits.h>
|
||||
#include <stddef.h>
|
||||
#include <signal.h>
|
||||
#include "linux/lguest_launcher.h"
|
||||
#include "linux/virtio_config.h"
|
||||
#include "linux/virtio_net.h"
|
||||
#include "linux/virtio_blk.h"
|
||||
#include "linux/virtio_console.h"
|
||||
#include "linux/virtio_rng.h"
|
||||
#include "linux/virtio_ring.h"
|
||||
#include "asm-x86/bootparam.h"
|
||||
/*L:110 We can ignore the 39 include files we need for this program, but I do
|
||||
@ -64,8 +66,8 @@ typedef uint8_t u8;
|
||||
#endif
|
||||
/* We can have up to 256 pages for devices. */
|
||||
#define DEVICE_PAGES 256
|
||||
/* This will occupy 2 pages: it must be a power of 2. */
|
||||
#define VIRTQUEUE_NUM 128
|
||||
/* This will occupy 3 pages: it must be a power of 2. */
|
||||
#define VIRTQUEUE_NUM 256
|
||||
|
||||
/*L:120 verbose is both a global flag and a macro. The C preprocessor allows
|
||||
* this, and although I wouldn't recommend it, it works quite nicely here. */
|
||||
@ -74,12 +76,19 @@ static bool verbose;
|
||||
do { if (verbose) printf(args); } while(0)
|
||||
/*:*/
|
||||
|
||||
/* The pipe to send commands to the waker process */
|
||||
static int waker_fd;
|
||||
/* File descriptors for the Waker. */
|
||||
struct {
|
||||
int pipe[2];
|
||||
int lguest_fd;
|
||||
} waker_fds;
|
||||
|
||||
/* The pointer to the start of guest memory. */
|
||||
static void *guest_base;
|
||||
/* The maximum guest physical address allowed, and maximum possible. */
|
||||
static unsigned long guest_limit, guest_max;
|
||||
/* The pipe for signal hander to write to. */
|
||||
static int timeoutpipe[2];
|
||||
static unsigned int timeout_usec = 500;
|
||||
|
||||
/* a per-cpu variable indicating whose vcpu is currently running */
|
||||
static unsigned int __thread cpu_id;
|
||||
@ -155,11 +164,14 @@ struct virtqueue
|
||||
/* Last available index we saw. */
|
||||
u16 last_avail_idx;
|
||||
|
||||
/* The routine to call when the Guest pings us. */
|
||||
void (*handle_output)(int fd, struct virtqueue *me);
|
||||
/* The routine to call when the Guest pings us, or timeout. */
|
||||
void (*handle_output)(int fd, struct virtqueue *me, bool timeout);
|
||||
|
||||
/* Outstanding buffers */
|
||||
unsigned int inflight;
|
||||
|
||||
/* Is this blocked awaiting a timer? */
|
||||
bool blocked;
|
||||
};
|
||||
|
||||
/* Remember the arguments to the program so we can "reboot" */
|
||||
@ -190,6 +202,9 @@ static void *_convert(struct iovec *iov, size_t size, size_t align,
|
||||
return iov->iov_base;
|
||||
}
|
||||
|
||||
/* Wrapper for the last available index. Makes it easier to change. */
|
||||
#define lg_last_avail(vq) ((vq)->last_avail_idx)
|
||||
|
||||
/* The virtio configuration space is defined to be little-endian. x86 is
|
||||
* little-endian too, but it's nice to be explicit so we have these helpers. */
|
||||
#define cpu_to_le16(v16) (v16)
|
||||
@ -199,6 +214,33 @@ static void *_convert(struct iovec *iov, size_t size, size_t align,
|
||||
#define le32_to_cpu(v32) (v32)
|
||||
#define le64_to_cpu(v64) (v64)
|
||||
|
||||
/* Is this iovec empty? */
|
||||
static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < num_iov; i++)
|
||||
if (iov[i].iov_len)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Take len bytes from the front of this iovec. */
|
||||
static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < num_iov; i++) {
|
||||
unsigned int used;
|
||||
|
||||
used = iov[i].iov_len < len ? iov[i].iov_len : len;
|
||||
iov[i].iov_base += used;
|
||||
iov[i].iov_len -= used;
|
||||
len -= used;
|
||||
}
|
||||
assert(len == 0);
|
||||
}
|
||||
|
||||
/* The device virtqueue descriptors are followed by feature bitmasks. */
|
||||
static u8 *get_feature_bits(struct device *dev)
|
||||
{
|
||||
@ -254,6 +296,7 @@ static void *map_zeroed_pages(unsigned int num)
|
||||
PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
|
||||
if (addr == MAP_FAILED)
|
||||
err(1, "Mmaping %u pages of /dev/zero", num);
|
||||
close(fd);
|
||||
|
||||
return addr;
|
||||
}
|
||||
@ -540,69 +583,64 @@ static void add_device_fd(int fd)
|
||||
* watch, but handing a file descriptor mask through to the kernel is fairly
|
||||
* icky.
|
||||
*
|
||||
* Instead, we fork off a process which watches the file descriptors and writes
|
||||
* Instead, we clone off a thread which watches the file descriptors and writes
|
||||
* the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
|
||||
* stop running the Guest. This causes the Launcher to return from the
|
||||
* /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
|
||||
* the LHREQ_BREAK and wake us up again.
|
||||
*
|
||||
* This, of course, is merely a different *kind* of icky.
|
||||
*
|
||||
* Given my well-known antipathy to threads, I'd prefer to use processes. But
|
||||
* it's easier to share Guest memory with threads, and trivial to share the
|
||||
* devices.infds as the Launcher changes it.
|
||||
*/
|
||||
static void wake_parent(int pipefd, int lguest_fd)
|
||||
static int waker(void *unused)
|
||||
{
|
||||
/* Add the pipe from the Launcher to the fdset in the device_list, so
|
||||
* we watch it, too. */
|
||||
add_device_fd(pipefd);
|
||||
/* Close the write end of the pipe: only the Launcher has it open. */
|
||||
close(waker_fds.pipe[1]);
|
||||
|
||||
for (;;) {
|
||||
fd_set rfds = devices.infds;
|
||||
unsigned long args[] = { LHREQ_BREAK, 1 };
|
||||
unsigned int maxfd = devices.max_infd;
|
||||
|
||||
/* We also listen to the pipe from the Launcher. */
|
||||
FD_SET(waker_fds.pipe[0], &rfds);
|
||||
if (waker_fds.pipe[0] > maxfd)
|
||||
maxfd = waker_fds.pipe[0];
|
||||
|
||||
/* Wait until input is ready from one of the devices. */
|
||||
select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
|
||||
/* Is it a message from the Launcher? */
|
||||
if (FD_ISSET(pipefd, &rfds)) {
|
||||
int fd;
|
||||
/* If read() returns 0, it means the Launcher has
|
||||
* exited. We silently follow. */
|
||||
if (read(pipefd, &fd, sizeof(fd)) == 0)
|
||||
exit(0);
|
||||
/* Otherwise it's telling us to change what file
|
||||
* descriptors we're to listen to. Positive means
|
||||
* listen to a new one, negative means stop
|
||||
* listening. */
|
||||
if (fd >= 0)
|
||||
FD_SET(fd, &devices.infds);
|
||||
else
|
||||
FD_CLR(-fd - 1, &devices.infds);
|
||||
} else /* Send LHREQ_BREAK command. */
|
||||
pwrite(lguest_fd, args, sizeof(args), cpu_id);
|
||||
select(maxfd+1, &rfds, NULL, NULL, NULL);
|
||||
|
||||
/* Message from Launcher? */
|
||||
if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
|
||||
char c;
|
||||
/* If this fails, then assume Launcher has exited.
|
||||
* Don't do anything on exit: we're just a thread! */
|
||||
if (read(waker_fds.pipe[0], &c, 1) != 1)
|
||||
_exit(0);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Send LHREQ_BREAK command to snap the Launcher out of it. */
|
||||
pwrite(waker_fds.lguest_fd, args, sizeof(args), cpu_id);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* This routine just sets up a pipe to the Waker process. */
|
||||
static int setup_waker(int lguest_fd)
|
||||
static void setup_waker(int lguest_fd)
|
||||
{
|
||||
int pipefd[2], child;
|
||||
/* This pipe is closed when Launcher dies, telling Waker. */
|
||||
if (pipe(waker_fds.pipe) != 0)
|
||||
err(1, "Creating pipe for Waker");
|
||||
|
||||
/* We create a pipe to talk to the Waker, and also so it knows when the
|
||||
* Launcher dies (and closes pipe). */
|
||||
pipe(pipefd);
|
||||
child = fork();
|
||||
if (child == -1)
|
||||
err(1, "forking");
|
||||
/* Waker also needs to know the lguest fd */
|
||||
waker_fds.lguest_fd = lguest_fd;
|
||||
|
||||
if (child == 0) {
|
||||
/* We are the Waker: close the "writing" end of our copy of the
|
||||
* pipe and start waiting for input. */
|
||||
close(pipefd[1]);
|
||||
wake_parent(pipefd[0], lguest_fd);
|
||||
}
|
||||
/* Close the reading end of our copy of the pipe. */
|
||||
close(pipefd[0]);
|
||||
|
||||
/* Here is the fd used to talk to the waker. */
|
||||
return pipefd[1];
|
||||
if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
|
||||
err(1, "Creating Waker");
|
||||
}
|
||||
|
||||
/*
|
||||
@ -661,19 +699,22 @@ static unsigned get_vq_desc(struct virtqueue *vq,
|
||||
unsigned int *out_num, unsigned int *in_num)
|
||||
{
|
||||
unsigned int i, head;
|
||||
u16 last_avail;
|
||||
|
||||
/* Check it isn't doing very strange things with descriptor numbers. */
|
||||
if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
|
||||
last_avail = lg_last_avail(vq);
|
||||
if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
|
||||
errx(1, "Guest moved used index from %u to %u",
|
||||
vq->last_avail_idx, vq->vring.avail->idx);
|
||||
last_avail, vq->vring.avail->idx);
|
||||
|
||||
/* If there's nothing new since last we looked, return invalid. */
|
||||
if (vq->vring.avail->idx == vq->last_avail_idx)
|
||||
if (vq->vring.avail->idx == last_avail)
|
||||
return vq->vring.num;
|
||||
|
||||
/* Grab the next descriptor number they're advertising, and increment
|
||||
* the index we've seen. */
|
||||
head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
|
||||
head = vq->vring.avail->ring[last_avail % vq->vring.num];
|
||||
lg_last_avail(vq)++;
|
||||
|
||||
/* If their number is silly, that's a fatal mistake. */
|
||||
if (head >= vq->vring.num)
|
||||
@ -821,8 +862,8 @@ static bool handle_console_input(int fd, struct device *dev)
|
||||
unsigned long args[] = { LHREQ_BREAK, 0 };
|
||||
/* Close the fd so Waker will know it has to
|
||||
* exit. */
|
||||
close(waker_fd);
|
||||
/* Just in case waker is blocked in BREAK, send
|
||||
close(waker_fds.pipe[1]);
|
||||
/* Just in case Waker is blocked in BREAK, send
|
||||
* unbreak now. */
|
||||
write(fd, args, sizeof(args));
|
||||
exit(2);
|
||||
@ -839,7 +880,7 @@ static bool handle_console_input(int fd, struct device *dev)
|
||||
|
||||
/* Handling output for console is simple: we just get all the output buffers
|
||||
* and write them to stdout. */
|
||||
static void handle_console_output(int fd, struct virtqueue *vq)
|
||||
static void handle_console_output(int fd, struct virtqueue *vq, bool timeout)
|
||||
{
|
||||
unsigned int head, out, in;
|
||||
int len;
|
||||
@ -854,6 +895,21 @@ static void handle_console_output(int fd, struct virtqueue *vq)
|
||||
}
|
||||
}
|
||||
|
||||
static void block_vq(struct virtqueue *vq)
|
||||
{
|
||||
struct itimerval itm;
|
||||
|
||||
vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
|
||||
vq->blocked = true;
|
||||
|
||||
itm.it_interval.tv_sec = 0;
|
||||
itm.it_interval.tv_usec = 0;
|
||||
itm.it_value.tv_sec = 0;
|
||||
itm.it_value.tv_usec = timeout_usec;
|
||||
|
||||
setitimer(ITIMER_REAL, &itm, NULL);
|
||||
}
|
||||
|
||||
/*
|
||||
* The Network
|
||||
*
|
||||
@ -861,22 +917,34 @@ static void handle_console_output(int fd, struct virtqueue *vq)
|
||||
* and write them (ignoring the first element) to this device's file descriptor
|
||||
* (/dev/net/tun).
|
||||
*/
|
||||
static void handle_net_output(int fd, struct virtqueue *vq)
|
||||
static void handle_net_output(int fd, struct virtqueue *vq, bool timeout)
|
||||
{
|
||||
unsigned int head, out, in;
|
||||
unsigned int head, out, in, num = 0;
|
||||
int len;
|
||||
struct iovec iov[vq->vring.num];
|
||||
static int last_timeout_num;
|
||||
|
||||
/* Keep getting output buffers from the Guest until we run out. */
|
||||
while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
|
||||
if (in)
|
||||
errx(1, "Input buffers in output queue?");
|
||||
/* Check header, but otherwise ignore it (we told the Guest we
|
||||
* supported no features, so it shouldn't have anything
|
||||
* interesting). */
|
||||
(void)convert(&iov[0], struct virtio_net_hdr);
|
||||
len = writev(vq->dev->fd, iov+1, out-1);
|
||||
len = writev(vq->dev->fd, iov, out);
|
||||
if (len < 0)
|
||||
err(1, "Writing network packet to tun");
|
||||
add_used_and_trigger(fd, vq, head, len);
|
||||
num++;
|
||||
}
|
||||
|
||||
/* Block further kicks and set up a timer if we saw anything. */
|
||||
if (!timeout && num)
|
||||
block_vq(vq);
|
||||
|
||||
if (timeout) {
|
||||
if (num < last_timeout_num)
|
||||
timeout_usec += 10;
|
||||
else if (timeout_usec > 1)
|
||||
timeout_usec--;
|
||||
last_timeout_num = num;
|
||||
}
|
||||
}
|
||||
|
||||
@ -887,7 +955,6 @@ static bool handle_tun_input(int fd, struct device *dev)
|
||||
unsigned int head, in_num, out_num;
|
||||
int len;
|
||||
struct iovec iov[dev->vq->vring.num];
|
||||
struct virtio_net_hdr *hdr;
|
||||
|
||||
/* First we need a network buffer from the Guests's recv virtqueue. */
|
||||
head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
|
||||
@ -896,25 +963,23 @@ static bool handle_tun_input(int fd, struct device *dev)
|
||||
* early, the Guest won't be ready yet. Wait until the device
|
||||
* status says it's ready. */
|
||||
/* FIXME: Actually want DRIVER_ACTIVE here. */
|
||||
if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
|
||||
warn("network: no dma buffer!");
|
||||
|
||||
/* Now tell it we want to know if new things appear. */
|
||||
dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
|
||||
wmb();
|
||||
|
||||
/* We'll turn this back on if input buffers are registered. */
|
||||
return false;
|
||||
} else if (out_num)
|
||||
errx(1, "Output buffers in network recv queue?");
|
||||
|
||||
/* First element is the header: we set it to 0 (no features). */
|
||||
hdr = convert(&iov[0], struct virtio_net_hdr);
|
||||
hdr->flags = 0;
|
||||
hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
|
||||
|
||||
/* Read the packet from the device directly into the Guest's buffer. */
|
||||
len = readv(dev->fd, iov+1, in_num-1);
|
||||
len = readv(dev->fd, iov, in_num);
|
||||
if (len <= 0)
|
||||
err(1, "reading network");
|
||||
|
||||
/* Tell the Guest about the new packet. */
|
||||
add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
|
||||
add_used_and_trigger(fd, dev->vq, head, len);
|
||||
|
||||
verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
|
||||
((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
|
||||
@ -927,11 +992,18 @@ static bool handle_tun_input(int fd, struct device *dev)
|
||||
/*L:215 This is the callback attached to the network and console input
|
||||
* virtqueues: it ensures we try again, in case we stopped console or net
|
||||
* delivery because Guest didn't have any buffers. */
|
||||
static void enable_fd(int fd, struct virtqueue *vq)
|
||||
static void enable_fd(int fd, struct virtqueue *vq, bool timeout)
|
||||
{
|
||||
add_device_fd(vq->dev->fd);
|
||||
/* Tell waker to listen to it again */
|
||||
write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
|
||||
/* Snap the Waker out of its select loop. */
|
||||
write(waker_fds.pipe[1], "", 1);
|
||||
}
|
||||
|
||||
static void net_enable_fd(int fd, struct virtqueue *vq, bool timeout)
|
||||
{
|
||||
/* We don't need to know again when Guest refills receive buffer. */
|
||||
vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
|
||||
enable_fd(fd, vq, timeout);
|
||||
}
|
||||
|
||||
/* When the Guest tells us they updated the status field, we handle it. */
|
||||
@ -951,7 +1023,7 @@ static void update_device_status(struct device *dev)
|
||||
for (vq = dev->vq; vq; vq = vq->next) {
|
||||
memset(vq->vring.desc, 0,
|
||||
vring_size(vq->config.num, getpagesize()));
|
||||
vq->last_avail_idx = 0;
|
||||
lg_last_avail(vq) = 0;
|
||||
}
|
||||
} else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
|
||||
warnx("Device %s configuration FAILED", dev->name);
|
||||
@ -960,10 +1032,10 @@ static void update_device_status(struct device *dev)
|
||||
|
||||
verbose("Device %s OK: offered", dev->name);
|
||||
for (i = 0; i < dev->desc->feature_len; i++)
|
||||
verbose(" %08x", get_feature_bits(dev)[i]);
|
||||
verbose(" %02x", get_feature_bits(dev)[i]);
|
||||
verbose(", accepted");
|
||||
for (i = 0; i < dev->desc->feature_len; i++)
|
||||
verbose(" %08x", get_feature_bits(dev)
|
||||
verbose(" %02x", get_feature_bits(dev)
|
||||
[dev->desc->feature_len+i]);
|
||||
|
||||
if (dev->ready)
|
||||
@ -1000,7 +1072,7 @@ static void handle_output(int fd, unsigned long addr)
|
||||
if (strcmp(vq->dev->name, "console") != 0)
|
||||
verbose("Output to %s\n", vq->dev->name);
|
||||
if (vq->handle_output)
|
||||
vq->handle_output(fd, vq);
|
||||
vq->handle_output(fd, vq, false);
|
||||
return;
|
||||
}
|
||||
}
|
||||
@ -1014,6 +1086,29 @@ static void handle_output(int fd, unsigned long addr)
|
||||
strnlen(from_guest_phys(addr), guest_limit - addr));
|
||||
}
|
||||
|
||||
static void handle_timeout(int fd)
|
||||
{
|
||||
char buf[32];
|
||||
struct device *i;
|
||||
struct virtqueue *vq;
|
||||
|
||||
/* Clear the pipe */
|
||||
read(timeoutpipe[0], buf, sizeof(buf));
|
||||
|
||||
/* Check each device and virtqueue: flush blocked ones. */
|
||||
for (i = devices.dev; i; i = i->next) {
|
||||
for (vq = i->vq; vq; vq = vq->next) {
|
||||
if (!vq->blocked)
|
||||
continue;
|
||||
|
||||
vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
|
||||
vq->blocked = false;
|
||||
if (vq->handle_output)
|
||||
vq->handle_output(fd, vq, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* This is called when the Waker wakes us up: check for incoming file
|
||||
* descriptors. */
|
||||
static void handle_input(int fd)
|
||||
@ -1024,16 +1119,20 @@ static void handle_input(int fd)
|
||||
for (;;) {
|
||||
struct device *i;
|
||||
fd_set fds = devices.infds;
|
||||
int num;
|
||||
|
||||
num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
|
||||
/* Could get interrupted */
|
||||
if (num < 0)
|
||||
continue;
|
||||
/* If nothing is ready, we're done. */
|
||||
if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
|
||||
if (num == 0)
|
||||
break;
|
||||
|
||||
/* Otherwise, call the device(s) which have readable file
|
||||
* descriptors and a method of handling them. */
|
||||
for (i = devices.dev; i; i = i->next) {
|
||||
if (i->handle_input && FD_ISSET(i->fd, &fds)) {
|
||||
int dev_fd;
|
||||
if (i->handle_input(fd, i))
|
||||
continue;
|
||||
|
||||
@ -1043,13 +1142,12 @@ static void handle_input(int fd)
|
||||
* buffers to deliver into. Console also uses
|
||||
* it when it discovers that stdin is closed. */
|
||||
FD_CLR(i->fd, &devices.infds);
|
||||
/* Tell waker to ignore it too, by sending a
|
||||
* negative fd number (-1, since 0 is a valid
|
||||
* FD number). */
|
||||
dev_fd = -i->fd - 1;
|
||||
write(waker_fd, &dev_fd, sizeof(dev_fd));
|
||||
}
|
||||
}
|
||||
|
||||
/* Is this the timeout fd? */
|
||||
if (FD_ISSET(timeoutpipe[0], &fds))
|
||||
handle_timeout(fd);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1098,7 +1196,7 @@ static struct lguest_device_desc *new_dev_desc(u16 type)
|
||||
/* Each device descriptor is followed by the description of its virtqueues. We
|
||||
* specify how many descriptors the virtqueue is to have. */
|
||||
static void add_virtqueue(struct device *dev, unsigned int num_descs,
|
||||
void (*handle_output)(int fd, struct virtqueue *me))
|
||||
void (*handle_output)(int, struct virtqueue *, bool))
|
||||
{
|
||||
unsigned int pages;
|
||||
struct virtqueue **i, *vq = malloc(sizeof(*vq));
|
||||
@ -1114,6 +1212,7 @@ static void add_virtqueue(struct device *dev, unsigned int num_descs,
|
||||
vq->last_avail_idx = 0;
|
||||
vq->dev = dev;
|
||||
vq->inflight = 0;
|
||||
vq->blocked = false;
|
||||
|
||||
/* Initialize the configuration. */
|
||||
vq->config.num = num_descs;
|
||||
@ -1246,6 +1345,24 @@ static void setup_console(void)
|
||||
}
|
||||
/*:*/
|
||||
|
||||
static void timeout_alarm(int sig)
|
||||
{
|
||||
write(timeoutpipe[1], "", 1);
|
||||
}
|
||||
|
||||
static void setup_timeout(void)
|
||||
{
|
||||
if (pipe(timeoutpipe) != 0)
|
||||
err(1, "Creating timeout pipe");
|
||||
|
||||
if (fcntl(timeoutpipe[1], F_SETFL,
|
||||
fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
|
||||
err(1, "Making timeout pipe nonblocking");
|
||||
|
||||
add_device_fd(timeoutpipe[0]);
|
||||
signal(SIGALRM, timeout_alarm);
|
||||
}
|
||||
|
||||
/*M:010 Inter-guest networking is an interesting area. Simplest is to have a
|
||||
* --sharenet=<name> option which opens or creates a named pipe. This can be
|
||||
* used to send packets to another guest in a 1:1 manner.
|
||||
@ -1264,10 +1381,25 @@ static void setup_console(void)
|
||||
|
||||
static u32 str2ip(const char *ipaddr)
|
||||
{
|
||||
unsigned int byte[4];
|
||||
unsigned int b[4];
|
||||
|
||||
sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
|
||||
return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
|
||||
if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
|
||||
errx(1, "Failed to parse IP address '%s'", ipaddr);
|
||||
return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
|
||||
}
|
||||
|
||||
static void str2mac(const char *macaddr, unsigned char mac[6])
|
||||
{
|
||||
unsigned int m[6];
|
||||
if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
|
||||
&m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
|
||||
errx(1, "Failed to parse mac address '%s'", macaddr);
|
||||
mac[0] = m[0];
|
||||
mac[1] = m[1];
|
||||
mac[2] = m[2];
|
||||
mac[3] = m[3];
|
||||
mac[4] = m[4];
|
||||
mac[5] = m[5];
|
||||
}
|
||||
|
||||
/* This code is "adapted" from libbridge: it attaches the Host end of the
|
||||
@ -1288,6 +1420,7 @@ static void add_to_bridge(int fd, const char *if_name, const char *br_name)
|
||||
errx(1, "interface %s does not exist!", if_name);
|
||||
|
||||
strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
|
||||
ifr.ifr_name[IFNAMSIZ-1] = '\0';
|
||||
ifr.ifr_ifindex = ifidx;
|
||||
if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
|
||||
err(1, "can't add %s to bridge %s", if_name, br_name);
|
||||
@ -1296,64 +1429,75 @@ static void add_to_bridge(int fd, const char *if_name, const char *br_name)
|
||||
/* This sets up the Host end of the network device with an IP address, brings
|
||||
* it up so packets will flow, the copies the MAC address into the hwaddr
|
||||
* pointer. */
|
||||
static void configure_device(int fd, const char *devname, u32 ipaddr,
|
||||
unsigned char hwaddr[6])
|
||||
static void configure_device(int fd, const char *tapif, u32 ipaddr)
|
||||
{
|
||||
struct ifreq ifr;
|
||||
struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
|
||||
|
||||
/* Don't read these incantations. Just cut & paste them like I did! */
|
||||
memset(&ifr, 0, sizeof(ifr));
|
||||
strcpy(ifr.ifr_name, devname);
|
||||
strcpy(ifr.ifr_name, tapif);
|
||||
|
||||
/* Don't read these incantations. Just cut & paste them like I did! */
|
||||
sin->sin_family = AF_INET;
|
||||
sin->sin_addr.s_addr = htonl(ipaddr);
|
||||
if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
|
||||
err(1, "Setting %s interface address", devname);
|
||||
err(1, "Setting %s interface address", tapif);
|
||||
ifr.ifr_flags = IFF_UP;
|
||||
if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
|
||||
err(1, "Bringing interface %s up", devname);
|
||||
|
||||
/* SIOC stands for Socket I/O Control. G means Get (vs S for Set
|
||||
* above). IF means Interface, and HWADDR is hardware address.
|
||||
* Simple! */
|
||||
if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
|
||||
err(1, "getting hw address for %s", devname);
|
||||
memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
|
||||
err(1, "Bringing interface %s up", tapif);
|
||||
}
|
||||
|
||||
/*L:195 Our network is a Host<->Guest network. This can either use bridging or
|
||||
* routing, but the principle is the same: it uses the "tun" device to inject
|
||||
* packets into the Host as if they came in from a normal network card. We
|
||||
* just shunt packets between the Guest and the tun device. */
|
||||
static void setup_tun_net(const char *arg)
|
||||
static int get_tun_device(char tapif[IFNAMSIZ])
|
||||
{
|
||||
struct device *dev;
|
||||
struct ifreq ifr;
|
||||
int netfd, ipfd;
|
||||
u32 ip;
|
||||
const char *br_name = NULL;
|
||||
struct virtio_net_config conf;
|
||||
int netfd;
|
||||
|
||||
/* Start with this zeroed. Messy but sure. */
|
||||
memset(&ifr, 0, sizeof(ifr));
|
||||
|
||||
/* We open the /dev/net/tun device and tell it we want a tap device. A
|
||||
* tap device is like a tun device, only somehow different. To tell
|
||||
* the truth, I completely blundered my way through this code, but it
|
||||
* works now! */
|
||||
netfd = open_or_die("/dev/net/tun", O_RDWR);
|
||||
memset(&ifr, 0, sizeof(ifr));
|
||||
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
|
||||
ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
|
||||
strcpy(ifr.ifr_name, "tap%d");
|
||||
if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
|
||||
err(1, "configuring /dev/net/tun");
|
||||
|
||||
if (ioctl(netfd, TUNSETOFFLOAD,
|
||||
TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
|
||||
err(1, "Could not set features for tun device");
|
||||
|
||||
/* We don't need checksums calculated for packets coming in this
|
||||
* device: trust us! */
|
||||
ioctl(netfd, TUNSETNOCSUM, 1);
|
||||
|
||||
memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
|
||||
return netfd;
|
||||
}
|
||||
|
||||
/*L:195 Our network is a Host<->Guest network. This can either use bridging or
|
||||
* routing, but the principle is the same: it uses the "tun" device to inject
|
||||
* packets into the Host as if they came in from a normal network card. We
|
||||
* just shunt packets between the Guest and the tun device. */
|
||||
static void setup_tun_net(char *arg)
|
||||
{
|
||||
struct device *dev;
|
||||
int netfd, ipfd;
|
||||
u32 ip = INADDR_ANY;
|
||||
bool bridging = false;
|
||||
char tapif[IFNAMSIZ], *p;
|
||||
struct virtio_net_config conf;
|
||||
|
||||
netfd = get_tun_device(tapif);
|
||||
|
||||
/* First we create a new network device. */
|
||||
dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
|
||||
|
||||
/* Network devices need a receive and a send queue, just like
|
||||
* console. */
|
||||
add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
|
||||
add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
|
||||
add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
|
||||
|
||||
/* We need a socket to perform the magic network ioctls to bring up the
|
||||
@ -1364,28 +1508,50 @@ static void setup_tun_net(const char *arg)
|
||||
|
||||
/* If the command line was --tunnet=bridge:<name> do bridging. */
|
||||
if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
|
||||
ip = INADDR_ANY;
|
||||
br_name = arg + strlen(BRIDGE_PFX);
|
||||
add_to_bridge(ipfd, ifr.ifr_name, br_name);
|
||||
} else /* It is an IP address to set up the device with */
|
||||
arg += strlen(BRIDGE_PFX);
|
||||
bridging = true;
|
||||
}
|
||||
|
||||
/* A mac address may follow the bridge name or IP address */
|
||||
p = strchr(arg, ':');
|
||||
if (p) {
|
||||
str2mac(p+1, conf.mac);
|
||||
add_feature(dev, VIRTIO_NET_F_MAC);
|
||||
*p = '\0';
|
||||
}
|
||||
|
||||
/* arg is now either an IP address or a bridge name */
|
||||
if (bridging)
|
||||
add_to_bridge(ipfd, tapif, arg);
|
||||
else
|
||||
ip = str2ip(arg);
|
||||
|
||||
/* Set up the tun device, and get the mac address for the interface. */
|
||||
configure_device(ipfd, ifr.ifr_name, ip, conf.mac);
|
||||
/* Set up the tun device. */
|
||||
configure_device(ipfd, tapif, ip);
|
||||
|
||||
/* Tell Guest what MAC address to use. */
|
||||
add_feature(dev, VIRTIO_NET_F_MAC);
|
||||
add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
|
||||
/* Expect Guest to handle everything except UFO */
|
||||
add_feature(dev, VIRTIO_NET_F_CSUM);
|
||||
add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
|
||||
add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
|
||||
add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
|
||||
add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
|
||||
add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
|
||||
add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
|
||||
add_feature(dev, VIRTIO_NET_F_HOST_ECN);
|
||||
set_config(dev, sizeof(conf), &conf);
|
||||
|
||||
/* We don't need the socket any more; setup is done. */
|
||||
close(ipfd);
|
||||
|
||||
verbose("device %u: tun net %u.%u.%u.%u\n",
|
||||
devices.device_num++,
|
||||
(u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
|
||||
if (br_name)
|
||||
verbose("attached to bridge: %s\n", br_name);
|
||||
devices.device_num++;
|
||||
|
||||
if (bridging)
|
||||
verbose("device %u: tun %s attached to bridge: %s\n",
|
||||
devices.device_num, tapif, arg);
|
||||
else
|
||||
verbose("device %u: tun %s: %s\n",
|
||||
devices.device_num, tapif, arg);
|
||||
}
|
||||
|
||||
/* Our block (disk) device should be really simple: the Guest asks for a block
|
||||
@ -1550,7 +1716,7 @@ static bool handle_io_finish(int fd, struct device *dev)
|
||||
}
|
||||
|
||||
/* When the Guest submits some I/O, we just need to wake the I/O thread. */
|
||||
static void handle_virtblk_output(int fd, struct virtqueue *vq)
|
||||
static void handle_virtblk_output(int fd, struct virtqueue *vq, bool timeout)
|
||||
{
|
||||
struct vblk_info *vblk = vq->dev->priv;
|
||||
char c = 0;
|
||||
@ -1621,6 +1787,64 @@ static void setup_block_file(const char *filename)
|
||||
verbose("device %u: virtblock %llu sectors\n",
|
||||
devices.device_num, le64_to_cpu(conf.capacity));
|
||||
}
|
||||
|
||||
/* Our random number generator device reads from /dev/random into the Guest's
|
||||
* input buffers. The usual case is that the Guest doesn't want random numbers
|
||||
* and so has no buffers although /dev/random is still readable, whereas
|
||||
* console is the reverse.
|
||||
*
|
||||
* The same logic applies, however. */
|
||||
static bool handle_rng_input(int fd, struct device *dev)
|
||||
{
|
||||
int len;
|
||||
unsigned int head, in_num, out_num, totlen = 0;
|
||||
struct iovec iov[dev->vq->vring.num];
|
||||
|
||||
/* First we need a buffer from the Guests's virtqueue. */
|
||||
head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
|
||||
|
||||
/* If they're not ready for input, stop listening to this file
|
||||
* descriptor. We'll start again once they add an input buffer. */
|
||||
if (head == dev->vq->vring.num)
|
||||
return false;
|
||||
|
||||
if (out_num)
|
||||
errx(1, "Output buffers in rng?");
|
||||
|
||||
/* This is why we convert to iovecs: the readv() call uses them, and so
|
||||
* it reads straight into the Guest's buffer. We loop to make sure we
|
||||
* fill it. */
|
||||
while (!iov_empty(iov, in_num)) {
|
||||
len = readv(dev->fd, iov, in_num);
|
||||
if (len <= 0)
|
||||
err(1, "Read from /dev/random gave %i", len);
|
||||
iov_consume(iov, in_num, len);
|
||||
totlen += len;
|
||||
}
|
||||
|
||||
/* Tell the Guest about the new input. */
|
||||
add_used_and_trigger(fd, dev->vq, head, totlen);
|
||||
|
||||
/* Everything went OK! */
|
||||
return true;
|
||||
}
|
||||
|
||||
/* And this creates a "hardware" random number device for the Guest. */
|
||||
static void setup_rng(void)
|
||||
{
|
||||
struct device *dev;
|
||||
int fd;
|
||||
|
||||
fd = open_or_die("/dev/random", O_RDONLY);
|
||||
|
||||
/* The device responds to return from I/O thread. */
|
||||
dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
|
||||
|
||||
/* The device has one virtqueue, where the Guest places inbufs. */
|
||||
add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
|
||||
|
||||
verbose("device %u: rng\n", devices.device_num++);
|
||||
}
|
||||
/* That's the end of device setup. */
|
||||
|
||||
/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
|
||||
@ -1628,11 +1852,12 @@ static void __attribute__((noreturn)) restart_guest(void)
|
||||
{
|
||||
unsigned int i;
|
||||
|
||||
/* Closing pipes causes the Waker thread and io_threads to die, and
|
||||
* closing /dev/lguest cleans up the Guest. Since we don't track all
|
||||
* open fds, we simply close everything beyond stderr. */
|
||||
/* Since we don't track all open fds, we simply close everything beyond
|
||||
* stderr. */
|
||||
for (i = 3; i < FD_SETSIZE; i++)
|
||||
close(i);
|
||||
|
||||
/* The exec automatically gets rid of the I/O and Waker threads. */
|
||||
execv(main_args[0], main_args);
|
||||
err(1, "Could not exec %s", main_args[0]);
|
||||
}
|
||||
@ -1663,7 +1888,7 @@ static void __attribute__((noreturn)) run_guest(int lguest_fd)
|
||||
/* ERESTART means that we need to reboot the guest */
|
||||
} else if (errno == ERESTART) {
|
||||
restart_guest();
|
||||
/* EAGAIN means the Waker wanted us to look at some input.
|
||||
/* EAGAIN means a signal (timeout).
|
||||
* Anything else means a bug or incompatible change. */
|
||||
} else if (errno != EAGAIN)
|
||||
err(1, "Running guest failed");
|
||||
@ -1691,13 +1916,14 @@ static struct option opts[] = {
|
||||
{ "verbose", 0, NULL, 'v' },
|
||||
{ "tunnet", 1, NULL, 't' },
|
||||
{ "block", 1, NULL, 'b' },
|
||||
{ "rng", 0, NULL, 'r' },
|
||||
{ "initrd", 1, NULL, 'i' },
|
||||
{ NULL },
|
||||
};
|
||||
static void usage(void)
|
||||
{
|
||||
errx(1, "Usage: lguest [--verbose] "
|
||||
"[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
|
||||
"[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
|
||||
"|--block=<filename>|--initrd=<filename>]...\n"
|
||||
"<mem-in-mb> vmlinux [args...]");
|
||||
}
|
||||
@ -1765,6 +1991,9 @@ int main(int argc, char *argv[])
|
||||
case 'b':
|
||||
setup_block_file(optarg);
|
||||
break;
|
||||
case 'r':
|
||||
setup_rng();
|
||||
break;
|
||||
case 'i':
|
||||
initrd_name = optarg;
|
||||
break;
|
||||
@ -1783,6 +2012,9 @@ int main(int argc, char *argv[])
|
||||
/* We always have a console device */
|
||||
setup_console();
|
||||
|
||||
/* We can timeout waiting for Guest network transmit. */
|
||||
setup_timeout();
|
||||
|
||||
/* Now we load the kernel */
|
||||
start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
|
||||
|
||||
@ -1826,10 +2058,10 @@ int main(int argc, char *argv[])
|
||||
* /dev/lguest file descriptor. */
|
||||
lguest_fd = tell_kernel(pgdir, start);
|
||||
|
||||
/* We fork off a child process, which wakes the Launcher whenever one
|
||||
* of the input file descriptors needs attention. We call this the
|
||||
* Waker, and we'll cover it in a moment. */
|
||||
waker_fd = setup_waker(lguest_fd);
|
||||
/* We clone off a thread, which wakes the Launcher whenever one of the
|
||||
* input file descriptors needs attention. We call this the Waker, and
|
||||
* we'll cover it in a moment. */
|
||||
setup_waker(lguest_fd);
|
||||
|
||||
/* Finally, run the Guest. This doesn't return. */
|
||||
run_guest(lguest_fd);
|
||||
|
@ -36,7 +36,7 @@ It can be done by slightly modifying the standard atomic operations : only
|
||||
their UP variant must be kept. It typically means removing LOCK prefix (on
|
||||
i386 and x86_64) and any SMP sychronization barrier. If the architecture does
|
||||
not have a different behavior between SMP and UP, including asm-generic/local.h
|
||||
in your archtecture's local.h is sufficient.
|
||||
in your architecture's local.h is sufficient.
|
||||
|
||||
The local_t type is defined as an opaque signed long by embedding an
|
||||
atomic_long_t inside a structure. This is made so a cast from this type to a
|
||||
|
@ -1,14 +1,22 @@
|
||||
=============================================================================
|
||||
MOXA Smartio/Industio Family Device Driver Installation Guide
|
||||
for Linux Kernel 2.4.x, 2.6.x
|
||||
Copyright (C) 2008, Moxa Inc.
|
||||
=============================================================================
|
||||
Date: 01/21/2008
|
||||
|
||||
MOXA Smartio Family Device Driver Ver 1.1 Installation Guide
|
||||
for Linux Kernel 2.2.x and 2.0.3x
|
||||
Copyright (C) 1999, Moxa Technologies Co, Ltd.
|
||||
=============================================================================
|
||||
Content
|
||||
|
||||
1. Introduction
|
||||
2. System Requirement
|
||||
3. Installation
|
||||
3.1 Hardware installation
|
||||
3.2 Driver files
|
||||
3.3 Device naming convention
|
||||
3.4 Module driver configuration
|
||||
3.5 Static driver configuration for Linux kernel 2.4.x and 2.6.x.
|
||||
3.6 Custom configuration
|
||||
3.7 Verify driver installation
|
||||
4. Utilities
|
||||
5. Setserial
|
||||
6. Troubleshooting
|
||||
@ -16,27 +24,48 @@ Content
|
||||
-----------------------------------------------------------------------------
|
||||
1. Introduction
|
||||
|
||||
The Smartio family Linux driver, Ver. 1.1, supports following multiport
|
||||
The Smartio/Industio/UPCI family Linux driver supports following multiport
|
||||
boards.
|
||||
|
||||
-C104P/H/HS, C104H/PCI, C104HS/PCI, CI-104J 4 port multiport board.
|
||||
-C168P/H/HS, C168H/PCI 8 port multiport board.
|
||||
- 2 ports multiport board
|
||||
CP-102U, CP-102UL, CP-102UF
|
||||
CP-132U-I, CP-132UL,
|
||||
CP-132, CP-132I, CP132S, CP-132IS,
|
||||
CI-132, CI-132I, CI-132IS,
|
||||
(C102H, C102HI, C102HIS, C102P, CP-102, CP-102S)
|
||||
|
||||
This driver has been modified a little and cleaned up from the Moxa
|
||||
contributed driver code and merged into Linux 2.2.14pre. In particular
|
||||
official major/minor numbers have been assigned which are different to
|
||||
those the original Moxa supplied driver used.
|
||||
- 4 ports multiport board
|
||||
CP-104EL,
|
||||
CP-104UL, CP-104JU,
|
||||
CP-134U, CP-134U-I,
|
||||
C104H/PCI, C104HS/PCI,
|
||||
CP-114, CP-114I, CP-114S, CP-114IS, CP-114UL,
|
||||
C104H, C104HS,
|
||||
CI-104J, CI-104JS,
|
||||
CI-134, CI-134I, CI-134IS,
|
||||
(C114HI, CT-114I, C104P)
|
||||
POS-104UL,
|
||||
CB-114,
|
||||
CB-134I
|
||||
|
||||
- 8 ports multiport board
|
||||
CP-118EL, CP-168EL,
|
||||
CP-118U, CP-168U,
|
||||
C168H/PCI,
|
||||
C168H, C168HS,
|
||||
(C168P),
|
||||
CB-108
|
||||
|
||||
This driver and installation procedure have been developed upon Linux Kernel
|
||||
2.2.5 and backward compatible to 2.0.3x. This driver supports Intel x86 and
|
||||
Alpha hardware platform. In order to maintain compatibility, this version
|
||||
has also been properly tested with RedHat, OpenLinux, TurboLinux and
|
||||
S.u.S.E Linux. However, if compatibility problem occurs, please contact
|
||||
Moxa at support@moxa.com.tw.
|
||||
2.4.x and 2.6.x. This driver supports Intel x86 hardware platform. In order
|
||||
to maintain compatibility, this version has also been properly tested with
|
||||
RedHat, Mandrake, Fedora and S.u.S.E Linux. However, if compatibility problem
|
||||
occurs, please contact Moxa at support@moxa.com.tw.
|
||||
|
||||
In addition to device driver, useful utilities are also provided in this
|
||||
version. They are
|
||||
- msdiag Diagnostic program for detecting installed Moxa Smartio boards.
|
||||
- msdiag Diagnostic program for displaying installed Moxa
|
||||
Smartio/Industio boards.
|
||||
- msmon Monitor program to observe data count and line status signals.
|
||||
- msterm A simple terminal program which is useful in testing serial
|
||||
ports.
|
||||
@ -47,8 +76,7 @@ Content
|
||||
GNU General Public License in this version. Please refer to GNU General
|
||||
Public License announcement in each source code file for more detail.
|
||||
|
||||
In Moxa's ftp sites, you may always find latest driver at
|
||||
ftp://ftp.moxa.com or ftp://ftp.moxa.com.tw.
|
||||
In Moxa's Web sites, you may always find latest driver at http://web.moxa.com.
|
||||
|
||||
This version of driver can be installed as Loadable Module (Module driver)
|
||||
or built-in into kernel (Static driver). You may refer to following
|
||||
@ -61,8 +89,8 @@ Content
|
||||
|
||||
-----------------------------------------------------------------------------
|
||||
2. System Requirement
|
||||
- Hardware platform: Intel x86 or Alpha machine
|
||||
- Kernel version: 2.0.3x or 2.2.x
|
||||
- Hardware platform: Intel x86 machine
|
||||
- Kernel version: 2.4.x or 2.6.x
|
||||
- gcc version 2.72 or later
|
||||
- Maximum 4 boards can be installed in combination
|
||||
|
||||
@ -70,9 +98,18 @@ Content
|
||||
3. Installation
|
||||
|
||||
3.1 Hardware installation
|
||||
3.2 Driver files
|
||||
3.3 Device naming convention
|
||||
3.4 Module driver configuration
|
||||
3.5 Static driver configuration for Linux kernel 2.4.x, 2.6.x.
|
||||
3.6 Custom configuration
|
||||
3.7 Verify driver installation
|
||||
|
||||
There are two types of buses, ISA and PCI, for Smartio family multiport
|
||||
board.
|
||||
|
||||
3.1 Hardware installation
|
||||
|
||||
There are two types of buses, ISA and PCI, for Smartio/Industio
|
||||
family multiport board.
|
||||
|
||||
ISA board
|
||||
---------
|
||||
@ -81,47 +118,57 @@ Content
|
||||
installation procedure in User's Manual before proceed any further.
|
||||
Please make sure the JP1 is open after the ISA board is set properly.
|
||||
|
||||
PCI board
|
||||
---------
|
||||
PCI/UPCI board
|
||||
--------------
|
||||
You may need to adjust IRQ usage in BIOS to avoid from IRQ conflict
|
||||
with other ISA devices. Please refer to hardware installation
|
||||
procedure in User's Manual in advance.
|
||||
|
||||
IRQ Sharing
|
||||
PCI IRQ Sharing
|
||||
-----------
|
||||
Each port within the same multiport board shares the same IRQ. Up to
|
||||
4 Moxa Smartio Family multiport boards can be installed together on
|
||||
one system and they can share the same IRQ.
|
||||
4 Moxa Smartio/Industio PCI Family multiport boards can be installed
|
||||
together on one system and they can share the same IRQ.
|
||||
|
||||
3.2 Driver files and device naming convention
|
||||
|
||||
3.2 Driver files
|
||||
|
||||
The driver file may be obtained from ftp, CD-ROM or floppy disk. The
|
||||
first step, anyway, is to copy driver file "mxser.tgz" into specified
|
||||
directory. e.g. /moxa. The execute commands as below.
|
||||
|
||||
# cd /
|
||||
# mkdir moxa
|
||||
# cd /moxa
|
||||
# tar xvf /dev/fd0
|
||||
|
||||
or
|
||||
|
||||
# cd /
|
||||
# mkdir moxa
|
||||
# cd /moxa
|
||||
# cp /mnt/cdrom/<driver directory>/mxser.tgz .
|
||||
# tar xvfz mxser.tgz
|
||||
|
||||
|
||||
3.3 Device naming convention
|
||||
|
||||
You may find all the driver and utilities files in /moxa/mxser.
|
||||
Following installation procedure depends on the model you'd like to
|
||||
run the driver. If you prefer module driver, please refer to 3.3.
|
||||
If static driver is required, please refer to 3.4.
|
||||
run the driver. If you prefer module driver, please refer to 3.4.
|
||||
If static driver is required, please refer to 3.5.
|
||||
|
||||
Dialin and callout port
|
||||
-----------------------
|
||||
This driver remains traditional serial device properties. There're
|
||||
This driver remains traditional serial device properties. There are
|
||||
two special file name for each serial port. One is dial-in port
|
||||
which is named "ttyMxx". For callout port, the naming convention
|
||||
is "cumxx".
|
||||
|
||||
Device naming when more than 2 boards installed
|
||||
-----------------------------------------------
|
||||
Naming convention for each Smartio multiport board is pre-defined
|
||||
as below.
|
||||
Naming convention for each Smartio/Industio multiport board is
|
||||
pre-defined as below.
|
||||
|
||||
Board Num. Dial-in Port Callout port
|
||||
1st board ttyM0 - ttyM7 cum0 - cum7
|
||||
@ -129,6 +176,12 @@ Content
|
||||
3rd board ttyM16 - ttyM23 cum16 - cum23
|
||||
4th board ttyM24 - ttym31 cum24 - cum31
|
||||
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
Under Kernel 2.6 the cum Device is Obsolete. So use ttyM*
|
||||
device instead.
|
||||
!!!!!!!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
Board sequence
|
||||
--------------
|
||||
This driver will activate ISA boards according to the parameter set
|
||||
@ -138,69 +191,131 @@ Content
|
||||
For PCI boards, their sequence will be after ISA boards and C168H/PCI
|
||||
has higher priority than C104H/PCI boards.
|
||||
|
||||
3.3 Module driver configuration
|
||||
3.4 Module driver configuration
|
||||
Module driver is easiest way to install. If you prefer static driver
|
||||
installation, please skip this paragraph.
|
||||
1. Find "Makefile" in /moxa/mxser, then run
|
||||
|
||||
# make install
|
||||
|
||||
The driver files "mxser.o" and utilities will be properly compiled
|
||||
and copied to system directories respectively.Then run
|
||||
------------- Prepare to use the MOXA driver--------------------
|
||||
3.4.1 Create tty device with correct major number
|
||||
Before using MOXA driver, your system must have the tty devices
|
||||
which are created with driver's major number. We offer one shell
|
||||
script "msmknod" to simplify the procedure.
|
||||
This step is only needed to be executed once. But you still
|
||||
need to do this procedure when:
|
||||
a. You change the driver's major number. Please refer the "3.7"
|
||||
section.
|
||||
b. Your total installed MOXA boards number is changed. Maybe you
|
||||
add/delete one MOXA board.
|
||||
c. You want to change the tty name. This needs to modify the
|
||||
shell script "msmknod"
|
||||
|
||||
# insmod mxser
|
||||
|
||||
to activate the modular driver. You may run "lsmod" to check
|
||||
if "mxser.o" is activated.
|
||||
|
||||
2. Create special files by executing "msmknod".
|
||||
The procedure is:
|
||||
# cd /moxa/mxser/driver
|
||||
# ./msmknod
|
||||
|
||||
Default major numbers for dial-in device and callout device are
|
||||
174, 175. Msmknod will delete any special files occupying the same
|
||||
device naming.
|
||||
This shell script will require the major number for dial-in
|
||||
device and callout device to create tty device. You also need
|
||||
to specify the total installed MOXA board number. Default major
|
||||
numbers for dial-in device and callout device are 30, 35. If
|
||||
you need to change to other number, please refer section "3.7"
|
||||
for more detailed procedure.
|
||||
Msmknod will delete any special files occupying the same device
|
||||
naming.
|
||||
|
||||
3. Up to now, you may manually execute "insmod mxser" to activate
|
||||
this driver and run "rmmod mxser" to remove it. However, it's
|
||||
better to have a boot time configuration to eliminate manual
|
||||
operation.
|
||||
Boot time configuration can be achieved by rc file. Run following
|
||||
command for setting rc files.
|
||||
3.4.2 Build the MOXA driver and utilities
|
||||
Before using the MOXA driver and utilities, you need compile the
|
||||
all the source code. This step is only need to be executed once.
|
||||
But you still re-compile the source code if you modify the source
|
||||
code. For example, if you change the driver's major number (see
|
||||
"3.7" section), then you need to do this step again.
|
||||
|
||||
Find "Makefile" in /moxa/mxser, then run
|
||||
|
||||
# make clean; make install
|
||||
|
||||
!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!
|
||||
For Red Hat 9, Red Hat Enterprise Linux AS3/ES3/WS3 & Fedora Core1:
|
||||
# make clean; make installsp1
|
||||
|
||||
For Red Hat Enterprise Linux AS4/ES4/WS4:
|
||||
# make clean; make installsp2
|
||||
!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!
|
||||
|
||||
The driver files "mxser.o" and utilities will be properly compiled
|
||||
and copied to system directories respectively.
|
||||
|
||||
------------- Load MOXA driver--------------------
|
||||
3.4.3 Load the MOXA driver
|
||||
|
||||
# modprobe mxser <argument>
|
||||
|
||||
will activate the module driver. You may run "lsmod" to check
|
||||
if "mxser" is activated. If the MOXA board is ISA board, the
|
||||
<argument> is needed. Please refer to section "3.4.5" for more
|
||||
information.
|
||||
|
||||
|
||||
------------- Load MOXA driver on boot --------------------
|
||||
3.4.4 For the above description, you may manually execute
|
||||
"modprobe mxser" to activate this driver and run
|
||||
"rmmod mxser" to remove it.
|
||||
However, it's better to have a boot time configuration to
|
||||
eliminate manual operation. Boot time configuration can be
|
||||
achieved by rc file. We offer one "rc.mxser" file to simplify
|
||||
the procedure under "moxa/mxser/driver".
|
||||
|
||||
But if you use ISA board, please modify the "modprobe ..." command
|
||||
to add the argument (see "3.4.5" section). After modifying the
|
||||
rc.mxser, please try to execute "/moxa/mxser/driver/rc.mxser"
|
||||
manually to make sure the modification is ok. If any error
|
||||
encountered, please try to modify again. If the modification is
|
||||
completed, follow the below step.
|
||||
|
||||
Run following command for setting rc files.
|
||||
|
||||
# cd /moxa/mxser/driver
|
||||
# cp ./rc.mxser /etc/rc.d
|
||||
# cd /etc/rc.d
|
||||
|
||||
You may have to modify part of the content in rc.mxser to specify
|
||||
parameters for ISA board. Please refer to rc.mxser for more detail.
|
||||
Find "rc.serial". If "rc.serial" doesn't exist, create it by vi.
|
||||
Add "rc.mxser" in last line. Next, open rc.local by vi
|
||||
and append following content.
|
||||
Check "rc.serial" is existed or not. If "rc.serial" doesn't exist,
|
||||
create it by vi, run "chmod 755 rc.serial" to change the permission.
|
||||
Add "/etc/rc.d/rc.mxser" in last line,
|
||||
|
||||
if [ -f /etc/rc.d/rc.serial ]; then
|
||||
sh /etc/rc.d/rc.serial
|
||||
fi
|
||||
Reboot and check if moxa.o activated by "lsmod" command.
|
||||
|
||||
4. Reboot and check if mxser.o activated by "lsmod" command.
|
||||
5. If you'd like to drive Smartio ISA boards in the system, you'll
|
||||
have to add parameter to specify CAP address of given board while
|
||||
activating "mxser.o". The format for parameters are as follows.
|
||||
3.4.5. If you'd like to drive Smartio/Industio ISA boards in the system,
|
||||
you'll have to add parameter to specify CAP address of given
|
||||
board while activating "mxser.o". The format for parameters are
|
||||
as follows.
|
||||
|
||||
insmod mxser ioaddr=0x???,0x???,0x???,0x???
|
||||
modprobe mxser ioaddr=0x???,0x???,0x???,0x???
|
||||
| | | |
|
||||
| | | +- 4th ISA board
|
||||
| | +------ 3rd ISA board
|
||||
| +------------ 2nd ISA board
|
||||
+------------------- 1st ISA board
|
||||
|
||||
3.4 Static driver configuration
|
||||
3.5 Static driver configuration for Linux kernel 2.4.x and 2.6.x
|
||||
|
||||
1. Create link
|
||||
Note: To use static driver, you must install the linux kernel
|
||||
source package.
|
||||
|
||||
3.5.1 Backup the built-in driver in the kernel.
|
||||
# cd /usr/src/linux/drivers/char
|
||||
# mv mxser.c mxser.c.old
|
||||
|
||||
For Red Hat 7.x user, you need to create link:
|
||||
# cd /usr/src
|
||||
# ln -s linux-2.4 linux
|
||||
|
||||
3.5.2 Create link
|
||||
# cd /usr/src/linux/drivers/char
|
||||
# ln -s /moxa/mxser/driver/mxser.c mxser.c
|
||||
|
||||
2. Add CAP address list for ISA boards
|
||||
3.5.3 Add CAP address list for ISA boards. For PCI boards user,
|
||||
please skip this step.
|
||||
|
||||
In module mode, the CAP address for ISA board is given by
|
||||
parameter. In static driver configuration, you'll have to
|
||||
assign it within driver's source code. If you will not
|
||||
@ -222,71 +337,53 @@ Content
|
||||
static int mxserBoardCAP[]
|
||||
= {0x280, 0x180, 0x00, 0x00};
|
||||
|
||||
3. Modify tty_io.c
|
||||
# cd /usr/src/linux/drivers/char/
|
||||
# vi tty_io.c
|
||||
Find pty_init(), insert "mxser_init()" as
|
||||
3.5.4 Setup kernel configuration
|
||||
|
||||
pty_init();
|
||||
mxser_init();
|
||||
Configure the kernel:
|
||||
|
||||
4. Modify tty.h
|
||||
# cd /usr/src/linux/include/linux
|
||||
# vi tty.h
|
||||
Find extern int tty_init(void), insert "mxser_init()" as
|
||||
# cd /usr/src/linux
|
||||
# make menuconfig
|
||||
|
||||
extern int tty_init(void);
|
||||
extern int mxser_init(void);
|
||||
You will go into a menu-driven system. Please select [Character
|
||||
devices][Non-standard serial port support], enable the [Moxa
|
||||
SmartIO support] driver with "[*]" for built-in (not "[M]"), then
|
||||
select [Exit] to exit this program.
|
||||
|
||||
5. Modify Makefile
|
||||
# cd /usr/src/linux/drivers/char
|
||||
# vi Makefile
|
||||
Find L_OBJS := tty_io.o ...... random.o, add
|
||||
"mxser.o" at last of this line as
|
||||
L_OBJS := tty_io.o ....... mxser.o
|
||||
|
||||
6. Rebuild kernel
|
||||
The following are for Linux kernel rebuilding,for your reference only.
|
||||
3.5.5 Rebuild kernel
|
||||
The following are for Linux kernel rebuilding, for your
|
||||
reference only.
|
||||
For appropriate details, please refer to the Linux document.
|
||||
|
||||
If 'lilo' utility is installed, please use 'make zlilo' to rebuild
|
||||
kernel. If 'lilo' is not installed, please follow the following steps.
|
||||
|
||||
a. cd /usr/src/linux
|
||||
b. make clean /* take a few minutes */
|
||||
c. make bzImage /* take probably 10-20 minutes */
|
||||
d. Backup original boot kernel. /* optional step */
|
||||
e. cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz
|
||||
c. make dep /* take a few minutes */
|
||||
d. make bzImage /* take probably 10-20 minutes */
|
||||
e. make install /* copy boot image to correct position */
|
||||
f. Please make sure the boot kernel (vmlinuz) is in the
|
||||
correct position. If you use 'lilo' utility, you should
|
||||
check /etc/lilo.conf 'image' item specified the path
|
||||
which is the 'vmlinuz' path, or you will load wrong
|
||||
(or old) boot kernel image (vmlinuz).
|
||||
g. chmod 400 /vmlinuz
|
||||
h. lilo
|
||||
i. rdev -R /vmlinuz 1
|
||||
j. sync
|
||||
correct position.
|
||||
g. If you use 'lilo' utility, you should check /etc/lilo.conf
|
||||
'image' item specified the path which is the 'vmlinuz' path,
|
||||
or you will load wrong (or old) boot kernel image (vmlinuz).
|
||||
After checking /etc/lilo.conf, please run "lilo".
|
||||
|
||||
Note that if the result of "make zImage" is ERROR, then you have to
|
||||
go back to Linux configuration Setup. Type "make config" in directory
|
||||
/usr/src/linux or "setup".
|
||||
Note that if the result of "make bzImage" is ERROR, then you have to
|
||||
go back to Linux configuration Setup. Type "make menuconfig" in
|
||||
directory /usr/src/linux.
|
||||
|
||||
Since system include file, /usr/src/linux/include/linux/interrupt.h,
|
||||
is modified each time the MOXA driver is installed, kernel rebuilding
|
||||
is inevitable. And it takes about 10 to 20 minutes depends on the
|
||||
machine.
|
||||
|
||||
7. Make utility
|
||||
# cd /moxa/mxser/utility
|
||||
# make install
|
||||
|
||||
8. Make special file
|
||||
3.5.6 Make tty device and special file
|
||||
# cd /moxa/mxser/driver
|
||||
# ./msmknod
|
||||
|
||||
9. Reboot
|
||||
3.5.7 Make utility
|
||||
# cd /moxa/mxser/utility
|
||||
# make clean; make install
|
||||
|
||||
3.5 Custom configuration
|
||||
3.5.8 Reboot
|
||||
|
||||
|
||||
|
||||
3.6 Custom configuration
|
||||
Although this driver already provides you default configuration, you
|
||||
still can change the device name and major number. The instruction to
|
||||
change these parameters are shown as below.
|
||||
@ -306,33 +403,37 @@ Content
|
||||
2 free major numbers for this driver. There are 3 steps to change
|
||||
major numbers.
|
||||
|
||||
1. Find free major numbers
|
||||
3.6.1 Find free major numbers
|
||||
In /proc/devices, you may find all the major numbers occupied
|
||||
in the system. Please select 2 major numbers that are available.
|
||||
e.g. 40, 45.
|
||||
2. Create special files
|
||||
3.6.2 Create special files
|
||||
Run /moxa/mxser/driver/msmknod to create special files with
|
||||
specified major numbers.
|
||||
3. Modify driver with new major number
|
||||
3.6.3 Modify driver with new major number
|
||||
Run vi to open /moxa/mxser/driver/mxser.c. Locate the line
|
||||
contains "MXSERMAJOR". Change the content as below.
|
||||
#define MXSERMAJOR 40
|
||||
#define MXSERCUMAJOR 45
|
||||
4. Run # make install in /moxa/mxser/driver.
|
||||
3.6.4 Run "make clean; make install" in /moxa/mxser/driver.
|
||||
|
||||
3.6 Verify driver installation
|
||||
3.7 Verify driver installation
|
||||
You may refer to /var/log/messages to check the latest status
|
||||
log reported by this driver whenever it's activated.
|
||||
|
||||
-----------------------------------------------------------------------------
|
||||
4. Utilities
|
||||
There are 3 utilities contained in this driver. They are msdiag, msmon and
|
||||
msterm. These 3 utilities are released in form of source code. They should
|
||||
be compiled into executable file and copied into /usr/bin.
|
||||
|
||||
Before using these utilities, please load driver (refer 3.4 & 3.5) and
|
||||
make sure you had run the "msmknod" utility.
|
||||
|
||||
msdiag - Diagnostic
|
||||
--------------------
|
||||
This utility provides the function to detect what Moxa Smartio multiport
|
||||
board exists in the system.
|
||||
This utility provides the function to display what Moxa Smartio/Industio
|
||||
board found by driver in the system.
|
||||
|
||||
msmon - Port Monitoring
|
||||
-----------------------
|
||||
@ -353,6 +454,7 @@ Content
|
||||
application, for example, sending AT command to a modem connected to the
|
||||
port or used as a terminal for login purpose. Note that this is only a
|
||||
dumb terminal emulation without handling full screen operation.
|
||||
|
||||
-----------------------------------------------------------------------------
|
||||
5. Setserial
|
||||
|
||||
@ -366,7 +468,13 @@ Content
|
||||
being closed, before the receiver is disable.
|
||||
spd_hi Use 57.6kb when the application requests 38.4kb.
|
||||
spd_vhi Use 115.2kb when the application requests 38.4kb.
|
||||
spd_shi Use 230.4kb when the application requests 38.4kb.
|
||||
spd_warp Use 460.8kb when the application requests 38.4kb.
|
||||
spd_normal Use 38.4kb when the application requests 38.4kb.
|
||||
spd_cust Use the custom divisor to set the speed when the
|
||||
application requests 38.4kb.
|
||||
divisor This option set the custom divison.
|
||||
baud_base This option set the base baud rate.
|
||||
|
||||
-----------------------------------------------------------------------------
|
||||
6. Troubleshooting
|
||||
@ -375,8 +483,9 @@ Content
|
||||
possible. If all the possible solutions fail, please contact our technical
|
||||
support team to get more help.
|
||||
|
||||
Error msg: More than 4 Moxa Smartio family boards found. Fifth board and
|
||||
after are ignored.
|
||||
|
||||
Error msg: More than 4 Moxa Smartio/Industio family boards found. Fifth board
|
||||
and after are ignored.
|
||||
Solution:
|
||||
To avoid this problem, please unplug fifth and after board, because Moxa
|
||||
driver supports up to 4 boards.
|
||||
@ -397,15 +506,18 @@ Content
|
||||
Moxa ISA board needs an interrupt vector.Please refer to user's manual
|
||||
"Hardware Installation" chapter to set interrupt vector.
|
||||
|
||||
Error msg: Couldn't install MOXA Smartio family driver!
|
||||
Error msg: Couldn't install MOXA Smartio/Industio family driver!
|
||||
Solution:
|
||||
Load Moxa driver fail, the major number may conflict with other devices.
|
||||
Please refer to previous section 3.5 to change a free major number for
|
||||
Please refer to previous section 3.7 to change a free major number for
|
||||
Moxa driver.
|
||||
|
||||
Error msg: Couldn't install MOXA Smartio family callout driver!
|
||||
Error msg: Couldn't install MOXA Smartio/Industio family callout driver!
|
||||
Solution:
|
||||
Load Moxa callout driver fail, the callout device major number may
|
||||
conflict with other devices. Please refer to previous section 3.5 to
|
||||
conflict with other devices. Please refer to previous section 3.7 to
|
||||
change a free callout device major number for Moxa driver.
|
||||
|
||||
|
||||
-----------------------------------------------------------------------------
|
||||
|
||||
|
8
Documentation/networking/Makefile
Normal file
8
Documentation/networking/Makefile
Normal file
@ -0,0 +1,8 @@
|
||||
# kbuild trick to avoid linker error. Can be omitted if a module is built.
|
||||
obj- := dummy.o
|
||||
|
||||
# List of programs to build
|
||||
hostprogs-y := ifenslave
|
||||
|
||||
# Tell kbuild to always build the programs
|
||||
always := $(hostprogs-y)
|
@ -631,7 +631,7 @@ xmit_hash_policy
|
||||
in environments where a layer3 gateway device is
|
||||
required to reach most destinations.
|
||||
|
||||
This algorithm is 802.3ad complient.
|
||||
This algorithm is 802.3ad compliant.
|
||||
|
||||
layer3+4
|
||||
|
||||
|
@ -186,7 +186,7 @@ solution for a couple of reasons:
|
||||
|
||||
The Linux network devices (by default) just can handle the
|
||||
transmission and reception of media dependent frames. Due to the
|
||||
arbritration on the CAN bus the transmission of a low prio CAN-ID
|
||||
arbitration on the CAN bus the transmission of a low prio CAN-ID
|
||||
may be delayed by the reception of a high prio CAN frame. To
|
||||
reflect the correct* traffic on the node the loopback of the sent
|
||||
data has to be performed right after a successful transmission. If
|
||||
@ -481,7 +481,7 @@ solution for a couple of reasons:
|
||||
- stats_timer: To calculate the Socket CAN core statistics
|
||||
(e.g. current/maximum frames per second) this 1 second timer is
|
||||
invoked at can.ko module start time by default. This timer can be
|
||||
disabled by using stattimer=0 on the module comandline.
|
||||
disabled by using stattimer=0 on the module commandline.
|
||||
|
||||
- debug: (removed since SocketCAN SVN r546)
|
||||
|
||||
|
@ -1081,7 +1081,7 @@ static int set_if_addr(char *master_ifname, char *slave_ifname)
|
||||
|
||||
}
|
||||
|
||||
ipaddr = ifr.ifr_addr.sa_data;
|
||||
ipaddr = (unsigned char *)ifr.ifr_addr.sa_data;
|
||||
v_print("Interface '%s': set IP %s to %d.%d.%d.%d\n",
|
||||
slave_ifname, ifra[i].desc,
|
||||
ipaddr[0], ipaddr[1], ipaddr[2], ipaddr[3]);
|
||||
|
@ -326,7 +326,7 @@ just one call to mmap is needed:
|
||||
mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
|
||||
|
||||
If tp_frame_size is a divisor of tp_block_size frames will be
|
||||
contiguosly spaced by tp_frame_size bytes. If not, each
|
||||
contiguously spaced by tp_frame_size bytes. If not, each
|
||||
tp_block_size/tp_frame_size frames there will be a gap between
|
||||
the frames. This is because a frame cannot be spawn across two
|
||||
blocks.
|
||||
|
@ -4,26 +4,27 @@ The "enviromental" rules for authors of any new tc actions are:
|
||||
1) If you stealeth or borroweth any packet thou shalt be branching
|
||||
from the righteous path and thou shalt cloneth.
|
||||
|
||||
For example if your action queues a packet to be processed later
|
||||
or intentionaly branches by redirecting a packet then you need to
|
||||
For example if your action queues a packet to be processed later,
|
||||
or intentionally branches by redirecting a packet, then you need to
|
||||
clone the packet.
|
||||
|
||||
There are certain fields in the skb tc_verd that need to be reset so we
|
||||
avoid loops etc. A few are generic enough so much so that skb_act_clone()
|
||||
resets them for you. So invoke skb_act_clone() rather than skb_clone()
|
||||
avoid loops, etc. A few are generic enough that skb_act_clone()
|
||||
resets them for you, so invoke skb_act_clone() rather than skb_clone().
|
||||
|
||||
2) If you munge any packet thou shalt call pskb_expand_head in the case
|
||||
someone else is referencing the skb. After that you "own" the skb.
|
||||
You must also tell us if it is ok to munge the packet (TC_OK2MUNGE),
|
||||
this way any action downstream can stomp on the packet.
|
||||
|
||||
3) dropping packets you dont own is a nono. You simply return
|
||||
3) Dropping packets you don't own is a no-no. You simply return
|
||||
TC_ACT_SHOT to the caller and they will drop it.
|
||||
|
||||
The "enviromental" rules for callers of actions (qdiscs etc) are:
|
||||
|
||||
*) thou art responsible for freeing anything returned as being
|
||||
*) Thou art responsible for freeing anything returned as being
|
||||
TC_ACT_SHOT/STOLEN/QUEUED. If none of TC_ACT_SHOT/STOLEN/QUEUED is
|
||||
returned then all is great and you dont need to do anything.
|
||||
returned, then all is great and you don't need to do anything.
|
||||
|
||||
Post on netdev if something is unclear.
|
||||
|
||||
|
10
Documentation/pcmcia/Makefile
Normal file
10
Documentation/pcmcia/Makefile
Normal file
@ -0,0 +1,10 @@
|
||||
# kbuild trick to avoid linker error. Can be omitted if a module is built.
|
||||
obj- := dummy.o
|
||||
|
||||
# List of programs to build
|
||||
hostprogs-y := crc32hash
|
||||
|
||||
# Tell kbuild to always build the programs
|
||||
always := $(hostprogs-y)
|
||||
|
||||
HOSTCFLAGS_crc32hash.o += -I$(objtree)/usr/include
|
@ -26,7 +26,7 @@ int main(int argc, char **argv) {
|
||||
printf("no string passed as argument\n");
|
||||
return -1;
|
||||
}
|
||||
result = crc32(argv[1], strlen(argv[1]));
|
||||
result = crc32((unsigned char const *)argv[1], strlen(argv[1]));
|
||||
printf("0x%x\n", result);
|
||||
return 0;
|
||||
}
|
||||
|
@ -1,5 +1,7 @@
|
||||
00-INDEX
|
||||
- This file
|
||||
apm-acpi.txt
|
||||
- basic info about the APM and ACPI support.
|
||||
basic-pm-debugging.txt
|
||||
- Debugging suspend and resume
|
||||
devices.txt
|
||||
@ -14,8 +16,6 @@ notifiers.txt
|
||||
- Registering suspend notifiers in device drivers
|
||||
pci.txt
|
||||
- How the PCI Subsystem Does Power Management
|
||||
pm.txt
|
||||
- info on Linux power management support.
|
||||
pm_qos_interface.txt
|
||||
- info on Linux PM Quality of Service interface
|
||||
power_supply_class.txt
|
||||
|
32
Documentation/power/apm-acpi.txt
Normal file
32
Documentation/power/apm-acpi.txt
Normal file
@ -0,0 +1,32 @@
|
||||
APM or ACPI?
|
||||
------------
|
||||
If you have a relatively recent x86 mobile, desktop, or server system,
|
||||
odds are it supports either Advanced Power Management (APM) or
|
||||
Advanced Configuration and Power Interface (ACPI). ACPI is the newer
|
||||
of the two technologies and puts power management in the hands of the
|
||||
operating system, allowing for more intelligent power management than
|
||||
is possible with BIOS controlled APM.
|
||||
|
||||
The best way to determine which, if either, your system supports is to
|
||||
build a kernel with both ACPI and APM enabled (as of 2.3.x ACPI is
|
||||
enabled by default). If a working ACPI implementation is found, the
|
||||
ACPI driver will override and disable APM, otherwise the APM driver
|
||||
will be used.
|
||||
|
||||
No, sorry, you cannot have both ACPI and APM enabled and running at
|
||||
once. Some people with broken ACPI or broken APM implementations
|
||||
would like to use both to get a full set of working features, but you
|
||||
simply cannot mix and match the two. Only one power management
|
||||
interface can be in control of the machine at once. Think about it..
|
||||
|
||||
User-space Daemons
|
||||
------------------
|
||||
Both APM and ACPI rely on user-space daemons, apmd and acpid
|
||||
respectively, to be completely functional. Obtain both of these
|
||||
daemons from your Linux distribution or from the Internet (see below)
|
||||
and be sure that they are started sometime in the system boot process.
|
||||
Go ahead and start both. If ACPI or APM is not available on your
|
||||
system the associated daemon will exit gracefully.
|
||||
|
||||
apmd: http://worldvisions.ca/~apenwarr/apmd/
|
||||
acpid: http://acpid.sf.net/
|
@ -1,257 +0,0 @@
|
||||
Linux Power Management Support
|
||||
|
||||
This document briefly describes how to use power management with your
|
||||
Linux system and how to add power management support to Linux drivers.
|
||||
|
||||
APM or ACPI?
|
||||
------------
|
||||
If you have a relatively recent x86 mobile, desktop, or server system,
|
||||
odds are it supports either Advanced Power Management (APM) or
|
||||
Advanced Configuration and Power Interface (ACPI). ACPI is the newer
|
||||
of the two technologies and puts power management in the hands of the
|
||||
operating system, allowing for more intelligent power management than
|
||||
is possible with BIOS controlled APM.
|
||||
|
||||
The best way to determine which, if either, your system supports is to
|
||||
build a kernel with both ACPI and APM enabled (as of 2.3.x ACPI is
|
||||
enabled by default). If a working ACPI implementation is found, the
|
||||
ACPI driver will override and disable APM, otherwise the APM driver
|
||||
will be used.
|
||||
|
||||
No, sorry, you cannot have both ACPI and APM enabled and running at
|
||||
once. Some people with broken ACPI or broken APM implementations
|
||||
would like to use both to get a full set of working features, but you
|
||||
simply cannot mix and match the two. Only one power management
|
||||
interface can be in control of the machine at once. Think about it..
|
||||
|
||||
User-space Daemons
|
||||
------------------
|
||||
Both APM and ACPI rely on user-space daemons, apmd and acpid
|
||||
respectively, to be completely functional. Obtain both of these
|
||||
daemons from your Linux distribution or from the Internet (see below)
|
||||
and be sure that they are started sometime in the system boot process.
|
||||
Go ahead and start both. If ACPI or APM is not available on your
|
||||
system the associated daemon will exit gracefully.
|
||||
|
||||
apmd: http://worldvisions.ca/~apenwarr/apmd/
|
||||
acpid: http://acpid.sf.net/
|
||||
|
||||
Driver Interface -- OBSOLETE, DO NOT USE!
|
||||
----------------*************************
|
||||
|
||||
Note: pm_register(), pm_access(), pm_dev_idle() and friends are
|
||||
obsolete. Please do not use them. Instead you should properly hook
|
||||
your driver into the driver model, and use its suspend()/resume()
|
||||
callbacks to do this kind of stuff.
|
||||
|
||||
If you are writing a new driver or maintaining an old driver, it
|
||||
should include power management support. Without power management
|
||||
support, a single driver may prevent a system with power management
|
||||
capabilities from ever being able to suspend (safely).
|
||||
|
||||
Overview:
|
||||
1) Register each instance of a device with "pm_register"
|
||||
2) Call "pm_access" before accessing the hardware.
|
||||
(this will ensure that the hardware is awake and ready)
|
||||
3) Your "pm_callback" is called before going into a
|
||||
suspend state (ACPI D1-D3) or after resuming (ACPI D0)
|
||||
from a suspend.
|
||||
4) Call "pm_dev_idle" when the device is not being used
|
||||
(optional but will improve device idle detection)
|
||||
5) When unloaded, unregister the device with "pm_unregister"
|
||||
|
||||
/*
|
||||
* Description: Register a device with the power-management subsystem
|
||||
*
|
||||
* Parameters:
|
||||
* type - device type (PCI device, system device, ...)
|
||||
* id - instance number or unique identifier
|
||||
* cback - request handler callback (suspend, resume, ...)
|
||||
*
|
||||
* Returns: Registered PM device or NULL on error
|
||||
*
|
||||
* Examples:
|
||||
* dev = pm_register(PM_SYS_DEV, PM_SYS_VGA, vga_callback);
|
||||
*
|
||||
* struct pci_dev *pci_dev = pci_find_dev(...);
|
||||
* dev = pm_register(PM_PCI_DEV, PM_PCI_ID(pci_dev), callback);
|
||||
*/
|
||||
struct pm_dev *pm_register(pm_dev_t type, unsigned long id, pm_callback cback);
|
||||
|
||||
/*
|
||||
* Description: Unregister a device with the power management subsystem
|
||||
*
|
||||
* Parameters:
|
||||
* dev - PM device previously returned from pm_register
|
||||
*/
|
||||
void pm_unregister(struct pm_dev *dev);
|
||||
|
||||
/*
|
||||
* Description: Unregister all devices with a matching callback function
|
||||
*
|
||||
* Parameters:
|
||||
* cback - previously registered request callback
|
||||
*
|
||||
* Notes: Provided for easier porting from old APM interface
|
||||
*/
|
||||
void pm_unregister_all(pm_callback cback);
|
||||
|
||||
/*
|
||||
* Power management request callback
|
||||
*
|
||||
* Parameters:
|
||||
* dev - PM device previously returned from pm_register
|
||||
* rqst - request type
|
||||
* data - data, if any, associated with the request
|
||||
*
|
||||
* Returns: 0 if the request is successful
|
||||
* EINVAL if the request is not supported
|
||||
* EBUSY if the device is now busy and cannot handle the request
|
||||
* ENOMEM if the device was unable to handle the request due to memory
|
||||
*
|
||||
* Details: The device request callback will be called before the
|
||||
* device/system enters a suspend state (ACPI D1-D3) or
|
||||
* or after the device/system resumes from suspend (ACPI D0).
|
||||
* For PM_SUSPEND, the ACPI D-state being entered is passed
|
||||
* as the "data" argument to the callback. The device
|
||||
* driver should save (PM_SUSPEND) or restore (PM_RESUME)
|
||||
* device context when the request callback is called.
|
||||
*
|
||||
* Once a driver returns 0 (success) from a suspend
|
||||
* request, it should not process any further requests or
|
||||
* access the device hardware until a call to "pm_access" is made.
|
||||
*/
|
||||
typedef int (*pm_callback)(struct pm_dev *dev, pm_request_t rqst, void *data);
|
||||
|
||||
Driver Details
|
||||
--------------
|
||||
This is just a quick Q&A as a stopgap until a real driver writers'
|
||||
power management guide is available.
|
||||
|
||||
Q: When is a device suspended?
|
||||
|
||||
Devices can be suspended based on direct user request (eg. laptop lid
|
||||
closes), system power policy (eg. sleep after 30 minutes of console
|
||||
inactivity), or device power policy (eg. power down device after 5
|
||||
minutes of inactivity)
|
||||
|
||||
Q: Must a driver honor a suspend request?
|
||||
|
||||
No, a driver can return -EBUSY from a suspend request and this
|
||||
will stop the system from suspending. When a suspend request
|
||||
fails, all suspended devices are resumed and the system continues
|
||||
to run. Suspend can be retried at a later time.
|
||||
|
||||
Q: Can the driver block suspend/resume requests?
|
||||
|
||||
Yes, a driver can delay its return from a suspend or resume
|
||||
request until the device is ready to handle requests. It
|
||||
is advantageous to return as quickly as possible from a
|
||||
request as suspend/resume are done serially.
|
||||
|
||||
Q: What context is a suspend/resume initiated from?
|
||||
|
||||
A suspend or resume is initiated from a kernel thread context.
|
||||
It is safe to block, allocate memory, initiate requests
|
||||
or anything else you can do within the kernel.
|
||||
|
||||
Q: Will requests continue to arrive after a suspend?
|
||||
|
||||
Possibly. It is the driver's responsibility to queue(*),
|
||||
fail, or drop any requests that arrive after returning
|
||||
success to a suspend request. It is important that the
|
||||
driver not access its device until after it receives
|
||||
a resume request as the device's bus may no longer
|
||||
be active.
|
||||
|
||||
(*) If a driver queues requests for processing after
|
||||
resume be aware that the device, network, etc.
|
||||
might be in a different state than at suspend time.
|
||||
It's probably better to drop requests unless
|
||||
the driver is a storage device.
|
||||
|
||||
Q: Do I have to manage bus-specific power management registers
|
||||
|
||||
No. It is the responsibility of the bus driver to manage
|
||||
PCI, USB, etc. power management registers. The bus driver
|
||||
or the power management subsystem will also enable any
|
||||
wake-on functionality that the device has.
|
||||
|
||||
Q: So, really, what do I need to do to support suspend/resume?
|
||||
|
||||
You need to save any device context that would
|
||||
be lost if the device was powered off and then restore
|
||||
it at resume time. When ACPI is active, there are
|
||||
three levels of device suspend states; D1, D2, and D3.
|
||||
(The suspend state is passed as the "data" argument
|
||||
to the device callback.) With D3, the device is powered
|
||||
off and loses all context, D1 and D2 are shallower power
|
||||
states and require less device context to be saved. To
|
||||
play it safe, just save everything at suspend and restore
|
||||
everything at resume.
|
||||
|
||||
Q: Where do I store device context for suspend?
|
||||
|
||||
Anywhere in memory, kmalloc a buffer or store it
|
||||
in the device descriptor. You are guaranteed that the
|
||||
contents of memory will be restored and accessible
|
||||
before resume, even when the system suspends to disk.
|
||||
|
||||
Q: What do I need to do for ACPI vs. APM vs. etc?
|
||||
|
||||
Drivers need not be aware of the specific power management
|
||||
technology that is active. They just need to be aware
|
||||
of when the overlying power management system requests
|
||||
that they suspend or resume.
|
||||
|
||||
Q: What about device dependencies?
|
||||
|
||||
When a driver registers a device, the power management
|
||||
subsystem uses the information provided to build a
|
||||
tree of device dependencies (eg. USB device X is on
|
||||
USB controller Y which is on PCI bus Z) When power
|
||||
management wants to suspend a device, it first sends
|
||||
a suspend request to its driver, then the bus driver,
|
||||
and so on up to the system bus. Device resumes
|
||||
proceed in the opposite direction.
|
||||
|
||||
Q: Who do I contact for additional information about
|
||||
enabling power management for my specific driver/device?
|
||||
|
||||
ACPI Development mailing list: linux-acpi@vger.kernel.org
|
||||
|
||||
System Interface -- OBSOLETE, DO NOT USE!
|
||||
----------------*************************
|
||||
If you are providing new power management support to Linux (ie.
|
||||
adding support for something like APM or ACPI), you should
|
||||
communicate with drivers through the existing generic power
|
||||
management interface.
|
||||
|
||||
/*
|
||||
* Send a request to all devices
|
||||
*
|
||||
* Parameters:
|
||||
* rqst - request type
|
||||
* data - data, if any, associated with the request
|
||||
*
|
||||
* Returns: 0 if the request is successful
|
||||
* See "pm_callback" return for errors
|
||||
*
|
||||
* Details: Walk list of registered devices and call pm_send
|
||||
* for each until complete or an error is encountered.
|
||||
* If an error is encountered for a suspend request,
|
||||
* return all devices to the state they were in before
|
||||
* the suspend request.
|
||||
*/
|
||||
int pm_send_all(pm_request_t rqst, void *data);
|
||||
|
||||
/*
|
||||
* Find a matching device
|
||||
*
|
||||
* Parameters:
|
||||
* type - device type (PCI device, system device, or 0 to match all devices)
|
||||
* from - previous match or NULL to start from the beginning
|
||||
*
|
||||
* Returns: Matching device or NULL if none found
|
||||
*/
|
||||
struct pm_dev *pm_find(pm_dev_t type, struct pm_dev *from);
|
@ -1,4 +1,4 @@
|
||||
PM quality of Service interface.
|
||||
PM Quality Of Service Interface.
|
||||
|
||||
This interface provides a kernel and user mode interface for registering
|
||||
performance expectations by drivers, subsystems and user space applications on
|
||||
@ -7,6 +7,11 @@ one of the parameters.
|
||||
Currently we have {cpu_dma_latency, network_latency, network_throughput} as the
|
||||
initial set of pm_qos parameters.
|
||||
|
||||
Each parameters have defined units:
|
||||
* latency: usec
|
||||
* timeout: usec
|
||||
* throughput: kbs (kilo bit / sec)
|
||||
|
||||
The infrastructure exposes multiple misc device nodes one per implemented
|
||||
parameter. The set of parameters implement is defined by pm_qos_power_init()
|
||||
and pm_qos_params.h. This is done because having the available parameters
|
||||
|
@ -101,6 +101,10 @@ of charge when battery became full/empty". It also could mean "value of
|
||||
charge when battery considered full/empty at given conditions (temperature,
|
||||
age)". I.e. these attributes represents real thresholds, not design values.
|
||||
|
||||
CHARGE_COUNTER - the current charge counter (in µAh). This could easily
|
||||
be negative; there is no empty or full value. It is only useful for
|
||||
relative, time-based measurements.
|
||||
|
||||
ENERGY_FULL, ENERGY_EMPTY - same as above but for energy.
|
||||
|
||||
CAPACITY - capacity in percents.
|
||||
|
182
Documentation/power/regulator/consumer.txt
Normal file
182
Documentation/power/regulator/consumer.txt
Normal file
@ -0,0 +1,182 @@
|
||||
Regulator Consumer Driver Interface
|
||||
===================================
|
||||
|
||||
This text describes the regulator interface for consumer device drivers.
|
||||
Please see overview.txt for a description of the terms used in this text.
|
||||
|
||||
|
||||
1. Consumer Regulator Access (static & dynamic drivers)
|
||||
=======================================================
|
||||
|
||||
A consumer driver can get access to it's supply regulator by calling :-
|
||||
|
||||
regulator = regulator_get(dev, "Vcc");
|
||||
|
||||
The consumer passes in it's struct device pointer and power supply ID. The core
|
||||
then finds the correct regulator by consulting a machine specific lookup table.
|
||||
If the lookup is successful then this call will return a pointer to the struct
|
||||
regulator that supplies this consumer.
|
||||
|
||||
To release the regulator the consumer driver should call :-
|
||||
|
||||
regulator_put(regulator);
|
||||
|
||||
Consumers can be supplied by more than one regulator e.g. codec consumer with
|
||||
analog and digital supplies :-
|
||||
|
||||
digital = regulator_get(dev, "Vcc"); /* digital core */
|
||||
analog = regulator_get(dev, "Avdd"); /* analog */
|
||||
|
||||
The regulator access functions regulator_get() and regulator_put() will
|
||||
usually be called in your device drivers probe() and remove() respectively.
|
||||
|
||||
|
||||
2. Regulator Output Enable & Disable (static & dynamic drivers)
|
||||
====================================================================
|
||||
|
||||
A consumer can enable it's power supply by calling:-
|
||||
|
||||
int regulator_enable(regulator);
|
||||
|
||||
NOTE: The supply may already be enabled before regulator_enabled() is called.
|
||||
This may happen if the consumer shares the regulator or the regulator has been
|
||||
previously enabled by bootloader or kernel board initialization code.
|
||||
|
||||
A consumer can determine if a regulator is enabled by calling :-
|
||||
|
||||
int regulator_is_enabled(regulator);
|
||||
|
||||
This will return > zero when the regulator is enabled.
|
||||
|
||||
|
||||
A consumer can disable it's supply when no longer needed by calling :-
|
||||
|
||||
int regulator_disable(regulator);
|
||||
|
||||
NOTE: This may not disable the supply if it's shared with other consumers. The
|
||||
regulator will only be disabled when the enabled reference count is zero.
|
||||
|
||||
Finally, a regulator can be forcefully disabled in the case of an emergency :-
|
||||
|
||||
int regulator_force_disable(regulator);
|
||||
|
||||
NOTE: this will immediately and forcefully shutdown the regulator output. All
|
||||
consumers will be powered off.
|
||||
|
||||
|
||||
3. Regulator Voltage Control & Status (dynamic drivers)
|
||||
======================================================
|
||||
|
||||
Some consumer drivers need to be able to dynamically change their supply
|
||||
voltage to match system operating points. e.g. CPUfreq drivers can scale
|
||||
voltage along with frequency to save power, SD drivers may need to select the
|
||||
correct card voltage, etc.
|
||||
|
||||
Consumers can control their supply voltage by calling :-
|
||||
|
||||
int regulator_set_voltage(regulator, min_uV, max_uV);
|
||||
|
||||
Where min_uV and max_uV are the minimum and maximum acceptable voltages in
|
||||
microvolts.
|
||||
|
||||
NOTE: this can be called when the regulator is enabled or disabled. If called
|
||||
when enabled, then the voltage changes instantly, otherwise the voltage
|
||||
configuration changes and the voltage is physically set when the regulator is
|
||||
next enabled.
|
||||
|
||||
The regulators configured voltage output can be found by calling :-
|
||||
|
||||
int regulator_get_voltage(regulator);
|
||||
|
||||
NOTE: get_voltage() will return the configured output voltage whether the
|
||||
regulator is enabled or disabled and should NOT be used to determine regulator
|
||||
output state. However this can be used in conjunction with is_enabled() to
|
||||
determine the regulator physical output voltage.
|
||||
|
||||
|
||||
4. Regulator Current Limit Control & Status (dynamic drivers)
|
||||
===========================================================
|
||||
|
||||
Some consumer drivers need to be able to dynamically change their supply
|
||||
current limit to match system operating points. e.g. LCD backlight driver can
|
||||
change the current limit to vary the backlight brightness, USB drivers may want
|
||||
to set the limit to 500mA when supplying power.
|
||||
|
||||
Consumers can control their supply current limit by calling :-
|
||||
|
||||
int regulator_set_current_limit(regulator, min_uV, max_uV);
|
||||
|
||||
Where min_uA and max_uA are the minimum and maximum acceptable current limit in
|
||||
microamps.
|
||||
|
||||
NOTE: this can be called when the regulator is enabled or disabled. If called
|
||||
when enabled, then the current limit changes instantly, otherwise the current
|
||||
limit configuration changes and the current limit is physically set when the
|
||||
regulator is next enabled.
|
||||
|
||||
A regulators current limit can be found by calling :-
|
||||
|
||||
int regulator_get_current_limit(regulator);
|
||||
|
||||
NOTE: get_current_limit() will return the current limit whether the regulator
|
||||
is enabled or disabled and should not be used to determine regulator current
|
||||
load.
|
||||
|
||||
|
||||
5. Regulator Operating Mode Control & Status (dynamic drivers)
|
||||
=============================================================
|
||||
|
||||
Some consumers can further save system power by changing the operating mode of
|
||||
their supply regulator to be more efficient when the consumers operating state
|
||||
changes. e.g. consumer driver is idle and subsequently draws less current
|
||||
|
||||
Regulator operating mode can be changed indirectly or directly.
|
||||
|
||||
Indirect operating mode control.
|
||||
--------------------------------
|
||||
Consumer drivers can request a change in their supply regulator operating mode
|
||||
by calling :-
|
||||
|
||||
int regulator_set_optimum_mode(struct regulator *regulator, int load_uA);
|
||||
|
||||
This will cause the core to recalculate the total load on the regulator (based
|
||||
on all it's consumers) and change operating mode (if necessary and permitted)
|
||||
to best match the current operating load.
|
||||
|
||||
The load_uA value can be determined from the consumers datasheet. e.g.most
|
||||
datasheets have tables showing the max current consumed in certain situations.
|
||||
|
||||
Most consumers will use indirect operating mode control since they have no
|
||||
knowledge of the regulator or whether the regulator is shared with other
|
||||
consumers.
|
||||
|
||||
Direct operating mode control.
|
||||
------------------------------
|
||||
Bespoke or tightly coupled drivers may want to directly control regulator
|
||||
operating mode depending on their operating point. This can be achieved by
|
||||
calling :-
|
||||
|
||||
int regulator_set_mode(struct regulator *regulator, unsigned int mode);
|
||||
unsigned int regulator_get_mode(struct regulator *regulator);
|
||||
|
||||
Direct mode will only be used by consumers that *know* about the regulator and
|
||||
are not sharing the regulator with other consumers.
|
||||
|
||||
|
||||
6. Regulator Events
|
||||
===================
|
||||
Regulators can notify consumers of external events. Events could be received by
|
||||
consumers under regulator stress or failure conditions.
|
||||
|
||||
Consumers can register interest in regulator events by calling :-
|
||||
|
||||
int regulator_register_notifier(struct regulator *regulator,
|
||||
struct notifier_block *nb);
|
||||
|
||||
Consumers can uregister interest by calling :-
|
||||
|
||||
int regulator_unregister_notifier(struct regulator *regulator,
|
||||
struct notifier_block *nb);
|
||||
|
||||
Regulators use the kernel notifier framework to send event to thier interested
|
||||
consumers.
|
101
Documentation/power/regulator/machine.txt
Normal file
101
Documentation/power/regulator/machine.txt
Normal file
@ -0,0 +1,101 @@
|
||||
Regulator Machine Driver Interface
|
||||
===================================
|
||||
|
||||
The regulator machine driver interface is intended for board/machine specific
|
||||
initialisation code to configure the regulator subsystem. Typical things that
|
||||
machine drivers would do are :-
|
||||
|
||||
1. Regulator -> Device mapping.
|
||||
2. Regulator supply configuration.
|
||||
3. Power Domain constraint setting.
|
||||
|
||||
|
||||
|
||||
1. Regulator -> device mapping
|
||||
==============================
|
||||
Consider the following machine :-
|
||||
|
||||
Regulator-1 -+-> Regulator-2 --> [Consumer A @ 1.8 - 2.0V]
|
||||
|
|
||||
+-> [Consumer B @ 3.3V]
|
||||
|
||||
The drivers for consumers A & B must be mapped to the correct regulator in
|
||||
order to control their power supply. This mapping can be achieved in machine
|
||||
initialisation code by calling :-
|
||||
|
||||
int regulator_set_device_supply(const char *regulator, struct device *dev,
|
||||
const char *supply);
|
||||
|
||||
and is shown with the following code :-
|
||||
|
||||
regulator_set_device_supply("Regulator-1", devB, "Vcc");
|
||||
regulator_set_device_supply("Regulator-2", devA, "Vcc");
|
||||
|
||||
This maps Regulator-1 to the 'Vcc' supply for Consumer B and maps Regulator-2
|
||||
to the 'Vcc' supply for Consumer A.
|
||||
|
||||
|
||||
2. Regulator supply configuration.
|
||||
==================================
|
||||
Consider the following machine (again) :-
|
||||
|
||||
Regulator-1 -+-> Regulator-2 --> [Consumer A @ 1.8 - 2.0V]
|
||||
|
|
||||
+-> [Consumer B @ 3.3V]
|
||||
|
||||
Regulator-1 supplies power to Regulator-2. This relationship must be registered
|
||||
with the core so that Regulator-1 is also enabled when Consumer A enables it's
|
||||
supply (Regulator-2).
|
||||
|
||||
This relationship can be register with the core via :-
|
||||
|
||||
int regulator_set_supply(const char *regulator, const char *regulator_supply);
|
||||
|
||||
In this example we would use the following code :-
|
||||
|
||||
regulator_set_supply("Regulator-2", "Regulator-1");
|
||||
|
||||
Relationships can be queried by calling :-
|
||||
|
||||
const char *regulator_get_supply(const char *regulator);
|
||||
|
||||
|
||||
3. Power Domain constraint setting.
|
||||
===================================
|
||||
Each power domain within a system has physical constraints on voltage and
|
||||
current. This must be defined in software so that the power domain is always
|
||||
operated within specifications.
|
||||
|
||||
Consider the following machine (again) :-
|
||||
|
||||
Regulator-1 -+-> Regulator-2 --> [Consumer A @ 1.8 - 2.0V]
|
||||
|
|
||||
+-> [Consumer B @ 3.3V]
|
||||
|
||||
This gives us two regulators and two power domains:
|
||||
|
||||
Domain 1: Regulator-2, Consumer B.
|
||||
Domain 2: Consumer A.
|
||||
|
||||
Constraints can be registered by calling :-
|
||||
|
||||
int regulator_set_platform_constraints(const char *regulator,
|
||||
struct regulation_constraints *constraints);
|
||||
|
||||
The example is defined as follows :-
|
||||
|
||||
struct regulation_constraints domain_1 = {
|
||||
.min_uV = 3300000,
|
||||
.max_uV = 3300000,
|
||||
.valid_modes_mask = REGULATOR_MODE_NORMAL,
|
||||
};
|
||||
|
||||
struct regulation_constraints domain_2 = {
|
||||
.min_uV = 1800000,
|
||||
.max_uV = 2000000,
|
||||
.valid_ops_mask = REGULATOR_CHANGE_VOLTAGE,
|
||||
.valid_modes_mask = REGULATOR_MODE_NORMAL,
|
||||
};
|
||||
|
||||
regulator_set_platform_constraints("Regulator-1", &domain_1);
|
||||
regulator_set_platform_constraints("Regulator-2", &domain_2);
|
171
Documentation/power/regulator/overview.txt
Normal file
171
Documentation/power/regulator/overview.txt
Normal file
@ -0,0 +1,171 @@
|
||||
Linux voltage and current regulator framework
|
||||
=============================================
|
||||
|
||||
About
|
||||
=====
|
||||
|
||||
This framework is designed to provide a standard kernel interface to control
|
||||
voltage and current regulators.
|
||||
|
||||
The intention is to allow systems to dynamically control regulator power output
|
||||
in order to save power and prolong battery life. This applies to both voltage
|
||||
regulators (where voltage output is controllable) and current sinks (where
|
||||
current limit is controllable).
|
||||
|
||||
(C) 2008 Wolfson Microelectronics PLC.
|
||||
Author: Liam Girdwood <lg@opensource.wolfsonmicro.com>
|
||||
|
||||
|
||||
Nomenclature
|
||||
============
|
||||
|
||||
Some terms used in this document:-
|
||||
|
||||
o Regulator - Electronic device that supplies power to other devices.
|
||||
Most regulators can enable and disable their output whilst
|
||||
some can control their output voltage and or current.
|
||||
|
||||
Input Voltage -> Regulator -> Output Voltage
|
||||
|
||||
|
||||
o PMIC - Power Management IC. An IC that contains numerous regulators
|
||||
and often contains other susbsystems.
|
||||
|
||||
|
||||
o Consumer - Electronic device that is supplied power by a regulator.
|
||||
Consumers can be classified into two types:-
|
||||
|
||||
Static: consumer does not change it's supply voltage or
|
||||
current limit. It only needs to enable or disable it's
|
||||
power supply. It's supply voltage is set by the hardware,
|
||||
bootloader, firmware or kernel board initialisation code.
|
||||
|
||||
Dynamic: consumer needs to change it's supply voltage or
|
||||
current limit to meet operation demands.
|
||||
|
||||
|
||||
o Power Domain - Electronic circuit that is supplied it's input power by the
|
||||
output power of a regulator, switch or by another power
|
||||
domain.
|
||||
|
||||
The supply regulator may be behind a switch(s). i.e.
|
||||
|
||||
Regulator -+-> Switch-1 -+-> Switch-2 --> [Consumer A]
|
||||
| |
|
||||
| +-> [Consumer B], [Consumer C]
|
||||
|
|
||||
+-> [Consumer D], [Consumer E]
|
||||
|
||||
That is one regulator and three power domains:
|
||||
|
||||
Domain 1: Switch-1, Consumers D & E.
|
||||
Domain 2: Switch-2, Consumers B & C.
|
||||
Domain 3: Consumer A.
|
||||
|
||||
and this represents a "supplies" relationship:
|
||||
|
||||
Domain-1 --> Domain-2 --> Domain-3.
|
||||
|
||||
A power domain may have regulators that are supplied power
|
||||
by other regulators. i.e.
|
||||
|
||||
Regulator-1 -+-> Regulator-2 -+-> [Consumer A]
|
||||
|
|
||||
+-> [Consumer B]
|
||||
|
||||
This gives us two regulators and two power domains:
|
||||
|
||||
Domain 1: Regulator-2, Consumer B.
|
||||
Domain 2: Consumer A.
|
||||
|
||||
and a "supplies" relationship:
|
||||
|
||||
Domain-1 --> Domain-2
|
||||
|
||||
|
||||
o Constraints - Constraints are used to define power levels for performance
|
||||
and hardware protection. Constraints exist at three levels:
|
||||
|
||||
Regulator Level: This is defined by the regulator hardware
|
||||
operating parameters and is specified in the regulator
|
||||
datasheet. i.e.
|
||||
|
||||
- voltage output is in the range 800mV -> 3500mV.
|
||||
- regulator current output limit is 20mA @ 5V but is
|
||||
10mA @ 10V.
|
||||
|
||||
Power Domain Level: This is defined in software by kernel
|
||||
level board initialisation code. It is used to constrain a
|
||||
power domain to a particular power range. i.e.
|
||||
|
||||
- Domain-1 voltage is 3300mV
|
||||
- Domain-2 voltage is 1400mV -> 1600mV
|
||||
- Domain-3 current limit is 0mA -> 20mA.
|
||||
|
||||
Consumer Level: This is defined by consumer drivers
|
||||
dynamically setting voltage or current limit levels.
|
||||
|
||||
e.g. a consumer backlight driver asks for a current increase
|
||||
from 5mA to 10mA to increase LCD illumination. This passes
|
||||
to through the levels as follows :-
|
||||
|
||||
Consumer: need to increase LCD brightness. Lookup and
|
||||
request next current mA value in brightness table (the
|
||||
consumer driver could be used on several different
|
||||
personalities based upon the same reference device).
|
||||
|
||||
Power Domain: is the new current limit within the domain
|
||||
operating limits for this domain and system state (e.g.
|
||||
battery power, USB power)
|
||||
|
||||
Regulator Domains: is the new current limit within the
|
||||
regulator operating parameters for input/ouput voltage.
|
||||
|
||||
If the regulator request passes all the constraint tests
|
||||
then the new regulator value is applied.
|
||||
|
||||
|
||||
Design
|
||||
======
|
||||
|
||||
The framework is designed and targeted at SoC based devices but may also be
|
||||
relevant to non SoC devices and is split into the following four interfaces:-
|
||||
|
||||
|
||||
1. Consumer driver interface.
|
||||
|
||||
This uses a similar API to the kernel clock interface in that consumer
|
||||
drivers can get and put a regulator (like they can with clocks atm) and
|
||||
get/set voltage, current limit, mode, enable and disable. This should
|
||||
allow consumers complete control over their supply voltage and current
|
||||
limit. This also compiles out if not in use so drivers can be reused in
|
||||
systems with no regulator based power control.
|
||||
|
||||
See Documentation/power/regulator/consumer.txt
|
||||
|
||||
2. Regulator driver interface.
|
||||
|
||||
This allows regulator drivers to register their regulators and provide
|
||||
operations to the core. It also has a notifier call chain for propagating
|
||||
regulator events to clients.
|
||||
|
||||
See Documentation/power/regulator/regulator.txt
|
||||
|
||||
3. Machine interface.
|
||||
|
||||
This interface is for machine specific code and allows the creation of
|
||||
voltage/current domains (with constraints) for each regulator. It can
|
||||
provide regulator constraints that will prevent device damage through
|
||||
overvoltage or over current caused by buggy client drivers. It also
|
||||
allows the creation of a regulator tree whereby some regulators are
|
||||
supplied by others (similar to a clock tree).
|
||||
|
||||
See Documentation/power/regulator/machine.txt
|
||||
|
||||
4. Userspace ABI.
|
||||
|
||||
The framework also exports a lot of useful voltage/current/opmode data to
|
||||
userspace via sysfs. This could be used to help monitor device power
|
||||
consumption and status.
|
||||
|
||||
See Documentation/ABI/testing/regulator-sysfs.txt
|
30
Documentation/power/regulator/regulator.txt
Normal file
30
Documentation/power/regulator/regulator.txt
Normal file
@ -0,0 +1,30 @@
|
||||
Regulator Driver Interface
|
||||
==========================
|
||||
|
||||
The regulator driver interface is relatively simple and designed to allow
|
||||
regulator drivers to register their services with the core framework.
|
||||
|
||||
|
||||
Registration
|
||||
============
|
||||
|
||||
Drivers can register a regulator by calling :-
|
||||
|
||||
struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
|
||||
void *reg_data);
|
||||
|
||||
This will register the regulators capabilities and operations the regulator
|
||||
core. The core does not touch reg_data (private to regulator driver).
|
||||
|
||||
Regulators can be unregistered by calling :-
|
||||
|
||||
void regulator_unregister(struct regulator_dev *rdev);
|
||||
|
||||
|
||||
Regulator Events
|
||||
================
|
||||
Regulators can send events (e.g. over temp, under voltage, etc) to consumer
|
||||
drivers by calling :-
|
||||
|
||||
int regulator_notifier_call_chain(struct regulator_dev *rdev,
|
||||
unsigned long event, void *data);
|
@ -20,8 +20,6 @@ mpc52xx-device-tree-bindings.txt
|
||||
- MPC5200 Device Tree Bindings
|
||||
ppc_htab.txt
|
||||
- info about the Linux/PPC /proc/ppc_htab entry
|
||||
SBC8260_memory_mapping.txt
|
||||
- EST SBC8260 board info
|
||||
smp.txt
|
||||
- use and state info about Linux/PPC on MP machines
|
||||
sound.txt
|
||||
|
@ -1,197 +0,0 @@
|
||||
Please mail me (Jon Diekema, diekema_jon@si.com or diekema@cideas.com)
|
||||
if you have questions, comments or corrections.
|
||||
|
||||
* EST SBC8260 Linux memory mapping rules
|
||||
|
||||
http://www.estc.com/
|
||||
http://www.estc.com/products/boards/SBC8260-8240_ds.html
|
||||
|
||||
Initial conditions:
|
||||
-------------------
|
||||
|
||||
Tasks that need to be perform by the boot ROM before control is
|
||||
transferred to zImage (compressed Linux kernel):
|
||||
|
||||
- Define the IMMR to 0xf0000000
|
||||
|
||||
- Initialize the memory controller so that RAM is available at
|
||||
physical address 0x00000000. On the SBC8260 is this 16M (64M)
|
||||
SDRAM.
|
||||
|
||||
- The boot ROM should only clear the RAM that it is using.
|
||||
|
||||
The reason for doing this is to enhances the chances of a
|
||||
successful post mortem on a Linux panic. One of the first
|
||||
items to examine is the 16k (LOG_BUF_LEN) circular console
|
||||
buffer called log_buf which is defined in kernel/printk.c.
|
||||
|
||||
- To enhance boot ROM performance, the I-cache can be enabled.
|
||||
|
||||
Date: Mon, 22 May 2000 14:21:10 -0700
|
||||
From: Neil Russell <caret@c-side.com>
|
||||
|
||||
LiMon (LInux MONitor) runs with and starts Linux with MMU
|
||||
off, I-cache enabled, D-cache disabled. The I-cache doesn't
|
||||
need hints from the MMU to work correctly as the D-cache
|
||||
does. No D-cache means no special code to handle devices in
|
||||
the presence of cache (no snooping, etc). The use of the
|
||||
I-cache means that the monitor can run acceptably fast
|
||||
directly from ROM, rather than having to copy it to RAM.
|
||||
|
||||
- Build the board information structure (see
|
||||
include/asm-ppc/est8260.h for its definition)
|
||||
|
||||
- The compressed Linux kernel (zImage) contains a bootstrap loader
|
||||
that is position independent; you can load it into any RAM,
|
||||
ROM or FLASH memory address >= 0x00500000 (above 5 MB), or
|
||||
at its link address of 0x00400000 (4 MB).
|
||||
|
||||
Note: If zImage is loaded at its link address of 0x00400000 (4 MB),
|
||||
then zImage will skip the step of moving itself to
|
||||
its link address.
|
||||
|
||||
- Load R3 with the address of the board information structure
|
||||
|
||||
- Transfer control to zImage
|
||||
|
||||
- The Linux console port is SMC1, and the baud rate is controlled
|
||||
from the bi_baudrate field of the board information structure.
|
||||
On thing to keep in mind when picking the baud rate, is that
|
||||
there is no flow control on the SMC ports. I would stick
|
||||
with something safe and standard like 19200.
|
||||
|
||||
On the EST SBC8260, the SMC1 port is on the COM1 connector of
|
||||
the board.
|
||||
|
||||
|
||||
EST SBC8260 defaults:
|
||||
---------------------
|
||||
|
||||
Chip
|
||||
Memory Sel Bus Use
|
||||
--------------------- --- --- ----------------------------------
|
||||
0x00000000-0x03FFFFFF CS2 60x (16M or 64M)/64M SDRAM
|
||||
0x04000000-0x04FFFFFF CS4 local 4M/16M SDRAM (soldered to the board)
|
||||
0x21000000-0x21000000 CS7 60x 1B/64K Flash present detect (from the flash SIMM)
|
||||
0x21000001-0x21000001 CS7 60x 1B/64K Switches (read) and LEDs (write)
|
||||
0x22000000-0x2200FFFF CS5 60x 8K/64K EEPROM
|
||||
0xFC000000-0xFCFFFFFF CS6 60x 2M/16M flash (8 bits wide, soldered to the board)
|
||||
0xFE000000-0xFFFFFFFF CS0 60x 4M/16M flash (SIMM)
|
||||
|
||||
Notes:
|
||||
------
|
||||
|
||||
- The chip selects can map 32K blocks and up (powers of 2)
|
||||
|
||||
- The SDRAM machine can handled up to 128Mbytes per chip select
|
||||
|
||||
- Linux uses the 60x bus memory (the SDRAM DIMM) for the
|
||||
communications buffers.
|
||||
|
||||
- BATs can map 128K-256Mbytes each. There are four data BATs and
|
||||
four instruction BATs. Generally the data and instruction BATs
|
||||
are mapped the same.
|
||||
|
||||
- The IMMR must be set above the kernel virtual memory addresses,
|
||||
which start at 0xC0000000. Otherwise, the kernel may crash as
|
||||
soon as you start any threads or processes due to VM collisions
|
||||
in the kernel or user process space.
|
||||
|
||||
|
||||
Details from Dan Malek <dan_malek@mvista.com> on 10/29/1999:
|
||||
|
||||
The user application virtual space consumes the first 2 Gbytes
|
||||
(0x00000000 to 0x7FFFFFFF). The kernel virtual text starts at
|
||||
0xC0000000, with data following. There is a "protection hole"
|
||||
between the end of kernel data and the start of the kernel
|
||||
dynamically allocated space, but this space is still within
|
||||
0xCxxxxxxx.
|
||||
|
||||
Obviously the kernel can't map any physical addresses 1:1 in
|
||||
these ranges.
|
||||
|
||||
|
||||
Details from Dan Malek <dan_malek@mvista.com> on 5/19/2000:
|
||||
|
||||
During the early kernel initialization, the kernel virtual
|
||||
memory allocator is not operational. Prior to this KVM
|
||||
initialization, we choose to map virtual to physical addresses
|
||||
1:1. That is, the kernel virtual address exactly matches the
|
||||
physical address on the bus. These mappings are typically done
|
||||
in arch/ppc/kernel/head.S, or arch/ppc/mm/init.c. Only
|
||||
absolutely necessary mappings should be done at this time, for
|
||||
example board control registers or a serial uart. Normal device
|
||||
driver initialization should map resources later when necessary.
|
||||
|
||||
Although platform dependent, and certainly the case for embedded
|
||||
8xx, traditionally memory is mapped at physical address zero,
|
||||
and I/O devices above physical address 0x80000000. The lowest
|
||||
and highest (above 0xf0000000) I/O addresses are traditionally
|
||||
used for devices or registers we need to map during kernel
|
||||
initialization and prior to KVM operation. For this reason,
|
||||
and since it followed prior PowerPC platform examples, I chose
|
||||
to map the embedded 8xx kernel to the 0xc0000000 virtual address.
|
||||
This way, we can enable the MMU to map the kernel for proper
|
||||
operation, and still map a few windows before the KVM is operational.
|
||||
|
||||
On some systems, you could possibly run the kernel at the
|
||||
0x80000000 or any other virtual address. It just depends upon
|
||||
mapping that must be done prior to KVM operational. You can never
|
||||
map devices or kernel spaces that overlap with the user virtual
|
||||
space. This is why default IMMR mapping used by most BDM tools
|
||||
won't work. They put the IMMR at something like 0x10000000 or
|
||||
0x02000000 for example. You simply can't map these addresses early
|
||||
in the kernel, and continue proper system operation.
|
||||
|
||||
The embedded 8xx/82xx kernel is mature enough that all you should
|
||||
need to do is map the IMMR someplace at or above 0xf0000000 and it
|
||||
should boot far enough to get serial console messages and KGDB
|
||||
connected on any platform. There are lots of other subtle memory
|
||||
management design features that you simply don't need to worry
|
||||
about. If you are changing functions related to MMU initialization,
|
||||
you are likely breaking things that are known to work and are
|
||||
heading down a path of disaster and frustration. Your changes
|
||||
should be to make the flexibility of the processor fit Linux,
|
||||
not force arbitrary and non-workable memory mappings into Linux.
|
||||
|
||||
- You don't want to change KERNELLOAD or KERNELBASE, otherwise the
|
||||
virtual memory and MMU code will get confused.
|
||||
|
||||
arch/ppc/Makefile:KERNELLOAD = 0xc0000000
|
||||
|
||||
include/asm-ppc/page.h:#define PAGE_OFFSET 0xc0000000
|
||||
include/asm-ppc/page.h:#define KERNELBASE PAGE_OFFSET
|
||||
|
||||
- RAM is at physical address 0x00000000, and gets mapped to
|
||||
virtual address 0xC0000000 for the kernel.
|
||||
|
||||
|
||||
Physical addresses used by the Linux kernel:
|
||||
--------------------------------------------
|
||||
|
||||
0x00000000-0x3FFFFFFF 1GB reserved for RAM
|
||||
0xF0000000-0xF001FFFF 128K IMMR 64K used for dual port memory,
|
||||
64K for 8260 registers
|
||||
|
||||
|
||||
Logical addresses used by the Linux kernel:
|
||||
-------------------------------------------
|
||||
|
||||
0xF0000000-0xFFFFFFFF 256M BAT0 (IMMR: dual port RAM, registers)
|
||||
0xE0000000-0xEFFFFFFF 256M BAT1 (I/O space for custom boards)
|
||||
0xC0000000-0xCFFFFFFF 256M BAT2 (RAM)
|
||||
0xD0000000-0xDFFFFFFF 256M BAT3 (if RAM > 256MByte)
|
||||
|
||||
|
||||
EST SBC8260 Linux mapping:
|
||||
--------------------------
|
||||
|
||||
DBAT0, IBAT0, cache inhibited:
|
||||
|
||||
Chip
|
||||
Memory Sel Use
|
||||
--------------------- --- ---------------------------------
|
||||
0xF0000000-0xF001FFFF n/a IMMR: dual port RAM, registers
|
||||
|
||||
DBAT1, IBAT1, cache inhibited:
|
||||
|
@ -59,6 +59,7 @@ Table of Contents
|
||||
p) Freescale Synchronous Serial Interface
|
||||
q) USB EHCI controllers
|
||||
r) MDIO on GPIOs
|
||||
s) SPI busses
|
||||
|
||||
VII - Marvell Discovery mv64[345]6x System Controller chips
|
||||
1) The /system-controller node
|
||||
@ -277,7 +278,7 @@ it with special cases.
|
||||
a 64-bit platform.
|
||||
|
||||
d) request and get assigned a platform number (see PLATFORM_*
|
||||
constants in include/asm-powerpc/processor.h
|
||||
constants in arch/powerpc/include/asm/processor.h
|
||||
|
||||
32-bit embedded kernels:
|
||||
|
||||
@ -339,7 +340,7 @@ the block to RAM before passing it to the kernel.
|
||||
---------
|
||||
|
||||
The kernel is entered with r3 pointing to an area of memory that is
|
||||
roughly described in include/asm-powerpc/prom.h by the structure
|
||||
roughly described in arch/powerpc/include/asm/prom.h by the structure
|
||||
boot_param_header:
|
||||
|
||||
struct boot_param_header {
|
||||
@ -707,7 +708,7 @@ device or bus to be described by the device tree.
|
||||
In general, the format of an address for a device is defined by the
|
||||
parent bus type, based on the #address-cells and #size-cells
|
||||
properties. Note that the parent's parent definitions of #address-cells
|
||||
and #size-cells are not inhereted so every node with children must specify
|
||||
and #size-cells are not inherited so every node with children must specify
|
||||
them. The kernel requires the root node to have those properties defining
|
||||
addresses format for devices directly mapped on the processor bus.
|
||||
|
||||
@ -1776,7 +1777,7 @@ platforms are moved over to use the flattened-device-tree model.
|
||||
|
||||
Xilinx uartlite devices are simple fixed speed serial ports.
|
||||
|
||||
Requred properties:
|
||||
Required properties:
|
||||
- current-speed : Baud rate of uartlite
|
||||
|
||||
v) Xilinx hwicap
|
||||
@ -1798,7 +1799,7 @@ platforms are moved over to use the flattened-device-tree model.
|
||||
Xilinx UART 16550 devices are very similar to the NS16550 but with
|
||||
different register spacing and an offset from the base address.
|
||||
|
||||
Requred properties:
|
||||
Required properties:
|
||||
- clock-frequency : Frequency of the clock input
|
||||
- reg-offset : A value of 3 is required
|
||||
- reg-shift : A value of 2 is required
|
||||
@ -1883,6 +1884,62 @@ platforms are moved over to use the flattened-device-tree model.
|
||||
&qe_pio_c 6>;
|
||||
};
|
||||
|
||||
s) SPI (Serial Peripheral Interface) busses
|
||||
|
||||
SPI busses can be described with a node for the SPI master device
|
||||
and a set of child nodes for each SPI slave on the bus. For this
|
||||
discussion, it is assumed that the system's SPI controller is in
|
||||
SPI master mode. This binding does not describe SPI controllers
|
||||
in slave mode.
|
||||
|
||||
The SPI master node requires the following properties:
|
||||
- #address-cells - number of cells required to define a chip select
|
||||
address on the SPI bus.
|
||||
- #size-cells - should be zero.
|
||||
- compatible - name of SPI bus controller following generic names
|
||||
recommended practice.
|
||||
No other properties are required in the SPI bus node. It is assumed
|
||||
that a driver for an SPI bus device will understand that it is an SPI bus.
|
||||
However, the binding does not attempt to define the specific method for
|
||||
assigning chip select numbers. Since SPI chip select configuration is
|
||||
flexible and non-standardized, it is left out of this binding with the
|
||||
assumption that board specific platform code will be used to manage
|
||||
chip selects. Individual drivers can define additional properties to
|
||||
support describing the chip select layout.
|
||||
|
||||
SPI slave nodes must be children of the SPI master node and can
|
||||
contain the following properties.
|
||||
- reg - (required) chip select address of device.
|
||||
- compatible - (required) name of SPI device following generic names
|
||||
recommended practice
|
||||
- spi-max-frequency - (required) Maximum SPI clocking speed of device in Hz
|
||||
- spi-cpol - (optional) Empty property indicating device requires
|
||||
inverse clock polarity (CPOL) mode
|
||||
- spi-cpha - (optional) Empty property indicating device requires
|
||||
shifted clock phase (CPHA) mode
|
||||
|
||||
SPI example for an MPC5200 SPI bus:
|
||||
spi@f00 {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
compatible = "fsl,mpc5200b-spi","fsl,mpc5200-spi";
|
||||
reg = <0xf00 0x20>;
|
||||
interrupts = <2 13 0 2 14 0>;
|
||||
interrupt-parent = <&mpc5200_pic>;
|
||||
|
||||
ethernet-switch@0 {
|
||||
compatible = "micrel,ks8995m";
|
||||
spi-max-frequency = <1000000>;
|
||||
reg = <0>;
|
||||
};
|
||||
|
||||
codec@1 {
|
||||
compatible = "ti,tlv320aic26";
|
||||
spi-max-frequency = <100000>;
|
||||
reg = <1>;
|
||||
};
|
||||
};
|
||||
|
||||
VII - Marvell Discovery mv64[345]6x System Controller chips
|
||||
===========================================================
|
||||
|
||||
@ -1896,7 +1953,7 @@ prefixed with the string "marvell,", for Marvell Technology Group Ltd.
|
||||
1) The /system-controller node
|
||||
|
||||
This node is used to represent the system-controller and must be
|
||||
present when the system uses a system contller chip. The top-level
|
||||
present when the system uses a system controller chip. The top-level
|
||||
system-controller node contains information that is global to all
|
||||
devices within the system controller chip. The node name begins
|
||||
with "system-controller" followed by the unit address, which is
|
||||
|
@ -7,6 +7,15 @@ Currently defined compatibles:
|
||||
- fsl,cpm2-scc-uart
|
||||
- fsl,qe-uart
|
||||
|
||||
Modem control lines connected to GPIO controllers are listed in the gpios
|
||||
property as described in booting-without-of.txt, section IX.1 in the following
|
||||
order:
|
||||
|
||||
CTS, RTS, DCD, DSR, DTR, and RI.
|
||||
|
||||
The gpios property is optional and can be left out when control lines are
|
||||
not used.
|
||||
|
||||
Example:
|
||||
|
||||
serial@11a00 {
|
||||
@ -18,4 +27,6 @@ Example:
|
||||
interrupt-parent = <&PIC>;
|
||||
fsl,cpm-brg = <1>;
|
||||
fsl,cpm-command = <00800000>;
|
||||
gpios = <&gpio_c 15 0
|
||||
&gpio_d 29 0>;
|
||||
};
|
||||
|
@ -133,7 +133,7 @@ error. Given an arbitrary address, the routine
|
||||
pci_get_device_by_addr() will find the pci device associated
|
||||
with that address (if any).
|
||||
|
||||
The default include/asm-powerpc/io.h macros readb(), inb(), insb(),
|
||||
The default arch/powerpc/include/asm/io.h macros readb(), inb(), insb(),
|
||||
etc. include a check to see if the i/o read returned all-0xff's.
|
||||
If so, these make a call to eeh_dn_check_failure(), which in turn
|
||||
asks the firmware if the all-ff's value is the sign of a true EEH
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user