btrfs: reloc: refactor indirect tree backref processing into its own function

The processing of indirect tree backref (TREE_BLOCK_REF) is the most
complex work.

We need to grab the fs root, do a tree search to locate all its parent
nodes, link all needed edges, and put all uncached edges to pending edge
list.

This is definitely worth a helper function.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This commit is contained in:
Qu Wenruo 2020-03-05 14:22:43 +08:00 committed by David Sterba
parent 4007ea87d9
commit 4d81ea8bb4

View File

@ -773,6 +773,163 @@ static int handle_direct_tree_backref(struct backref_cache *cache,
return 0;
}
/*
* Handle indirect tree backref
*
* Indirect tree backref means, we only know which tree the node belongs to.
* We still need to do a tree search to find out the parents. This is for
* TREE_BLOCK_REF backref (keyed or inlined).
*
* @ref_key: The same as @ref_key in handle_direct_tree_backref()
* @tree_key: The first key of this tree block.
* @path: A clean (released) path, to avoid allocating path everytime
* the function get called.
*/
static int handle_indirect_tree_backref(struct backref_cache *cache,
struct btrfs_path *path,
struct btrfs_key *ref_key,
struct btrfs_key *tree_key,
struct backref_node *cur)
{
struct btrfs_fs_info *fs_info = cache->fs_info;
struct backref_node *upper;
struct backref_node *lower;
struct backref_edge *edge;
struct extent_buffer *eb;
struct btrfs_root *root;
struct rb_node *rb_node;
int level;
bool need_check = true;
int ret;
root = read_fs_root(fs_info, ref_key->offset);
if (IS_ERR(root))
return PTR_ERR(root);
if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
cur->cowonly = 1;
if (btrfs_root_level(&root->root_item) == cur->level) {
/* Tree root */
ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
if (should_ignore_root(root)) {
btrfs_put_root(root);
list_add(&cur->list, &cache->useless_node);
} else {
cur->root = root;
}
return 0;
}
level = cur->level + 1;
/* Search the tree to find parent blocks referring to the block */
path->search_commit_root = 1;
path->skip_locking = 1;
path->lowest_level = level;
ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
path->lowest_level = 0;
if (ret < 0) {
btrfs_put_root(root);
return ret;
}
if (ret > 0 && path->slots[level] > 0)
path->slots[level]--;
eb = path->nodes[level];
if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
btrfs_err(fs_info,
"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
cur->bytenr, level - 1, root->root_key.objectid,
tree_key->objectid, tree_key->type, tree_key->offset);
btrfs_put_root(root);
ret = -ENOENT;
goto out;
}
lower = cur;
/* Add all nodes and edges in the path */
for (; level < BTRFS_MAX_LEVEL; level++) {
if (!path->nodes[level]) {
ASSERT(btrfs_root_bytenr(&root->root_item) ==
lower->bytenr);
if (should_ignore_root(root)) {
btrfs_put_root(root);
list_add(&lower->list, &cache->useless_node);
} else {
lower->root = root;
}
break;
}
edge = alloc_backref_edge(cache);
if (!edge) {
btrfs_put_root(root);
ret = -ENOMEM;
goto out;
}
eb = path->nodes[level];
rb_node = tree_search(&cache->rb_root, eb->start);
if (!rb_node) {
upper = alloc_backref_node(cache);
if (!upper) {
btrfs_put_root(root);
free_backref_edge(cache, edge);
ret = -ENOMEM;
goto out;
}
upper->bytenr = eb->start;
upper->owner = btrfs_header_owner(eb);
upper->level = lower->level + 1;
if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
upper->cowonly = 1;
/*
* If we know the block isn't shared we can avoid
* checking its backrefs.
*/
if (btrfs_block_can_be_shared(root, eb))
upper->checked = 0;
else
upper->checked = 1;
/*
* Add the block to pending list if we need to check its
* backrefs, we only do this once while walking up a
* tree as we will catch anything else later on.
*/
if (!upper->checked && need_check) {
need_check = false;
list_add_tail(&edge->list[UPPER],
&cache->pending_edge);
} else {
if (upper->checked)
need_check = true;
INIT_LIST_HEAD(&edge->list[UPPER]);
}
} else {
upper = rb_entry(rb_node, struct backref_node, rb_node);
ASSERT(upper->checked);
INIT_LIST_HEAD(&edge->list[UPPER]);
if (!upper->owner)
upper->owner = btrfs_header_owner(eb);
}
list_add_tail(&edge->list[LOWER], &lower->upper);
edge->node[LOWER] = lower;
edge->node[UPPER] = upper;
if (rb_node) {
btrfs_put_root(root);
break;
}
lower = upper;
upper = NULL;
}
out:
btrfs_release_path(path);
return ret;
}
/*
* build backref tree for a given tree block. root of the backref tree
* corresponds the tree block, leaves of the backref tree correspond
@ -796,7 +953,6 @@ struct backref_node *build_backref_tree(struct reloc_control *rc,
struct backref_cache *cache = &rc->backref_cache;
/* For searching parent of TREE_BLOCK_REF */
struct btrfs_path *path;
struct btrfs_root *root;
struct backref_node *cur;
struct backref_node *upper;
struct backref_node *lower;
@ -807,7 +963,6 @@ struct backref_node *build_backref_tree(struct reloc_control *rc,
int cowonly;
int ret;
int err = 0;
bool need_check = true;
iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
if (!iter)
@ -936,143 +1091,12 @@ struct backref_node *build_backref_tree(struct reloc_control *rc,
* means the root objectid. We need to search the tree to get
* its parent bytenr.
*/
root = read_fs_root(rc->extent_root->fs_info, key.offset);
if (IS_ERR(root)) {
err = PTR_ERR(root);
goto out;
}
if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
cur->cowonly = 1;
if (btrfs_root_level(&root->root_item) == cur->level) {
/* tree root */
ASSERT(btrfs_root_bytenr(&root->root_item) ==
cur->bytenr);
if (should_ignore_root(root)) {
btrfs_put_root(root);
list_add(&cur->list, &cache->useless_node);
} else {
cur->root = root;
}
break;
}
level = cur->level + 1;
/* Search the tree to find parent blocks referring the block. */
path->search_commit_root = 1;
path->skip_locking = 1;
path->lowest_level = level;
ret = btrfs_search_slot(NULL, root, node_key, path, 0, 0);
path->lowest_level = 0;
ret = handle_indirect_tree_backref(cache, path, &key, node_key,
cur);
if (ret < 0) {
btrfs_put_root(root);
err = ret;
goto out;
}
if (ret > 0 && path->slots[level] > 0)
path->slots[level]--;
eb = path->nodes[level];
if (btrfs_node_blockptr(eb, path->slots[level]) !=
cur->bytenr) {
btrfs_err(root->fs_info,
"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
cur->bytenr, level - 1,
root->root_key.objectid,
node_key->objectid, node_key->type,
node_key->offset);
btrfs_put_root(root);
err = -ENOENT;
goto out;
}
lower = cur;
need_check = true;
/* Add all nodes and edges in the path */
for (; level < BTRFS_MAX_LEVEL; level++) {
if (!path->nodes[level]) {
ASSERT(btrfs_root_bytenr(&root->root_item) ==
lower->bytenr);
if (should_ignore_root(root)) {
btrfs_put_root(root);
list_add(&lower->list,
&cache->useless_node);
} else {
lower->root = root;
}
break;
}
edge = alloc_backref_edge(cache);
if (!edge) {
btrfs_put_root(root);
err = -ENOMEM;
goto out;
}
eb = path->nodes[level];
rb_node = tree_search(&cache->rb_root, eb->start);
if (!rb_node) {
upper = alloc_backref_node(cache);
if (!upper) {
btrfs_put_root(root);
free_backref_edge(cache, edge);
err = -ENOMEM;
goto out;
}
upper->bytenr = eb->start;
upper->owner = btrfs_header_owner(eb);
upper->level = lower->level + 1;
if (!test_bit(BTRFS_ROOT_REF_COWS,
&root->state))
upper->cowonly = 1;
/*
* if we know the block isn't shared
* we can void checking its backrefs.
*/
if (btrfs_block_can_be_shared(root, eb))
upper->checked = 0;
else
upper->checked = 1;
/*
* add the block to pending list if we
* need check its backrefs, we only do this once
* while walking up a tree as we will catch
* anything else later on.
*/
if (!upper->checked && need_check) {
need_check = false;
list_add_tail(&edge->list[UPPER],
&cache->pending_edge);
} else {
if (upper->checked)
need_check = true;
INIT_LIST_HEAD(&edge->list[UPPER]);
}
} else {
upper = rb_entry(rb_node, struct backref_node,
rb_node);
ASSERT(upper->checked);
INIT_LIST_HEAD(&edge->list[UPPER]);
if (!upper->owner)
upper->owner = btrfs_header_owner(eb);
}
list_add_tail(&edge->list[LOWER], &lower->upper);
edge->node[LOWER] = lower;
edge->node[UPPER] = upper;
if (rb_node) {
btrfs_put_root(root);
break;
}
lower = upper;
upper = NULL;
}
btrfs_release_path(path);
}
if (ret < 0) {
err = ret;