mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-17 01:46:30 +07:00
drm/amd/display: Add user_regamma to color module
Signed-off-by: Krunoslav Kovac <Krunoslav.Kovac@amd.com> Reviewed-by: Anthony Koo <Anthony.Koo@amd.com> Acked-by: Harry Wentland <harry.wentland@amd.com> Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
This commit is contained in:
parent
8a79593d77
commit
55a01d4023
@ -185,14 +185,14 @@ struct dividers {
|
||||
|
||||
static void build_coefficients(struct gamma_coefficients *coefficients, bool is_2_4)
|
||||
{
|
||||
static const int32_t numerator01[] = { 31308, 180000};
|
||||
static const int32_t numerator02[] = { 12920, 4500};
|
||||
static const int32_t numerator03[] = { 55, 99};
|
||||
static const int32_t numerator04[] = { 55, 99};
|
||||
static const int32_t numerator05[] = { 2400, 2200};
|
||||
static const int32_t numerator01[] = { 31308, 180000};
|
||||
static const int32_t numerator02[] = { 12920, 4500};
|
||||
static const int32_t numerator03[] = { 55, 99};
|
||||
static const int32_t numerator04[] = { 55, 99};
|
||||
static const int32_t numerator05[] = { 2400, 2200};
|
||||
|
||||
uint32_t i = 0;
|
||||
uint32_t index = is_2_4 == true ? 0:1;
|
||||
uint32_t i = 0;
|
||||
uint32_t index = is_2_4 == true ? 0:1;
|
||||
|
||||
do {
|
||||
coefficients->a0[i] = dal_fixed31_32_from_fraction(
|
||||
@ -691,7 +691,7 @@ static void build_degamma(struct pwl_float_data_ex *curve,
|
||||
}
|
||||
}
|
||||
|
||||
static bool scale_gamma(struct pwl_float_data *pwl_rgb,
|
||||
static void scale_gamma(struct pwl_float_data *pwl_rgb,
|
||||
const struct dc_gamma *ramp,
|
||||
struct dividers dividers)
|
||||
{
|
||||
@ -752,11 +752,9 @@ static bool scale_gamma(struct pwl_float_data *pwl_rgb,
|
||||
dividers.divider3);
|
||||
rgb->b = dal_fixed31_32_mul(rgb_last->b,
|
||||
dividers.divider3);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool scale_gamma_dx(struct pwl_float_data *pwl_rgb,
|
||||
static void scale_gamma_dx(struct pwl_float_data *pwl_rgb,
|
||||
const struct dc_gamma *ramp,
|
||||
struct dividers dividers)
|
||||
{
|
||||
@ -818,8 +816,71 @@ static bool scale_gamma_dx(struct pwl_float_data *pwl_rgb,
|
||||
pwl_rgb[i-1].g, 2), pwl_rgb[i-2].g);
|
||||
pwl_rgb[i].b = dal_fixed31_32_sub(dal_fixed31_32_mul_int(
|
||||
pwl_rgb[i-1].b, 2), pwl_rgb[i-2].b);
|
||||
}
|
||||
|
||||
return true;
|
||||
/* todo: all these scale_gamma functions are inherently the same but
|
||||
* take different structures as params or different format for ramp
|
||||
* values. We could probably implement it in a more generic fashion
|
||||
*/
|
||||
static void scale_user_regamma_ramp(struct pwl_float_data *pwl_rgb,
|
||||
const struct regamma_ramp *ramp,
|
||||
struct dividers dividers)
|
||||
{
|
||||
unsigned short max_driver = 0xFFFF;
|
||||
unsigned short max_os = 0xFF00;
|
||||
unsigned short scaler = max_os;
|
||||
uint32_t i;
|
||||
struct pwl_float_data *rgb = pwl_rgb;
|
||||
struct pwl_float_data *rgb_last = rgb + GAMMA_RGB_256_ENTRIES - 1;
|
||||
|
||||
i = 0;
|
||||
do {
|
||||
if (ramp->gamma[i] > max_os ||
|
||||
ramp->gamma[i + 256] > max_os ||
|
||||
ramp->gamma[i + 512] > max_os) {
|
||||
scaler = max_driver;
|
||||
break;
|
||||
}
|
||||
i++;
|
||||
} while (i != GAMMA_RGB_256_ENTRIES);
|
||||
|
||||
i = 0;
|
||||
do {
|
||||
rgb->r = dal_fixed31_32_from_fraction(
|
||||
ramp->gamma[i], scaler);
|
||||
rgb->g = dal_fixed31_32_from_fraction(
|
||||
ramp->gamma[i + 256], scaler);
|
||||
rgb->b = dal_fixed31_32_from_fraction(
|
||||
ramp->gamma[i + 512], scaler);
|
||||
|
||||
++rgb;
|
||||
++i;
|
||||
} while (i != GAMMA_RGB_256_ENTRIES);
|
||||
|
||||
rgb->r = dal_fixed31_32_mul(rgb_last->r,
|
||||
dividers.divider1);
|
||||
rgb->g = dal_fixed31_32_mul(rgb_last->g,
|
||||
dividers.divider1);
|
||||
rgb->b = dal_fixed31_32_mul(rgb_last->b,
|
||||
dividers.divider1);
|
||||
|
||||
++rgb;
|
||||
|
||||
rgb->r = dal_fixed31_32_mul(rgb_last->r,
|
||||
dividers.divider2);
|
||||
rgb->g = dal_fixed31_32_mul(rgb_last->g,
|
||||
dividers.divider2);
|
||||
rgb->b = dal_fixed31_32_mul(rgb_last->b,
|
||||
dividers.divider2);
|
||||
|
||||
++rgb;
|
||||
|
||||
rgb->r = dal_fixed31_32_mul(rgb_last->r,
|
||||
dividers.divider3);
|
||||
rgb->g = dal_fixed31_32_mul(rgb_last->g,
|
||||
dividers.divider3);
|
||||
rgb->b = dal_fixed31_32_mul(rgb_last->b,
|
||||
dividers.divider3);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -949,7 +1010,7 @@ static inline void copy_rgb_regamma_to_coordinates_x(
|
||||
uint32_t i = 0;
|
||||
const struct pwl_float_data_ex *rgb_regamma = rgb_ex;
|
||||
|
||||
while (i <= hw_points_num) {
|
||||
while (i <= hw_points_num + 1) {
|
||||
coords->regamma_y_red = rgb_regamma->r;
|
||||
coords->regamma_y_green = rgb_regamma->g;
|
||||
coords->regamma_y_blue = rgb_regamma->b;
|
||||
@ -1002,6 +1063,102 @@ static bool calculate_interpolated_hardware_curve(
|
||||
return true;
|
||||
}
|
||||
|
||||
/* The "old" interpolation uses a complicated scheme to build an array of
|
||||
* coefficients while also using an array of 0-255 normalized to 0-1
|
||||
* Then there's another loop using both of the above + new scaled user ramp
|
||||
* and we concatenate them. It also searches for points of interpolation and
|
||||
* uses enums for positions.
|
||||
*
|
||||
* This function uses a different approach:
|
||||
* user ramp is always applied on X with 0/255, 1/255, 2/255, ..., 255/255
|
||||
* To find index for hwX , we notice the following:
|
||||
* i/255 <= hwX < (i+1)/255 <=> i <= 255*hwX < i+1
|
||||
* See apply_lut_1d which is the same principle, but on 4K entry 1D LUT
|
||||
*
|
||||
* Once the index is known, combined Y is simply:
|
||||
* user_ramp(index) + (hwX-index/255)*(user_ramp(index+1) - user_ramp(index)
|
||||
*
|
||||
* We should switch to this method in all cases, it's simpler and faster
|
||||
* ToDo one day - for now this only applies to ADL regamma to avoid regression
|
||||
* for regular use cases (sRGB and PQ)
|
||||
*/
|
||||
static void interpolate_user_regamma(uint32_t hw_points_num,
|
||||
struct pwl_float_data *rgb_user,
|
||||
bool apply_degamma,
|
||||
struct dc_transfer_func_distributed_points *tf_pts)
|
||||
{
|
||||
uint32_t i;
|
||||
uint32_t color = 0;
|
||||
int32_t index;
|
||||
int32_t index_next;
|
||||
struct fixed31_32 *tf_point;
|
||||
struct fixed31_32 hw_x;
|
||||
struct fixed31_32 norm_factor =
|
||||
dal_fixed31_32_from_int_nonconst(255);
|
||||
struct fixed31_32 norm_x;
|
||||
struct fixed31_32 index_f;
|
||||
struct fixed31_32 lut1;
|
||||
struct fixed31_32 lut2;
|
||||
struct fixed31_32 delta_lut;
|
||||
struct fixed31_32 delta_index;
|
||||
|
||||
i = 0;
|
||||
/* fixed_pt library has problems handling too small values */
|
||||
while (i != 32) {
|
||||
tf_pts->red[i] = dal_fixed31_32_zero;
|
||||
tf_pts->green[i] = dal_fixed31_32_zero;
|
||||
tf_pts->blue[i] = dal_fixed31_32_zero;
|
||||
++i;
|
||||
}
|
||||
while (i <= hw_points_num + 1) {
|
||||
for (color = 0; color < 3; color++) {
|
||||
if (color == 0)
|
||||
tf_point = &tf_pts->red[i];
|
||||
else if (color == 1)
|
||||
tf_point = &tf_pts->green[i];
|
||||
else
|
||||
tf_point = &tf_pts->blue[i];
|
||||
|
||||
if (apply_degamma) {
|
||||
if (color == 0)
|
||||
hw_x = coordinates_x[i].regamma_y_red;
|
||||
else if (color == 1)
|
||||
hw_x = coordinates_x[i].regamma_y_green;
|
||||
else
|
||||
hw_x = coordinates_x[i].regamma_y_blue;
|
||||
} else
|
||||
hw_x = coordinates_x[i].x;
|
||||
|
||||
norm_x = dal_fixed31_32_mul(norm_factor, hw_x);
|
||||
index = dal_fixed31_32_floor(norm_x);
|
||||
if (index < 0 || index > 255)
|
||||
continue;
|
||||
|
||||
index_f = dal_fixed31_32_from_int_nonconst(index);
|
||||
index_next = (index == 255) ? index : index + 1;
|
||||
|
||||
if (color == 0) {
|
||||
lut1 = rgb_user[index].r;
|
||||
lut2 = rgb_user[index_next].r;
|
||||
} else if (color == 1) {
|
||||
lut1 = rgb_user[index].g;
|
||||
lut2 = rgb_user[index_next].g;
|
||||
} else {
|
||||
lut1 = rgb_user[index].b;
|
||||
lut2 = rgb_user[index_next].b;
|
||||
}
|
||||
|
||||
// we have everything now, so interpolate
|
||||
delta_lut = dal_fixed31_32_sub(lut2, lut1);
|
||||
delta_index = dal_fixed31_32_sub(norm_x, index_f);
|
||||
|
||||
*tf_point = dal_fixed31_32_add(lut1,
|
||||
dal_fixed31_32_mul(delta_index, delta_lut));
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
static void build_new_custom_resulted_curve(
|
||||
uint32_t hw_points_num,
|
||||
struct dc_transfer_func_distributed_points *tf_pts)
|
||||
@ -1025,6 +1182,29 @@ static void build_new_custom_resulted_curve(
|
||||
}
|
||||
}
|
||||
|
||||
static void apply_degamma_for_user_regamma(struct pwl_float_data_ex *rgb_regamma,
|
||||
uint32_t hw_points_num)
|
||||
{
|
||||
uint32_t i;
|
||||
|
||||
struct gamma_coefficients coeff;
|
||||
struct pwl_float_data_ex *rgb = rgb_regamma;
|
||||
const struct hw_x_point *coord_x = coordinates_x;
|
||||
|
||||
build_coefficients(&coeff, true);
|
||||
|
||||
i = 0;
|
||||
while (i != hw_points_num + 1) {
|
||||
rgb->r = translate_from_linear_space_ex(
|
||||
coord_x->x, &coeff, 0);
|
||||
rgb->g = rgb->r;
|
||||
rgb->b = rgb->r;
|
||||
++coord_x;
|
||||
++rgb;
|
||||
++i;
|
||||
}
|
||||
}
|
||||
|
||||
static bool map_regamma_hw_to_x_user(
|
||||
const struct dc_gamma *ramp,
|
||||
struct pixel_gamma_point *coeff128,
|
||||
@ -1062,6 +1242,7 @@ static bool map_regamma_hw_to_x_user(
|
||||
}
|
||||
}
|
||||
|
||||
/* this should be named differently, all it does is clamp to 0-1 */
|
||||
build_new_custom_resulted_curve(hw_points_num, tf_pts);
|
||||
|
||||
return true;
|
||||
@ -1168,6 +1349,113 @@ bool mod_color_calculate_regamma_params(struct dc_transfer_func *output_tf,
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool calculate_user_regamma_coeff(struct dc_transfer_func *output_tf,
|
||||
const struct regamma_lut *regamma)
|
||||
{
|
||||
struct gamma_coefficients coeff;
|
||||
const struct hw_x_point *coord_x = coordinates_x;
|
||||
uint32_t i = 0;
|
||||
|
||||
do {
|
||||
coeff.a0[i] = dal_fixed31_32_from_fraction(
|
||||
regamma->coeff.A0[i], 10000000);
|
||||
coeff.a1[i] = dal_fixed31_32_from_fraction(
|
||||
regamma->coeff.A1[i], 1000);
|
||||
coeff.a2[i] = dal_fixed31_32_from_fraction(
|
||||
regamma->coeff.A2[i], 1000);
|
||||
coeff.a3[i] = dal_fixed31_32_from_fraction(
|
||||
regamma->coeff.A3[i], 1000);
|
||||
coeff.user_gamma[i] = dal_fixed31_32_from_fraction(
|
||||
regamma->coeff.gamma[i], 1000);
|
||||
|
||||
++i;
|
||||
} while (i != 3);
|
||||
|
||||
i = 0;
|
||||
/* fixed_pt library has problems handling too small values */
|
||||
while (i != 32) {
|
||||
output_tf->tf_pts.red[i] = dal_fixed31_32_zero;
|
||||
output_tf->tf_pts.green[i] = dal_fixed31_32_zero;
|
||||
output_tf->tf_pts.blue[i] = dal_fixed31_32_zero;
|
||||
++coord_x;
|
||||
++i;
|
||||
}
|
||||
while (i != MAX_HW_POINTS + 1) {
|
||||
output_tf->tf_pts.red[i] = translate_from_linear_space_ex(
|
||||
coord_x->x, &coeff, 0);
|
||||
output_tf->tf_pts.green[i] = translate_from_linear_space_ex(
|
||||
coord_x->x, &coeff, 1);
|
||||
output_tf->tf_pts.blue[i] = translate_from_linear_space_ex(
|
||||
coord_x->x, &coeff, 2);
|
||||
++coord_x;
|
||||
++i;
|
||||
}
|
||||
|
||||
// this function just clamps output to 0-1
|
||||
build_new_custom_resulted_curve(MAX_HW_POINTS, &output_tf->tf_pts);
|
||||
output_tf->type = TF_TYPE_DISTRIBUTED_POINTS;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool calculate_user_regamma_ramp(struct dc_transfer_func *output_tf,
|
||||
const struct regamma_lut *regamma)
|
||||
{
|
||||
struct dc_transfer_func_distributed_points *tf_pts = &output_tf->tf_pts;
|
||||
struct dividers dividers;
|
||||
|
||||
struct pwl_float_data *rgb_user = NULL;
|
||||
struct pwl_float_data_ex *rgb_regamma = NULL;
|
||||
bool ret = false;
|
||||
|
||||
if (regamma == NULL)
|
||||
return false;
|
||||
|
||||
output_tf->type = TF_TYPE_DISTRIBUTED_POINTS;
|
||||
|
||||
rgb_user = kzalloc(sizeof(*rgb_user) * (GAMMA_RGB_256_ENTRIES + _EXTRA_POINTS),
|
||||
GFP_KERNEL);
|
||||
if (!rgb_user)
|
||||
goto rgb_user_alloc_fail;
|
||||
|
||||
rgb_regamma = kzalloc(sizeof(*rgb_regamma) * (MAX_HW_POINTS + _EXTRA_POINTS),
|
||||
GFP_KERNEL);
|
||||
if (!rgb_regamma)
|
||||
goto rgb_regamma_alloc_fail;
|
||||
|
||||
dividers.divider1 = dal_fixed31_32_from_fraction(3, 2);
|
||||
dividers.divider2 = dal_fixed31_32_from_int(2);
|
||||
dividers.divider3 = dal_fixed31_32_from_fraction(5, 2);
|
||||
|
||||
scale_user_regamma_ramp(rgb_user, ®amma->ramp, dividers);
|
||||
|
||||
if (regamma->flags.bits.applyDegamma == 1) {
|
||||
apply_degamma_for_user_regamma(rgb_regamma, MAX_HW_POINTS);
|
||||
copy_rgb_regamma_to_coordinates_x(coordinates_x,
|
||||
MAX_HW_POINTS, rgb_regamma);
|
||||
}
|
||||
|
||||
interpolate_user_regamma(MAX_HW_POINTS, rgb_user,
|
||||
regamma->flags.bits.applyDegamma, tf_pts);
|
||||
|
||||
// no custom HDR curves!
|
||||
tf_pts->end_exponent = 0;
|
||||
tf_pts->x_point_at_y1_red = 1;
|
||||
tf_pts->x_point_at_y1_green = 1;
|
||||
tf_pts->x_point_at_y1_blue = 1;
|
||||
|
||||
// this function just clamps output to 0-1
|
||||
build_new_custom_resulted_curve(MAX_HW_POINTS, tf_pts);
|
||||
|
||||
ret = true;
|
||||
|
||||
kfree(rgb_regamma);
|
||||
rgb_regamma_alloc_fail:
|
||||
kfree(rgb_user);
|
||||
rgb_user_alloc_fail:
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool mod_color_calculate_degamma_params(struct dc_transfer_func *input_tf,
|
||||
const struct dc_gamma *ramp, bool mapUserRamp)
|
||||
{
|
||||
|
@ -32,6 +32,47 @@ struct dc_transfer_func_distributed_points;
|
||||
struct dc_rgb_fixed;
|
||||
enum dc_transfer_func_predefined;
|
||||
|
||||
/* For SetRegamma ADL interface support
|
||||
* Must match escape type
|
||||
*/
|
||||
union regamma_flags {
|
||||
unsigned int raw;
|
||||
struct {
|
||||
unsigned int gammaRampArray :1; // RegammaRamp is in use
|
||||
unsigned int gammaFromEdid :1; //gamma from edid is in use
|
||||
unsigned int gammaFromEdidEx :1; //gamma from edid is in use , but only for Display Id 1.2
|
||||
unsigned int gammaFromUser :1; //user custom gamma is used
|
||||
unsigned int coeffFromUser :1; //coeff. A0-A3 from user is in use
|
||||
unsigned int coeffFromEdid :1; //coeff. A0-A3 from edid is in use
|
||||
unsigned int applyDegamma :1; //flag for additional degamma correction in driver
|
||||
unsigned int gammaPredefinedSRGB :1; //flag for SRGB gamma
|
||||
unsigned int gammaPredefinedPQ :1; //flag for PQ gamma
|
||||
unsigned int gammaPredefinedPQ2084Interim :1; //flag for PQ gamma, lower max nits
|
||||
unsigned int gammaPredefined36 :1; //flag for 3.6 gamma
|
||||
unsigned int gammaPredefinedReset :1; //flag to return to previous gamma
|
||||
} bits;
|
||||
};
|
||||
|
||||
struct regamma_ramp {
|
||||
unsigned short gamma[256*3]; // gamma ramp packed in same way as OS windows ,r , g & b
|
||||
};
|
||||
|
||||
struct regamma_coeff {
|
||||
int gamma[3];
|
||||
int A0[3];
|
||||
int A1[3];
|
||||
int A2[3];
|
||||
int A3[3];
|
||||
};
|
||||
|
||||
struct regamma_lut {
|
||||
union regamma_flags flags;
|
||||
union {
|
||||
struct regamma_ramp ramp;
|
||||
struct regamma_coeff coeff;
|
||||
};
|
||||
};
|
||||
|
||||
void setup_x_points_distribution(void);
|
||||
void precompute_pq(void);
|
||||
void precompute_de_pq(void);
|
||||
@ -45,9 +86,14 @@ bool mod_color_calculate_degamma_params(struct dc_transfer_func *output_tf,
|
||||
bool mod_color_calculate_curve(enum dc_transfer_func_predefined trans,
|
||||
struct dc_transfer_func_distributed_points *points);
|
||||
|
||||
bool mod_color_calculate_degamma_curve(enum dc_transfer_func_predefined trans,
|
||||
bool mod_color_calculate_degamma_curve(enum dc_transfer_func_predefined trans,
|
||||
struct dc_transfer_func_distributed_points *points);
|
||||
|
||||
bool calculate_user_regamma_coeff(struct dc_transfer_func *output_tf,
|
||||
const struct regamma_lut *regamma);
|
||||
|
||||
bool calculate_user_regamma_ramp(struct dc_transfer_func *output_tf,
|
||||
const struct regamma_lut *regamma);
|
||||
|
||||
|
||||
#endif /* COLOR_MOD_COLOR_GAMMA_H_ */
|
||||
|
Loading…
Reference in New Issue
Block a user