arm64 updates for 5.5:

- On ARMv8 CPUs without hardware updates of the access flag, avoid
   failing cow_user_page() on PFN mappings if the pte is old. The patches
   introduce an arch_faults_on_old_pte() macro, defined as false on x86.
   When true, cow_user_page() makes the pte young before attempting
   __copy_from_user_inatomic().
 
 - Covert the synchronous exception handling paths in
   arch/arm64/kernel/entry.S to C.
 
 - FTRACE_WITH_REGS support for arm64.
 
 - ZONE_DMA re-introduced on arm64 to support Raspberry Pi 4
 
 - Several kselftest cases specific to arm64, together with a MAINTAINERS
   update for these files (moved to the ARM64 PORT entry).
 
 - Workaround for a Neoverse-N1 erratum where the CPU may fetch stale
   instructions under certain conditions.
 
 - Workaround for Cortex-A57 and A72 errata where the CPU may
   speculatively execute an AT instruction and associate a VMID with the
   wrong guest page tables (corrupting the TLB).
 
 - Perf updates for arm64: additional PMU topologies on HiSilicon
   platforms, support for CCN-512 interconnect, AXI ID filtering in the
   IMX8 DDR PMU, support for the CCPI2 uncore PMU in ThunderX2.
 
 - GICv3 optimisation to avoid a heavy barrier when accessing the
   ICC_PMR_EL1 register.
 
 - ELF HWCAP documentation updates and clean-up.
 
 - SMC calling convention conduit code clean-up.
 
 - KASLR diagnostics printed during boot
 
 - NVIDIA Carmel CPU added to the KPTI whitelist
 
 - Some arm64 mm clean-ups: use generic free_initrd_mem(), remove stale
   macro, simplify calculation in __create_pgd_mapping(), typos.
 
 - Kconfig clean-ups: CMDLINE_FORCE to depend on CMDLINE, choice for
   endinanness to help with allmodconfig.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl3YJswACgkQa9axLQDI
 XvFwYg//aTGhNLew3ADgW2TYal7LyqetRROixPBrzqHLu2A8No1+QxHMaKxpZVyf
 pt25tABuLtPHql3qBzE0ltmfbLVsPj/3hULo404EJb9HLRfUnVGn7gcPkc+p4YAr
 IYkYPXJbk6OlJ84vI+4vXmDEF12bWCqamC9qZ+h99qTpMjFXFO17DSJ7xQ8Xic3A
 HHgCh4uA7gpTVOhLxaS6KIw+AZNYwvQxLXch2+wj6agbGX79uw9BeMhqVXdkPq8B
 RTDJpOdS970WOT4cHWOkmXwsqqGRqgsgyu+bRUJ0U72+0y6MX0qSHIUnVYGmNc5q
 Dtox4rryYLvkv/hbpkvjgVhv98q3J1mXt/CalChWB5dG4YwhJKN2jMiYuoAvB3WS
 6dR7Dfupgai9gq1uoKgBayS2O6iFLSa4g58vt3EqUBqmM7W7viGFPdLbuVio4ycn
 CNF2xZ8MZR6Wrh1JfggO7Hc11EJdSqESYfHO6V/pYB4pdpnqJLDoriYHXU7RsZrc
 HvnrIvQWKMwNbqBvpNbWvK5mpBMMX2pEienA3wOqKNH7MbepVsG+npOZTVTtl9tN
 FL0ePb/mKJu/2+gW8ntiqYn7EzjKprRmknOiT2FjWWo0PxgJ8lumefuhGZZbaOWt
 /aTAeD7qKd/UXLKGHF/9v3q4GEYUdCFOXP94szWVPyLv+D9h8L8=
 =TPL9
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:
 "Apart from the arm64-specific bits (core arch and perf, new arm64
  selftests), it touches the generic cow_user_page() (reviewed by
  Kirill) together with a macro for x86 to preserve the existing
  behaviour on this architecture.

  Summary:

   - On ARMv8 CPUs without hardware updates of the access flag, avoid
     failing cow_user_page() on PFN mappings if the pte is old. The
     patches introduce an arch_faults_on_old_pte() macro, defined as
     false on x86. When true, cow_user_page() makes the pte young before
     attempting __copy_from_user_inatomic().

   - Covert the synchronous exception handling paths in
     arch/arm64/kernel/entry.S to C.

   - FTRACE_WITH_REGS support for arm64.

   - ZONE_DMA re-introduced on arm64 to support Raspberry Pi 4

   - Several kselftest cases specific to arm64, together with a
     MAINTAINERS update for these files (moved to the ARM64 PORT entry).

   - Workaround for a Neoverse-N1 erratum where the CPU may fetch stale
     instructions under certain conditions.

   - Workaround for Cortex-A57 and A72 errata where the CPU may
     speculatively execute an AT instruction and associate a VMID with
     the wrong guest page tables (corrupting the TLB).

   - Perf updates for arm64: additional PMU topologies on HiSilicon
     platforms, support for CCN-512 interconnect, AXI ID filtering in
     the IMX8 DDR PMU, support for the CCPI2 uncore PMU in ThunderX2.

   - GICv3 optimisation to avoid a heavy barrier when accessing the
     ICC_PMR_EL1 register.

   - ELF HWCAP documentation updates and clean-up.

   - SMC calling convention conduit code clean-up.

   - KASLR diagnostics printed during boot

   - NVIDIA Carmel CPU added to the KPTI whitelist

   - Some arm64 mm clean-ups: use generic free_initrd_mem(), remove
     stale macro, simplify calculation in __create_pgd_mapping(), typos.

   - Kconfig clean-ups: CMDLINE_FORCE to depend on CMDLINE, choice for
     endinanness to help with allmodconfig"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (93 commits)
  arm64: Kconfig: add a choice for endianness
  kselftest: arm64: fix spelling mistake "contiguos" -> "contiguous"
  arm64: Kconfig: make CMDLINE_FORCE depend on CMDLINE
  MAINTAINERS: Add arm64 selftests to the ARM64 PORT entry
  arm64: kaslr: Check command line before looking for a seed
  arm64: kaslr: Announce KASLR status on boot
  kselftest: arm64: fake_sigreturn_misaligned_sp
  kselftest: arm64: fake_sigreturn_bad_size
  kselftest: arm64: fake_sigreturn_duplicated_fpsimd
  kselftest: arm64: fake_sigreturn_missing_fpsimd
  kselftest: arm64: fake_sigreturn_bad_size_for_magic0
  kselftest: arm64: fake_sigreturn_bad_magic
  kselftest: arm64: add helper get_current_context
  kselftest: arm64: extend test_init functionalities
  kselftest: arm64: mangle_pstate_invalid_mode_el[123][ht]
  kselftest: arm64: mangle_pstate_invalid_daif_bits
  kselftest: arm64: mangle_pstate_invalid_compat_toggle and common utils
  kselftest: arm64: extend toplevel skeleton Makefile
  drivers/perf: hisi: update the sccl_id/ccl_id for certain HiSilicon platform
  arm64: mm: reserve CMA and crashkernel in ZONE_DMA32
  ...
This commit is contained in:
Linus Torvalds 2019-11-25 15:39:19 -08:00
commit 4ba380f616
124 changed files with 3534 additions and 928 deletions

View File

@ -17,7 +17,8 @@ The "format" directory describes format of the config (event ID) and config1
(AXI filtering) fields of the perf_event_attr structure, see /sys/bus/event_source/
devices/imx8_ddr0/format/. The "events" directory describes the events types
hardware supported that can be used with perf tool, see /sys/bus/event_source/
devices/imx8_ddr0/events/.
devices/imx8_ddr0/events/. The "caps" directory describes filter features implemented
in DDR PMU, see /sys/bus/events_source/devices/imx8_ddr0/caps/.
e.g.::
perf stat -a -e imx8_ddr0/cycles/ cmd
perf stat -a -e imx8_ddr0/read/,imx8_ddr0/write/ cmd
@ -25,9 +26,12 @@ devices/imx8_ddr0/events/.
AXI filtering is only used by CSV modes 0x41 (axid-read) and 0x42 (axid-write)
to count reading or writing matches filter setting. Filter setting is various
from different DRAM controller implementations, which is distinguished by quirks
in the driver.
in the driver. You also can dump info from userspace, filter in "caps" directory
indicates whether PMU supports AXI ID filter or not; enhanced_filter indicates
whether PMU supports enhanced AXI ID filter or not. Value 0 for un-supported, and
value 1 for supported.
* With DDR_CAP_AXI_ID_FILTER quirk.
* With DDR_CAP_AXI_ID_FILTER quirk(filter: 1, enhanced_filter: 0).
Filter is defined with two configuration parts:
--AXI_ID defines AxID matching value.
--AXI_MASKING defines which bits of AxID are meaningful for the matching.
@ -50,3 +54,8 @@ in the driver.
axi_id to monitor a specific id, rather than having to specify axi_mask.
e.g.::
perf stat -a -e imx8_ddr0/axid-read,axi_id=0x12/ cmd, which will monitor ARID=0x12
* With DDR_CAP_AXI_ID_FILTER_ENHANCED quirk(filter: 1, enhanced_filter: 1).
This is an extension to the DDR_CAP_AXI_ID_FILTER quirk which permits
counting the number of bytes (as opposed to the number of bursts) from DDR
read and write transactions concurrently with another set of data counters.

View File

@ -3,24 +3,26 @@ Cavium ThunderX2 SoC Performance Monitoring Unit (PMU UNCORE)
=============================================================
The ThunderX2 SoC PMU consists of independent, system-wide, per-socket
PMUs such as the Level 3 Cache (L3C) and DDR4 Memory Controller (DMC).
PMUs such as the Level 3 Cache (L3C), DDR4 Memory Controller (DMC) and
Cavium Coherent Processor Interconnect (CCPI2).
The DMC has 8 interleaved channels and the L3C has 16 interleaved tiles.
Events are counted for the default channel (i.e. channel 0) and prorated
to the total number of channels/tiles.
The DMC and L3C support up to 4 counters. Counters are independently
programmable and can be started and stopped individually. Each counter
can be set to a different event. Counters are 32-bit and do not support
an overflow interrupt; they are read every 2 seconds.
The DMC and L3C support up to 4 counters, while the CCPI2 supports up to 8
counters. Counters are independently programmable to different events and
can be started and stopped individually. None of the counters support an
overflow interrupt. DMC and L3C counters are 32-bit and read every 2 seconds.
The CCPI2 counters are 64-bit and assumed not to overflow in normal operation.
PMU UNCORE (perf) driver:
The thunderx2_pmu driver registers per-socket perf PMUs for the DMC and
L3C devices. Each PMU can be used to count up to 4 events
simultaneously. The PMUs provide a description of their available events
and configuration options under sysfs, see
/sys/devices/uncore_<l3c_S/dmc_S/>; S is the socket id.
L3C devices. Each PMU can be used to count up to 4 (DMC/L3C) or up to 8
(CCPI2) events simultaneously. The PMUs provide a description of their
available events and configuration options under sysfs, see
/sys/devices/uncore_<l3c_S/dmc_S/ccpi2_S/>; S is the socket id.
The driver does not support sampling, therefore "perf record" will not
work. Per-task perf sessions are also not supported.

View File

@ -213,6 +213,9 @@ Before jumping into the kernel, the following conditions must be met:
- ICC_SRE_EL3.Enable (bit 3) must be initialiased to 0b1.
- ICC_SRE_EL3.SRE (bit 0) must be initialised to 0b1.
- ICC_CTLR_EL3.PMHE (bit 6) must be set to the same value across
all CPUs the kernel is executing on, and must stay constant
for the lifetime of the kernel.
- If the kernel is entered at EL1:

View File

@ -168,8 +168,15 @@ infrastructure:
+------------------------------+---------+---------+
3) MIDR_EL1 - Main ID Register
3) ID_AA64PFR1_EL1 - Processor Feature Register 1
+------------------------------+---------+---------+
| Name | bits | visible |
+------------------------------+---------+---------+
| SSBS | [7-4] | y |
+------------------------------+---------+---------+
4) MIDR_EL1 - Main ID Register
+------------------------------+---------+---------+
| Name | bits | visible |
+------------------------------+---------+---------+
@ -188,11 +195,15 @@ infrastructure:
as available on the CPU where it is fetched and is not a system
wide safe value.
4) ID_AA64ISAR1_EL1 - Instruction set attribute register 1
5) ID_AA64ISAR1_EL1 - Instruction set attribute register 1
+------------------------------+---------+---------+
| Name | bits | visible |
+------------------------------+---------+---------+
| SB | [39-36] | y |
+------------------------------+---------+---------+
| FRINTTS | [35-32] | y |
+------------------------------+---------+---------+
| GPI | [31-28] | y |
+------------------------------+---------+---------+
| GPA | [27-24] | y |
@ -210,7 +221,7 @@ infrastructure:
| DPB | [3-0] | y |
+------------------------------+---------+---------+
5) ID_AA64MMFR2_EL1 - Memory model feature register 2
6) ID_AA64MMFR2_EL1 - Memory model feature register 2
+------------------------------+---------+---------+
| Name | bits | visible |
@ -218,7 +229,7 @@ infrastructure:
| AT | [35-32] | y |
+------------------------------+---------+---------+
6) ID_AA64ZFR0_EL1 - SVE feature ID register 0
7) ID_AA64ZFR0_EL1 - SVE feature ID register 0
+------------------------------+---------+---------+
| Name | bits | visible |

View File

@ -119,10 +119,6 @@ HWCAP_LRCPC
HWCAP_DCPOP
Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0001.
HWCAP2_DCPODP
Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0010.
HWCAP_SHA3
Functionality implied by ID_AA64ISAR0_EL1.SHA3 == 0b0001.
@ -141,6 +137,41 @@ HWCAP_SHA512
HWCAP_SVE
Functionality implied by ID_AA64PFR0_EL1.SVE == 0b0001.
HWCAP_ASIMDFHM
Functionality implied by ID_AA64ISAR0_EL1.FHM == 0b0001.
HWCAP_DIT
Functionality implied by ID_AA64PFR0_EL1.DIT == 0b0001.
HWCAP_USCAT
Functionality implied by ID_AA64MMFR2_EL1.AT == 0b0001.
HWCAP_ILRCPC
Functionality implied by ID_AA64ISAR1_EL1.LRCPC == 0b0010.
HWCAP_FLAGM
Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0001.
HWCAP_SSBS
Functionality implied by ID_AA64PFR1_EL1.SSBS == 0b0010.
HWCAP_SB
Functionality implied by ID_AA64ISAR1_EL1.SB == 0b0001.
HWCAP_PACA
Functionality implied by ID_AA64ISAR1_EL1.APA == 0b0001 or
ID_AA64ISAR1_EL1.API == 0b0001, as described by
Documentation/arm64/pointer-authentication.rst.
HWCAP_PACG
Functionality implied by ID_AA64ISAR1_EL1.GPA == 0b0001 or
ID_AA64ISAR1_EL1.GPI == 0b0001, as described by
Documentation/arm64/pointer-authentication.rst.
HWCAP2_DCPODP
Functionality implied by ID_AA64ISAR1_EL1.DPB == 0b0010.
HWCAP2_SVE2
Functionality implied by ID_AA64ZFR0_EL1.SVEVer == 0b0001.
@ -165,38 +196,10 @@ HWCAP2_SVESM4
Functionality implied by ID_AA64ZFR0_EL1.SM4 == 0b0001.
HWCAP_ASIMDFHM
Functionality implied by ID_AA64ISAR0_EL1.FHM == 0b0001.
HWCAP_DIT
Functionality implied by ID_AA64PFR0_EL1.DIT == 0b0001.
HWCAP_USCAT
Functionality implied by ID_AA64MMFR2_EL1.AT == 0b0001.
HWCAP_ILRCPC
Functionality implied by ID_AA64ISAR1_EL1.LRCPC == 0b0010.
HWCAP_FLAGM
Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0001.
HWCAP2_FLAGM2
Functionality implied by ID_AA64ISAR0_EL1.TS == 0b0010.
HWCAP_SSBS
Functionality implied by ID_AA64PFR1_EL1.SSBS == 0b0010.
HWCAP_PACA
Functionality implied by ID_AA64ISAR1_EL1.APA == 0b0001 or
ID_AA64ISAR1_EL1.API == 0b0001, as described by
Documentation/arm64/pointer-authentication.rst.
HWCAP_PACG
Functionality implied by ID_AA64ISAR1_EL1.GPA == 0b0001 or
ID_AA64ISAR1_EL1.GPI == 0b0001, as described by
Documentation/arm64/pointer-authentication.rst.
HWCAP2_FRINT
Functionality implied by ID_AA64ISAR1_EL1.FRINTTS == 0b0001.

View File

@ -70,8 +70,12 @@ stable kernels.
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A57 | #834220 | ARM64_ERRATUM_834220 |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A57 | #1319537 | ARM64_ERRATUM_1319367 |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A72 | #853709 | N/A |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A72 | #1319367 | ARM64_ERRATUM_1319367 |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A73 | #858921 | ARM64_ERRATUM_858921 |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Cortex-A55 | #1024718 | ARM64_ERRATUM_1024718 |
@ -88,6 +92,8 @@ stable kernels.
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Neoverse-N1 | #1349291 | N/A |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | Neoverse-N1 | #1542419 | ARM64_ERRATUM_1542419 |
+----------------+-----------------+-----------------+-----------------------------+
| ARM | MMU-500 | #841119,826419 | N/A |
+----------------+-----------------+-----------------+-----------------------------+
+----------------+-----------------+-----------------+-----------------------------+

View File

@ -6,6 +6,7 @@ Required properties:
"arm,ccn-502"
"arm,ccn-504"
"arm,ccn-508"
"arm,ccn-512"
- reg: (standard registers property) physical address and size
(16MB) of the configuration registers block

View File

@ -5,6 +5,7 @@ Required properties:
- compatible: should be one of:
"fsl,imx8-ddr-pmu"
"fsl,imx8m-ddr-pmu"
"fsl,imx8mp-ddr-pmu"
- reg: physical address and size

View File

@ -2611,6 +2611,7 @@ S: Maintained
F: arch/arm64/
X: arch/arm64/boot/dts/
F: Documentation/arm64/
F: tools/testing/selftests/arm64/
AS3645A LED FLASH CONTROLLER DRIVER
M: Sakari Ailus <sakari.ailus@iki.fi>

View File

@ -1,7 +1,6 @@
// SPDX-License-Identifier: GPL-2.0
#include <linux/arm-smccc.h>
#include <linux/kernel.h>
#include <linux/psci.h>
#include <linux/smp.h>
#include <asm/cp15.h>
@ -75,11 +74,8 @@ static void cpu_v7_spectre_init(void)
case ARM_CPU_PART_CORTEX_A72: {
struct arm_smccc_res res;
if (psci_ops.smccc_version == SMCCC_VERSION_1_0)
break;
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
switch (arm_smccc_1_1_get_conduit()) {
case SMCCC_CONDUIT_HVC:
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_1, &res);
if ((int)res.a0 != 0)
@ -90,7 +86,7 @@ static void cpu_v7_spectre_init(void)
spectre_v2_method = "hypervisor";
break;
case PSCI_CONDUIT_SMC:
case SMCCC_CONDUIT_SMC:
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_1, &res);
if ((int)res.a0 != 0)

View File

@ -143,6 +143,8 @@ config ARM64
select HAVE_DEBUG_KMEMLEAK
select HAVE_DMA_CONTIGUOUS
select HAVE_DYNAMIC_FTRACE
select HAVE_DYNAMIC_FTRACE_WITH_REGS \
if $(cc-option,-fpatchable-function-entry=2)
select HAVE_EFFICIENT_UNALIGNED_ACCESS
select HAVE_FAST_GUP
select HAVE_FTRACE_MCOUNT_RECORD
@ -266,6 +268,10 @@ config GENERIC_CSUM
config GENERIC_CALIBRATE_DELAY
def_bool y
config ZONE_DMA
bool "Support DMA zone" if EXPERT
default y
config ZONE_DMA32
bool "Support DMA32 zone" if EXPERT
default y
@ -538,6 +544,16 @@ config ARM64_ERRATUM_1286807
invalidated has been observed by other observers. The
workaround repeats the TLBI+DSB operation.
config ARM64_ERRATUM_1319367
bool "Cortex-A57/A72: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
default y
help
This option adds work arounds for ARM Cortex-A57 erratum 1319537
and A72 erratum 1319367
Cortex-A57 and A72 cores could end-up with corrupted TLBs by
speculating an AT instruction during a guest context switch.
If unsure, say Y.
config ARM64_ERRATUM_1463225
@ -558,6 +574,22 @@ config ARM64_ERRATUM_1463225
If unsure, say Y.
config ARM64_ERRATUM_1542419
bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
default y
help
This option adds a workaround for ARM Neoverse-N1 erratum
1542419.
Affected Neoverse-N1 cores could execute a stale instruction when
modified by another CPU. The workaround depends on a firmware
counterpart.
Workaround the issue by hiding the DIC feature from EL0. This
forces user-space to perform cache maintenance.
If unsure, say Y.
config CAVIUM_ERRATUM_22375
bool "Cavium erratum 22375, 24313"
default y
@ -845,10 +877,26 @@ config ARM64_PA_BITS
default 48 if ARM64_PA_BITS_48
default 52 if ARM64_PA_BITS_52
choice
prompt "Endianness"
default CPU_LITTLE_ENDIAN
help
Select the endianness of data accesses performed by the CPU. Userspace
applications will need to be compiled and linked for the endianness
that is selected here.
config CPU_BIG_ENDIAN
bool "Build big-endian kernel"
help
Say Y if you plan on running a kernel in big-endian mode.
Say Y if you plan on running a kernel with a big-endian userspace.
config CPU_LITTLE_ENDIAN
bool "Build little-endian kernel"
help
Say Y if you plan on running a kernel with a little-endian userspace.
This is usually the case for distributions targeting arm64.
endchoice
config SCHED_MC
bool "Multi-core scheduler support"
@ -1597,6 +1645,7 @@ config CMDLINE
config CMDLINE_FORCE
bool "Always use the default kernel command string"
depends on CMDLINE != ""
help
Always use the default kernel command string, even if the boot
loader passes other arguments to the kernel.

View File

@ -95,6 +95,11 @@ ifeq ($(CONFIG_ARM64_MODULE_PLTS),y)
KBUILD_LDS_MODULE += $(srctree)/arch/arm64/kernel/module.lds
endif
ifeq ($(CONFIG_DYNAMIC_FTRACE_WITH_REGS),y)
KBUILD_CPPFLAGS += -DCC_USING_PATCHABLE_FUNCTION_ENTRY
CC_FLAGS_FTRACE := -fpatchable-function-entry=2
endif
# Default value
head-y := arch/arm64/kernel/head.o

View File

@ -58,12 +58,4 @@ alternative_else_nop_endif
.endm
#endif
/*
* Remove the address tag from a virtual address, if present.
*/
.macro untagged_addr, dst, addr
sbfx \dst, \addr, #0, #56
and \dst, \dst, \addr
.endm
#endif

View File

@ -29,6 +29,18 @@
SB_BARRIER_INSN"nop\n", \
ARM64_HAS_SB))
#ifdef CONFIG_ARM64_PSEUDO_NMI
#define pmr_sync() \
do { \
extern struct static_key_false gic_pmr_sync; \
\
if (static_branch_unlikely(&gic_pmr_sync)) \
dsb(sy); \
} while(0)
#else
#define pmr_sync() do {} while (0)
#endif
#define mb() dsb(sy)
#define rmb() dsb(ld)
#define wmb() dsb(st)

View File

@ -11,6 +11,7 @@
#define CTR_L1IP_MASK 3
#define CTR_DMINLINE_SHIFT 16
#define CTR_IMINLINE_SHIFT 0
#define CTR_IMINLINE_MASK 0xf
#define CTR_ERG_SHIFT 20
#define CTR_CWG_SHIFT 24
#define CTR_CWG_MASK 15
@ -18,7 +19,7 @@
#define CTR_DIC_SHIFT 29
#define CTR_CACHE_MINLINE_MASK \
(0xf << CTR_DMINLINE_SHIFT | 0xf << CTR_IMINLINE_SHIFT)
(0xf << CTR_DMINLINE_SHIFT | CTR_IMINLINE_MASK << CTR_IMINLINE_SHIFT)
#define CTR_L1IP(ctr) (((ctr) >> CTR_L1IP_SHIFT) & CTR_L1IP_MASK)

View File

@ -54,7 +54,9 @@
#define ARM64_WORKAROUND_1463225 44
#define ARM64_WORKAROUND_CAVIUM_TX2_219_TVM 45
#define ARM64_WORKAROUND_CAVIUM_TX2_219_PRFM 46
#define ARM64_WORKAROUND_1542419 47
#define ARM64_WORKAROUND_1319367 48
#define ARM64_NCAPS 47
#define ARM64_NCAPS 49
#endif /* __ASM_CPUCAPS_H */

View File

@ -659,6 +659,20 @@ static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
default: return CONFIG_ARM64_PA_BITS;
}
}
/* Check whether hardware update of the Access flag is supported */
static inline bool cpu_has_hw_af(void)
{
u64 mmfr1;
if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
return false;
mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
return cpuid_feature_extract_unsigned_field(mmfr1,
ID_AA64MMFR1_HADBS_SHIFT);
}
#endif /* __ASSEMBLY__ */
#endif

View File

@ -8,7 +8,9 @@
#include <linux/irqflags.h>
#include <asm/arch_gicv3.h>
#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/ptrace.h>
#define DAIF_PROCCTX 0
#define DAIF_PROCCTX_NOIRQ PSR_I_BIT
@ -65,7 +67,7 @@ static inline void local_daif_restore(unsigned long flags)
if (system_uses_irq_prio_masking()) {
gic_write_pmr(GIC_PRIO_IRQON);
dsb(sy);
pmr_sync();
}
} else if (system_uses_irq_prio_masking()) {
u64 pmr;
@ -109,4 +111,19 @@ static inline void local_daif_restore(unsigned long flags)
trace_hardirqs_off();
}
/*
* Called by synchronous exception handlers to restore the DAIF bits that were
* modified by taking an exception.
*/
static inline void local_daif_inherit(struct pt_regs *regs)
{
unsigned long flags = regs->pstate & DAIF_MASK;
/*
* We can't use local_daif_restore(regs->pstate) here as
* system_has_prio_mask_debugging() won't restore the I bit if it can
* use the pmr instead.
*/
write_sysreg(flags, daif);
}
#endif

View File

@ -8,14 +8,15 @@
#define __ASM_EXCEPTION_H
#include <asm/esr.h>
#include <asm/kprobes.h>
#include <asm/ptrace.h>
#include <linux/interrupt.h>
#define __exception __attribute__((section(".exception.text")))
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
#define __exception_irq_entry __irq_entry
#else
#define __exception_irq_entry __exception
#define __exception_irq_entry __kprobes
#endif
static inline u32 disr_to_esr(u64 disr)
@ -31,5 +32,22 @@ static inline u32 disr_to_esr(u64 disr)
}
asmlinkage void enter_from_user_mode(void);
void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs);
void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs);
void do_undefinstr(struct pt_regs *regs);
asmlinkage void bad_mode(struct pt_regs *regs, int reason, unsigned int esr);
void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
struct pt_regs *regs);
void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs);
void do_sve_acc(unsigned int esr, struct pt_regs *regs);
void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs);
void do_sysinstr(unsigned int esr, struct pt_regs *regs);
void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs);
void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr);
void do_cp15instr(unsigned int esr, struct pt_regs *regs);
void el0_svc_handler(struct pt_regs *regs);
void el0_svc_compat_handler(struct pt_regs *regs);
void do_el0_ia_bp_hardening(unsigned long addr, unsigned int esr,
struct pt_regs *regs);
#endif /* __ASM_EXCEPTION_H */

View File

@ -11,9 +11,20 @@
#include <asm/insn.h>
#define HAVE_FUNCTION_GRAPH_FP_TEST
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
#define ARCH_SUPPORTS_FTRACE_OPS 1
#else
#define MCOUNT_ADDR ((unsigned long)_mcount)
#endif
/* The BL at the callsite's adjusted rec->ip */
#define MCOUNT_INSN_SIZE AARCH64_INSN_SIZE
#define FTRACE_PLT_IDX 0
#define FTRACE_REGS_PLT_IDX 1
#define NR_FTRACE_PLTS 2
/*
* Currently, gcc tends to save the link register after the local variables
* on the stack. This causes the max stack tracer to report the function
@ -43,6 +54,12 @@ extern void return_to_handler(void);
static inline unsigned long ftrace_call_adjust(unsigned long addr)
{
/*
* Adjust addr to point at the BL in the callsite.
* See ftrace_init_nop() for the callsite sequence.
*/
if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS))
return addr + AARCH64_INSN_SIZE;
/*
* addr is the address of the mcount call instruction.
* recordmcount does the necessary offset calculation.
@ -50,6 +67,12 @@ static inline unsigned long ftrace_call_adjust(unsigned long addr)
return addr;
}
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
struct dyn_ftrace;
int ftrace_init_nop(struct module *mod, struct dyn_ftrace *rec);
#define ftrace_init_nop ftrace_init_nop
#endif
#define ftrace_return_address(n) return_address(n)
/*

View File

@ -440,6 +440,9 @@ u32 aarch64_insn_gen_logical_shifted_reg(enum aarch64_insn_register dst,
int shift,
enum aarch64_insn_variant variant,
enum aarch64_insn_logic_type type);
u32 aarch64_insn_gen_move_reg(enum aarch64_insn_register dst,
enum aarch64_insn_register src,
enum aarch64_insn_variant variant);
u32 aarch64_insn_gen_logical_immediate(enum aarch64_insn_logic_type type,
enum aarch64_insn_variant variant,
enum aarch64_insn_register Rn,

View File

@ -6,6 +6,7 @@
#define __ASM_IRQFLAGS_H
#include <asm/alternative.h>
#include <asm/barrier.h>
#include <asm/ptrace.h>
#include <asm/sysreg.h>
@ -34,14 +35,14 @@ static inline void arch_local_irq_enable(void)
}
asm volatile(ALTERNATIVE(
"msr daifclr, #2 // arch_local_irq_enable\n"
"nop",
__msr_s(SYS_ICC_PMR_EL1, "%0")
"dsb sy",
"msr daifclr, #2 // arch_local_irq_enable",
__msr_s(SYS_ICC_PMR_EL1, "%0"),
ARM64_HAS_IRQ_PRIO_MASKING)
:
: "r" ((unsigned long) GIC_PRIO_IRQON)
: "memory");
pmr_sync();
}
static inline void arch_local_irq_disable(void)
@ -116,14 +117,14 @@ static inline unsigned long arch_local_irq_save(void)
static inline void arch_local_irq_restore(unsigned long flags)
{
asm volatile(ALTERNATIVE(
"msr daif, %0\n"
"nop",
__msr_s(SYS_ICC_PMR_EL1, "%0")
"dsb sy",
ARM64_HAS_IRQ_PRIO_MASKING)
"msr daif, %0",
__msr_s(SYS_ICC_PMR_EL1, "%0"),
ARM64_HAS_IRQ_PRIO_MASKING)
:
: "r" (flags)
: "memory");
pmr_sync();
}
#endif /* __ASM_IRQFLAGS_H */

View File

@ -600,8 +600,7 @@ static inline void kvm_arm_vhe_guest_enter(void)
* local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a
* dsb to ensure the redistributor is forwards EL2 IRQs to the CPU.
*/
if (system_uses_irq_prio_masking())
dsb(sy);
pmr_sync();
}
static inline void kvm_arm_vhe_guest_exit(void)

View File

@ -69,12 +69,6 @@
#define KERNEL_START _text
#define KERNEL_END _end
#ifdef CONFIG_ARM64_VA_BITS_52
#define MAX_USER_VA_BITS 52
#else
#define MAX_USER_VA_BITS VA_BITS
#endif
/*
* Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual
* address space for the shadow region respectively. They can bloat the stack

View File

@ -21,7 +21,7 @@ struct mod_arch_specific {
struct mod_plt_sec init;
/* for CONFIG_DYNAMIC_FTRACE */
struct plt_entry *ftrace_trampoline;
struct plt_entry *ftrace_trampolines;
};
#endif

View File

@ -69,7 +69,7 @@
#define PGDIR_SHIFT ARM64_HW_PGTABLE_LEVEL_SHIFT(4 - CONFIG_PGTABLE_LEVELS)
#define PGDIR_SIZE (_AC(1, UL) << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define PTRS_PER_PGD (1 << (MAX_USER_VA_BITS - PGDIR_SHIFT))
#define PTRS_PER_PGD (1 << (VA_BITS - PGDIR_SHIFT))
/*
* Section address mask and size definitions.

View File

@ -17,7 +17,7 @@
* VMALLOC range.
*
* VMALLOC_START: beginning of the kernel vmalloc space
* VMALLOC_END: extends to the available space below vmmemmap, PCI I/O space
* VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
* and fixed mappings
*/
#define VMALLOC_START (MODULES_END)
@ -865,6 +865,20 @@ static inline void update_mmu_cache(struct vm_area_struct *vma,
#define phys_to_ttbr(addr) (addr)
#endif
/*
* On arm64 without hardware Access Flag, copying from user will fail because
* the pte is old and cannot be marked young. So we always end up with zeroed
* page after fork() + CoW for pfn mappings. We don't always have a
* hardware-managed access flag on arm64.
*/
static inline bool arch_faults_on_old_pte(void)
{
WARN_ON(preemptible());
return !cpu_has_hw_af();
}
#define arch_faults_on_old_pte arch_faults_on_old_pte
#endif /* !__ASSEMBLY__ */
#endif /* __ASM_PGTABLE_H */

View File

@ -9,7 +9,7 @@
#define __ASM_PROCESSOR_H
#define KERNEL_DS UL(-1)
#define USER_DS ((UL(1) << MAX_USER_VA_BITS) - 1)
#define USER_DS ((UL(1) << VA_BITS) - 1)
/*
* On arm64 systems, unaligned accesses by the CPU are cheap, and so there is
@ -26,10 +26,12 @@
#include <linux/init.h>
#include <linux/stddef.h>
#include <linux/string.h>
#include <linux/thread_info.h>
#include <asm/alternative.h>
#include <asm/cpufeature.h>
#include <asm/hw_breakpoint.h>
#include <asm/kasan.h>
#include <asm/lse.h>
#include <asm/pgtable-hwdef.h>
#include <asm/pointer_auth.h>
@ -214,6 +216,18 @@ static inline void start_thread(struct pt_regs *regs, unsigned long pc,
regs->sp = sp;
}
static inline bool is_ttbr0_addr(unsigned long addr)
{
/* entry assembly clears tags for TTBR0 addrs */
return addr < TASK_SIZE;
}
static inline bool is_ttbr1_addr(unsigned long addr)
{
/* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
return arch_kasan_reset_tag(addr) >= PAGE_OFFSET;
}
#ifdef CONFIG_COMPAT
static inline void compat_start_thread(struct pt_regs *regs, unsigned long pc,
unsigned long sp)

View File

@ -66,24 +66,18 @@ struct pt_regs;
} \
static inline long __do_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__))
#ifndef SYSCALL_DEFINE0
#define SYSCALL_DEFINE0(sname) \
SYSCALL_METADATA(_##sname, 0); \
asmlinkage long __arm64_sys_##sname(const struct pt_regs *__unused); \
ALLOW_ERROR_INJECTION(__arm64_sys_##sname, ERRNO); \
asmlinkage long __arm64_sys_##sname(const struct pt_regs *__unused)
#endif
#ifndef COND_SYSCALL
#define COND_SYSCALL(name) \
asmlinkage long __weak __arm64_sys_##name(const struct pt_regs *regs) \
{ \
return sys_ni_syscall(); \
}
#endif
#ifndef SYS_NI
#define SYS_NI(name) SYSCALL_ALIAS(__arm64_sys_##name, sys_ni_posix_timers);
#endif
#endif /* __ASM_SYSCALL_WRAPPER_H */

View File

@ -42,16 +42,6 @@ static inline int __in_irqentry_text(unsigned long ptr)
ptr < (unsigned long)&__irqentry_text_end;
}
static inline int in_exception_text(unsigned long ptr)
{
int in;
in = ptr >= (unsigned long)&__exception_text_start &&
ptr < (unsigned long)&__exception_text_end;
return in ? : __in_irqentry_text(ptr);
}
static inline int in_entry_text(unsigned long ptr)
{
return ptr >= (unsigned long)&__entry_text_start &&

View File

@ -13,9 +13,9 @@ CFLAGS_REMOVE_return_address.o = $(CC_FLAGS_FTRACE)
# Object file lists.
obj-y := debug-monitors.o entry.o irq.o fpsimd.o \
entry-fpsimd.o process.o ptrace.o setup.o signal.o \
sys.o stacktrace.o time.o traps.o io.o vdso.o \
hyp-stub.o psci.o cpu_ops.o insn.o \
entry-common.o entry-fpsimd.o process.o ptrace.o \
setup.o signal.o sys.o stacktrace.o time.o traps.o \
io.o vdso.o hyp-stub.o psci.o cpu_ops.o insn.o \
return_address.o cpuinfo.o cpu_errata.o \
cpufeature.o alternative.o cacheinfo.o \
smp.o smp_spin_table.o topology.o smccc-call.o \

View File

@ -56,6 +56,7 @@ int main(void)
DEFINE(S_X24, offsetof(struct pt_regs, regs[24]));
DEFINE(S_X26, offsetof(struct pt_regs, regs[26]));
DEFINE(S_X28, offsetof(struct pt_regs, regs[28]));
DEFINE(S_FP, offsetof(struct pt_regs, regs[29]));
DEFINE(S_LR, offsetof(struct pt_regs, regs[30]));
DEFINE(S_SP, offsetof(struct pt_regs, sp));
DEFINE(S_PSTATE, offsetof(struct pt_regs, pstate));

View File

@ -6,7 +6,6 @@
*/
#include <linux/arm-smccc.h>
#include <linux/psci.h>
#include <linux/types.h>
#include <linux/cpu.h>
#include <asm/cpu.h>
@ -88,13 +87,21 @@ has_mismatched_cache_type(const struct arm64_cpu_capabilities *entry,
}
static void
cpu_enable_trap_ctr_access(const struct arm64_cpu_capabilities *__unused)
cpu_enable_trap_ctr_access(const struct arm64_cpu_capabilities *cap)
{
u64 mask = arm64_ftr_reg_ctrel0.strict_mask;
bool enable_uct_trap = false;
/* Trap CTR_EL0 access on this CPU, only if it has a mismatch */
if ((read_cpuid_cachetype() & mask) !=
(arm64_ftr_reg_ctrel0.sys_val & mask))
enable_uct_trap = true;
/* ... or if the system is affected by an erratum */
if (cap->capability == ARM64_WORKAROUND_1542419)
enable_uct_trap = true;
if (enable_uct_trap)
sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
}
@ -167,9 +174,7 @@ static void install_bp_hardening_cb(bp_hardening_cb_t fn,
}
#endif /* CONFIG_KVM_INDIRECT_VECTORS */
#include <uapi/linux/psci.h>
#include <linux/arm-smccc.h>
#include <linux/psci.h>
static void call_smc_arch_workaround_1(void)
{
@ -213,11 +218,8 @@ static int detect_harden_bp_fw(void)
struct arm_smccc_res res;
u32 midr = read_cpuid_id();
if (psci_ops.smccc_version == SMCCC_VERSION_1_0)
return -1;
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
switch (arm_smccc_1_1_get_conduit()) {
case SMCCC_CONDUIT_HVC:
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_1, &res);
switch ((int)res.a0) {
@ -235,7 +237,7 @@ static int detect_harden_bp_fw(void)
}
break;
case PSCI_CONDUIT_SMC:
case SMCCC_CONDUIT_SMC:
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_1, &res);
switch ((int)res.a0) {
@ -309,11 +311,11 @@ void __init arm64_update_smccc_conduit(struct alt_instr *alt,
BUG_ON(nr_inst != 1);
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
switch (arm_smccc_1_1_get_conduit()) {
case SMCCC_CONDUIT_HVC:
insn = aarch64_insn_get_hvc_value();
break;
case PSCI_CONDUIT_SMC:
case SMCCC_CONDUIT_SMC:
insn = aarch64_insn_get_smc_value();
break;
default:
@ -352,12 +354,12 @@ void arm64_set_ssbd_mitigation(bool state)
return;
}
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
switch (arm_smccc_1_1_get_conduit()) {
case SMCCC_CONDUIT_HVC:
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_WORKAROUND_2, state, NULL);
break;
case PSCI_CONDUIT_SMC:
case SMCCC_CONDUIT_SMC:
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, state, NULL);
break;
@ -391,20 +393,13 @@ static bool has_ssbd_mitigation(const struct arm64_cpu_capabilities *entry,
goto out_printmsg;
}
if (psci_ops.smccc_version == SMCCC_VERSION_1_0) {
ssbd_state = ARM64_SSBD_UNKNOWN;
if (!this_cpu_safe)
__ssb_safe = false;
return false;
}
switch (psci_ops.conduit) {
case PSCI_CONDUIT_HVC:
switch (arm_smccc_1_1_get_conduit()) {
case SMCCC_CONDUIT_HVC:
arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_2, &res);
break;
case PSCI_CONDUIT_SMC:
case SMCCC_CONDUIT_SMC:
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
ARM_SMCCC_ARCH_WORKAROUND_2, &res);
break;
@ -650,9 +645,21 @@ needs_tx2_tvm_workaround(const struct arm64_cpu_capabilities *entry,
return false;
}
#ifdef CONFIG_HARDEN_EL2_VECTORS
static bool __maybe_unused
has_neoverse_n1_erratum_1542419(const struct arm64_cpu_capabilities *entry,
int scope)
{
u32 midr = read_cpuid_id();
bool has_dic = read_cpuid_cachetype() & BIT(CTR_DIC_SHIFT);
const struct midr_range range = MIDR_ALL_VERSIONS(MIDR_NEOVERSE_N1);
static const struct midr_range arm64_harden_el2_vectors[] = {
WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
return is_midr_in_range(midr, &range) && has_dic;
}
#if defined(CONFIG_HARDEN_EL2_VECTORS) || defined(CONFIG_ARM64_ERRATUM_1319367)
static const struct midr_range ca57_a72[] = {
MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
{},
@ -881,7 +888,7 @@ const struct arm64_cpu_capabilities arm64_errata[] = {
{
.desc = "EL2 vector hardening",
.capability = ARM64_HARDEN_EL2_VECTORS,
ERRATA_MIDR_RANGE_LIST(arm64_harden_el2_vectors),
ERRATA_MIDR_RANGE_LIST(ca57_a72),
},
#endif
{
@ -926,6 +933,23 @@ const struct arm64_cpu_capabilities arm64_errata[] = {
.capability = ARM64_WORKAROUND_CAVIUM_TX2_219_PRFM,
ERRATA_MIDR_RANGE_LIST(tx2_family_cpus),
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_1542419
{
/* we depend on the firmware portion for correctness */
.desc = "ARM erratum 1542419 (kernel portion)",
.capability = ARM64_WORKAROUND_1542419,
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.matches = has_neoverse_n1_erratum_1542419,
.cpu_enable = cpu_enable_trap_ctr_access,
},
#endif
#ifdef CONFIG_ARM64_ERRATUM_1319367
{
.desc = "ARM erratum 1319367",
.capability = ARM64_WORKAROUND_1319367,
ERRATA_MIDR_RANGE_LIST(ca57_a72),
},
#endif
{
}

View File

@ -982,6 +982,7 @@ static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
{ /* sentinel */ }
};
char const *str = "kpti command line option";

View File

@ -329,7 +329,7 @@ static void __cpuinfo_store_cpu(struct cpuinfo_arm64 *info)
info->reg_cntfrq = arch_timer_get_cntfrq();
/*
* Use the effective value of the CTR_EL0 than the raw value
* exposed by the CPU. CTR_E0.IDC field value must be interpreted
* exposed by the CPU. CTR_EL0.IDC field value must be interpreted
* with the CLIDR_EL1 fields to avoid triggering false warnings
* when there is a mismatch across the CPUs. Keep track of the
* effective value of the CTR_EL0 in our internal records for

View File

@ -0,0 +1,332 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Exception handling code
*
* Copyright (C) 2019 ARM Ltd.
*/
#include <linux/context_tracking.h>
#include <linux/ptrace.h>
#include <linux/thread_info.h>
#include <asm/cpufeature.h>
#include <asm/daifflags.h>
#include <asm/esr.h>
#include <asm/exception.h>
#include <asm/kprobes.h>
#include <asm/mmu.h>
#include <asm/sysreg.h>
static void notrace el1_abort(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
local_daif_inherit(regs);
far = untagged_addr(far);
do_mem_abort(far, esr, regs);
}
NOKPROBE_SYMBOL(el1_abort);
static void notrace el1_pc(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
local_daif_inherit(regs);
do_sp_pc_abort(far, esr, regs);
}
NOKPROBE_SYMBOL(el1_pc);
static void el1_undef(struct pt_regs *regs)
{
local_daif_inherit(regs);
do_undefinstr(regs);
}
NOKPROBE_SYMBOL(el1_undef);
static void el1_inv(struct pt_regs *regs, unsigned long esr)
{
local_daif_inherit(regs);
bad_mode(regs, 0, esr);
}
NOKPROBE_SYMBOL(el1_inv);
static void notrace el1_dbg(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
/*
* The CPU masked interrupts, and we are leaving them masked during
* do_debug_exception(). Update PMR as if we had called
* local_mask_daif().
*/
if (system_uses_irq_prio_masking())
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
do_debug_exception(far, esr, regs);
}
NOKPROBE_SYMBOL(el1_dbg);
asmlinkage void notrace el1_sync_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_DABT_CUR:
case ESR_ELx_EC_IABT_CUR:
el1_abort(regs, esr);
break;
/*
* We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
* recursive exception when trying to push the initial pt_regs.
*/
case ESR_ELx_EC_PC_ALIGN:
el1_pc(regs, esr);
break;
case ESR_ELx_EC_SYS64:
case ESR_ELx_EC_UNKNOWN:
el1_undef(regs);
break;
case ESR_ELx_EC_BREAKPT_CUR:
case ESR_ELx_EC_SOFTSTP_CUR:
case ESR_ELx_EC_WATCHPT_CUR:
case ESR_ELx_EC_BRK64:
el1_dbg(regs, esr);
break;
default:
el1_inv(regs, esr);
};
}
NOKPROBE_SYMBOL(el1_sync_handler);
static void notrace el0_da(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
far = untagged_addr(far);
do_mem_abort(far, esr, regs);
}
NOKPROBE_SYMBOL(el0_da);
static void notrace el0_ia(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
/*
* We've taken an instruction abort from userspace and not yet
* re-enabled IRQs. If the address is a kernel address, apply
* BP hardening prior to enabling IRQs and pre-emption.
*/
if (!is_ttbr0_addr(far))
arm64_apply_bp_hardening();
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_mem_abort(far, esr, regs);
}
NOKPROBE_SYMBOL(el0_ia);
static void notrace el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_fpsimd_acc(esr, regs);
}
NOKPROBE_SYMBOL(el0_fpsimd_acc);
static void notrace el0_sve_acc(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_sve_acc(esr, regs);
}
NOKPROBE_SYMBOL(el0_sve_acc);
static void notrace el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_fpsimd_exc(esr, regs);
}
NOKPROBE_SYMBOL(el0_fpsimd_exc);
static void notrace el0_sys(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_sysinstr(esr, regs);
}
NOKPROBE_SYMBOL(el0_sys);
static void notrace el0_pc(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
if (!is_ttbr0_addr(instruction_pointer(regs)))
arm64_apply_bp_hardening();
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_sp_pc_abort(far, esr, regs);
}
NOKPROBE_SYMBOL(el0_pc);
static void notrace el0_sp(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX_NOIRQ);
do_sp_pc_abort(regs->sp, esr, regs);
}
NOKPROBE_SYMBOL(el0_sp);
static void notrace el0_undef(struct pt_regs *regs)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_undefinstr(regs);
}
NOKPROBE_SYMBOL(el0_undef);
static void notrace el0_inv(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
bad_el0_sync(regs, 0, esr);
}
NOKPROBE_SYMBOL(el0_inv);
static void notrace el0_dbg(struct pt_regs *regs, unsigned long esr)
{
/* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
unsigned long far = read_sysreg(far_el1);
if (system_uses_irq_prio_masking())
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
user_exit_irqoff();
do_debug_exception(far, esr, regs);
local_daif_restore(DAIF_PROCCTX_NOIRQ);
}
NOKPROBE_SYMBOL(el0_dbg);
static void notrace el0_svc(struct pt_regs *regs)
{
if (system_uses_irq_prio_masking())
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
el0_svc_handler(regs);
}
NOKPROBE_SYMBOL(el0_svc);
asmlinkage void notrace el0_sync_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_SVC64:
el0_svc(regs);
break;
case ESR_ELx_EC_DABT_LOW:
el0_da(regs, esr);
break;
case ESR_ELx_EC_IABT_LOW:
el0_ia(regs, esr);
break;
case ESR_ELx_EC_FP_ASIMD:
el0_fpsimd_acc(regs, esr);
break;
case ESR_ELx_EC_SVE:
el0_sve_acc(regs, esr);
break;
case ESR_ELx_EC_FP_EXC64:
el0_fpsimd_exc(regs, esr);
break;
case ESR_ELx_EC_SYS64:
case ESR_ELx_EC_WFx:
el0_sys(regs, esr);
break;
case ESR_ELx_EC_SP_ALIGN:
el0_sp(regs, esr);
break;
case ESR_ELx_EC_PC_ALIGN:
el0_pc(regs, esr);
break;
case ESR_ELx_EC_UNKNOWN:
el0_undef(regs);
break;
case ESR_ELx_EC_BREAKPT_LOW:
case ESR_ELx_EC_SOFTSTP_LOW:
case ESR_ELx_EC_WATCHPT_LOW:
case ESR_ELx_EC_BRK64:
el0_dbg(regs, esr);
break;
default:
el0_inv(regs, esr);
}
}
NOKPROBE_SYMBOL(el0_sync_handler);
#ifdef CONFIG_COMPAT
static void notrace el0_cp15(struct pt_regs *regs, unsigned long esr)
{
user_exit_irqoff();
local_daif_restore(DAIF_PROCCTX);
do_cp15instr(esr, regs);
}
NOKPROBE_SYMBOL(el0_cp15);
static void notrace el0_svc_compat(struct pt_regs *regs)
{
if (system_uses_irq_prio_masking())
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
el0_svc_compat_handler(regs);
}
NOKPROBE_SYMBOL(el0_svc_compat);
asmlinkage void notrace el0_sync_compat_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_SVC32:
el0_svc_compat(regs);
break;
case ESR_ELx_EC_DABT_LOW:
el0_da(regs, esr);
break;
case ESR_ELx_EC_IABT_LOW:
el0_ia(regs, esr);
break;
case ESR_ELx_EC_FP_ASIMD:
el0_fpsimd_acc(regs, esr);
break;
case ESR_ELx_EC_FP_EXC32:
el0_fpsimd_exc(regs, esr);
break;
case ESR_ELx_EC_PC_ALIGN:
el0_pc(regs, esr);
break;
case ESR_ELx_EC_UNKNOWN:
case ESR_ELx_EC_CP14_MR:
case ESR_ELx_EC_CP14_LS:
case ESR_ELx_EC_CP14_64:
el0_undef(regs);
break;
case ESR_ELx_EC_CP15_32:
case ESR_ELx_EC_CP15_64:
el0_cp15(regs, esr);
break;
case ESR_ELx_EC_BREAKPT_LOW:
case ESR_ELx_EC_SOFTSTP_LOW:
case ESR_ELx_EC_WATCHPT_LOW:
case ESR_ELx_EC_BKPT32:
el0_dbg(regs, esr);
break;
default:
el0_inv(regs, esr);
}
}
NOKPROBE_SYMBOL(el0_sync_compat_handler);
#endif /* CONFIG_COMPAT */

View File

@ -7,10 +7,137 @@
*/
#include <linux/linkage.h>
#include <asm/asm-offsets.h>
#include <asm/assembler.h>
#include <asm/ftrace.h>
#include <asm/insn.h>
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
/*
* Due to -fpatchable-function-entry=2, the compiler has placed two NOPs before
* the regular function prologue. For an enabled callsite, ftrace_init_nop() and
* ftrace_make_call() have patched those NOPs to:
*
* MOV X9, LR
* BL <entry>
*
* ... where <entry> is either ftrace_caller or ftrace_regs_caller.
*
* Each instrumented function follows the AAPCS, so here x0-x8 and x19-x30 are
* live, and x9-x18 are safe to clobber.
*
* We save the callsite's context into a pt_regs before invoking any ftrace
* callbacks. So that we can get a sensible backtrace, we create a stack record
* for the callsite and the ftrace entry assembly. This is not sufficient for
* reliable stacktrace: until we create the callsite stack record, its caller
* is missing from the LR and existing chain of frame records.
*/
.macro ftrace_regs_entry, allregs=0
/* Make room for pt_regs, plus a callee frame */
sub sp, sp, #(S_FRAME_SIZE + 16)
/* Save function arguments (and x9 for simplicity) */
stp x0, x1, [sp, #S_X0]
stp x2, x3, [sp, #S_X2]
stp x4, x5, [sp, #S_X4]
stp x6, x7, [sp, #S_X6]
stp x8, x9, [sp, #S_X8]
/* Optionally save the callee-saved registers, always save the FP */
.if \allregs == 1
stp x10, x11, [sp, #S_X10]
stp x12, x13, [sp, #S_X12]
stp x14, x15, [sp, #S_X14]
stp x16, x17, [sp, #S_X16]
stp x18, x19, [sp, #S_X18]
stp x20, x21, [sp, #S_X20]
stp x22, x23, [sp, #S_X22]
stp x24, x25, [sp, #S_X24]
stp x26, x27, [sp, #S_X26]
stp x28, x29, [sp, #S_X28]
.else
str x29, [sp, #S_FP]
.endif
/* Save the callsite's SP and LR */
add x10, sp, #(S_FRAME_SIZE + 16)
stp x9, x10, [sp, #S_LR]
/* Save the PC after the ftrace callsite */
str x30, [sp, #S_PC]
/* Create a frame record for the callsite above pt_regs */
stp x29, x9, [sp, #S_FRAME_SIZE]
add x29, sp, #S_FRAME_SIZE
/* Create our frame record within pt_regs. */
stp x29, x30, [sp, #S_STACKFRAME]
add x29, sp, #S_STACKFRAME
.endm
ENTRY(ftrace_regs_caller)
ftrace_regs_entry 1
b ftrace_common
ENDPROC(ftrace_regs_caller)
ENTRY(ftrace_caller)
ftrace_regs_entry 0
b ftrace_common
ENDPROC(ftrace_caller)
ENTRY(ftrace_common)
sub x0, x30, #AARCH64_INSN_SIZE // ip (callsite's BL insn)
mov x1, x9 // parent_ip (callsite's LR)
ldr_l x2, function_trace_op // op
mov x3, sp // regs
GLOBAL(ftrace_call)
bl ftrace_stub
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
GLOBAL(ftrace_graph_call) // ftrace_graph_caller();
nop // If enabled, this will be replaced
// "b ftrace_graph_caller"
#endif
/*
* At the callsite x0-x8 and x19-x30 were live. Any C code will have preserved
* x19-x29 per the AAPCS, and we created frame records upon entry, so we need
* to restore x0-x8, x29, and x30.
*/
ftrace_common_return:
/* Restore function arguments */
ldp x0, x1, [sp]
ldp x2, x3, [sp, #S_X2]
ldp x4, x5, [sp, #S_X4]
ldp x6, x7, [sp, #S_X6]
ldr x8, [sp, #S_X8]
/* Restore the callsite's FP, LR, PC */
ldr x29, [sp, #S_FP]
ldr x30, [sp, #S_LR]
ldr x9, [sp, #S_PC]
/* Restore the callsite's SP */
add sp, sp, #S_FRAME_SIZE + 16
ret x9
ENDPROC(ftrace_common)
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
ENTRY(ftrace_graph_caller)
ldr x0, [sp, #S_PC]
sub x0, x0, #AARCH64_INSN_SIZE // ip (callsite's BL insn)
add x1, sp, #S_LR // parent_ip (callsite's LR)
ldr x2, [sp, #S_FRAME_SIZE] // parent fp (callsite's FP)
bl prepare_ftrace_return
b ftrace_common_return
ENDPROC(ftrace_graph_caller)
#else
#endif
#else /* CONFIG_DYNAMIC_FTRACE_WITH_REGS */
/*
* Gcc with -pg will put the following code in the beginning of each function:
* mov x0, x30
@ -160,11 +287,6 @@ GLOBAL(ftrace_graph_call) // ftrace_graph_caller();
mcount_exit
ENDPROC(ftrace_caller)
#endif /* CONFIG_DYNAMIC_FTRACE */
ENTRY(ftrace_stub)
ret
ENDPROC(ftrace_stub)
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/*
@ -184,7 +306,15 @@ ENTRY(ftrace_graph_caller)
mcount_exit
ENDPROC(ftrace_graph_caller)
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */
#endif /* CONFIG_DYNAMIC_FTRACE */
#endif /* CONFIG_DYNAMIC_FTRACE_WITH_REGS */
ENTRY(ftrace_stub)
ret
ENDPROC(ftrace_stub)
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/*
* void return_to_handler(void)
*

View File

@ -269,8 +269,10 @@ alternative_else_nop_endif
alternative_if ARM64_HAS_IRQ_PRIO_MASKING
ldr x20, [sp, #S_PMR_SAVE]
msr_s SYS_ICC_PMR_EL1, x20
/* Ensure priority change is seen by redistributor */
dsb sy
mrs_s x21, SYS_ICC_CTLR_EL1
tbz x21, #6, .L__skip_pmr_sync\@ // Check for ICC_CTLR_EL1.PMHE
dsb sy // Ensure priority change is seen by redistributor
.L__skip_pmr_sync\@:
alternative_else_nop_endif
ldp x21, x22, [sp, #S_PC] // load ELR, SPSR
@ -578,76 +580,9 @@ ENDPROC(el1_error_invalid)
.align 6
el1_sync:
kernel_entry 1
mrs x1, esr_el1 // read the syndrome register
lsr x24, x1, #ESR_ELx_EC_SHIFT // exception class
cmp x24, #ESR_ELx_EC_DABT_CUR // data abort in EL1
b.eq el1_da
cmp x24, #ESR_ELx_EC_IABT_CUR // instruction abort in EL1
b.eq el1_ia
cmp x24, #ESR_ELx_EC_SYS64 // configurable trap
b.eq el1_undef
cmp x24, #ESR_ELx_EC_PC_ALIGN // pc alignment exception
b.eq el1_pc
cmp x24, #ESR_ELx_EC_UNKNOWN // unknown exception in EL1
b.eq el1_undef
cmp x24, #ESR_ELx_EC_BREAKPT_CUR // debug exception in EL1
b.ge el1_dbg
b el1_inv
el1_ia:
/*
* Fall through to the Data abort case
*/
el1_da:
/*
* Data abort handling
*/
mrs x3, far_el1
inherit_daif pstate=x23, tmp=x2
untagged_addr x0, x3
mov x2, sp // struct pt_regs
bl do_mem_abort
kernel_exit 1
el1_pc:
/*
* PC alignment exception handling. We don't handle SP alignment faults,
* since we will have hit a recursive exception when trying to push the
* initial pt_regs.
*/
mrs x0, far_el1
inherit_daif pstate=x23, tmp=x2
mov x2, sp
bl do_sp_pc_abort
ASM_BUG()
el1_undef:
/*
* Undefined instruction
*/
inherit_daif pstate=x23, tmp=x2
mov x0, sp
bl do_undefinstr
bl el1_sync_handler
kernel_exit 1
el1_dbg:
/*
* Debug exception handling
*/
cmp x24, #ESR_ELx_EC_BRK64 // if BRK64
cinc x24, x24, eq // set bit '0'
tbz x24, #0, el1_inv // EL1 only
gic_prio_kentry_setup tmp=x3
mrs x0, far_el1
mov x2, sp // struct pt_regs
bl do_debug_exception
kernel_exit 1
el1_inv:
// TODO: add support for undefined instructions in kernel mode
inherit_daif pstate=x23, tmp=x2
mov x0, sp
mov x2, x1
mov x1, #BAD_SYNC
bl bad_mode
ASM_BUG()
ENDPROC(el1_sync)
.align 6
@ -714,71 +649,18 @@ ENDPROC(el1_irq)
.align 6
el0_sync:
kernel_entry 0
mrs x25, esr_el1 // read the syndrome register
lsr x24, x25, #ESR_ELx_EC_SHIFT // exception class
cmp x24, #ESR_ELx_EC_SVC64 // SVC in 64-bit state
b.eq el0_svc
cmp x24, #ESR_ELx_EC_DABT_LOW // data abort in EL0
b.eq el0_da
cmp x24, #ESR_ELx_EC_IABT_LOW // instruction abort in EL0
b.eq el0_ia
cmp x24, #ESR_ELx_EC_FP_ASIMD // FP/ASIMD access
b.eq el0_fpsimd_acc
cmp x24, #ESR_ELx_EC_SVE // SVE access
b.eq el0_sve_acc
cmp x24, #ESR_ELx_EC_FP_EXC64 // FP/ASIMD exception
b.eq el0_fpsimd_exc
cmp x24, #ESR_ELx_EC_SYS64 // configurable trap
ccmp x24, #ESR_ELx_EC_WFx, #4, ne
b.eq el0_sys
cmp x24, #ESR_ELx_EC_SP_ALIGN // stack alignment exception
b.eq el0_sp
cmp x24, #ESR_ELx_EC_PC_ALIGN // pc alignment exception
b.eq el0_pc
cmp x24, #ESR_ELx_EC_UNKNOWN // unknown exception in EL0
b.eq el0_undef
cmp x24, #ESR_ELx_EC_BREAKPT_LOW // debug exception in EL0
b.ge el0_dbg
b el0_inv
mov x0, sp
bl el0_sync_handler
b ret_to_user
#ifdef CONFIG_COMPAT
.align 6
el0_sync_compat:
kernel_entry 0, 32
mrs x25, esr_el1 // read the syndrome register
lsr x24, x25, #ESR_ELx_EC_SHIFT // exception class
cmp x24, #ESR_ELx_EC_SVC32 // SVC in 32-bit state
b.eq el0_svc_compat
cmp x24, #ESR_ELx_EC_DABT_LOW // data abort in EL0
b.eq el0_da
cmp x24, #ESR_ELx_EC_IABT_LOW // instruction abort in EL0
b.eq el0_ia
cmp x24, #ESR_ELx_EC_FP_ASIMD // FP/ASIMD access
b.eq el0_fpsimd_acc
cmp x24, #ESR_ELx_EC_FP_EXC32 // FP/ASIMD exception
b.eq el0_fpsimd_exc
cmp x24, #ESR_ELx_EC_PC_ALIGN // pc alignment exception
b.eq el0_pc
cmp x24, #ESR_ELx_EC_UNKNOWN // unknown exception in EL0
b.eq el0_undef
cmp x24, #ESR_ELx_EC_CP15_32 // CP15 MRC/MCR trap
b.eq el0_cp15
cmp x24, #ESR_ELx_EC_CP15_64 // CP15 MRRC/MCRR trap
b.eq el0_cp15
cmp x24, #ESR_ELx_EC_CP14_MR // CP14 MRC/MCR trap
b.eq el0_undef
cmp x24, #ESR_ELx_EC_CP14_LS // CP14 LDC/STC trap
b.eq el0_undef
cmp x24, #ESR_ELx_EC_CP14_64 // CP14 MRRC/MCRR trap
b.eq el0_undef
cmp x24, #ESR_ELx_EC_BREAKPT_LOW // debug exception in EL0
b.ge el0_dbg
b el0_inv
el0_svc_compat:
gic_prio_kentry_setup tmp=x1
mov x0, sp
bl el0_svc_compat_handler
bl el0_sync_compat_handler
b ret_to_user
ENDPROC(el0_sync)
.align 6
el0_irq_compat:
@ -788,140 +670,8 @@ el0_irq_compat:
el0_error_compat:
kernel_entry 0, 32
b el0_error_naked
el0_cp15:
/*
* Trapped CP15 (MRC, MCR, MRRC, MCRR) instructions
*/
ct_user_exit_irqoff
enable_daif
mov x0, x25
mov x1, sp
bl do_cp15instr
b ret_to_user
#endif
el0_da:
/*
* Data abort handling
*/
mrs x26, far_el1
ct_user_exit_irqoff
enable_daif
untagged_addr x0, x26
mov x1, x25
mov x2, sp
bl do_mem_abort
b ret_to_user
el0_ia:
/*
* Instruction abort handling
*/
mrs x26, far_el1
gic_prio_kentry_setup tmp=x0
ct_user_exit_irqoff
enable_da_f
#ifdef CONFIG_TRACE_IRQFLAGS
bl trace_hardirqs_off
#endif
mov x0, x26
mov x1, x25
mov x2, sp
bl do_el0_ia_bp_hardening
b ret_to_user
el0_fpsimd_acc:
/*
* Floating Point or Advanced SIMD access
*/
ct_user_exit_irqoff
enable_daif
mov x0, x25
mov x1, sp
bl do_fpsimd_acc
b ret_to_user
el0_sve_acc:
/*
* Scalable Vector Extension access
*/
ct_user_exit_irqoff
enable_daif
mov x0, x25
mov x1, sp
bl do_sve_acc
b ret_to_user
el0_fpsimd_exc:
/*
* Floating Point, Advanced SIMD or SVE exception
*/
ct_user_exit_irqoff
enable_daif
mov x0, x25
mov x1, sp
bl do_fpsimd_exc
b ret_to_user
el0_sp:
ldr x26, [sp, #S_SP]
b el0_sp_pc
el0_pc:
mrs x26, far_el1
el0_sp_pc:
/*
* Stack or PC alignment exception handling
*/
gic_prio_kentry_setup tmp=x0
ct_user_exit_irqoff
enable_da_f
#ifdef CONFIG_TRACE_IRQFLAGS
bl trace_hardirqs_off
#endif
mov x0, x26
mov x1, x25
mov x2, sp
bl do_sp_pc_abort
b ret_to_user
el0_undef:
/*
* Undefined instruction
*/
ct_user_exit_irqoff
enable_daif
mov x0, sp
bl do_undefinstr
b ret_to_user
el0_sys:
/*
* System instructions, for trapped cache maintenance instructions
*/
ct_user_exit_irqoff
enable_daif
mov x0, x25
mov x1, sp
bl do_sysinstr
b ret_to_user
el0_dbg:
/*
* Debug exception handling
*/
tbnz x24, #0, el0_inv // EL0 only
mrs x24, far_el1
gic_prio_kentry_setup tmp=x3
ct_user_exit_irqoff
mov x0, x24
mov x1, x25
mov x2, sp
bl do_debug_exception
enable_da_f
b ret_to_user
el0_inv:
ct_user_exit_irqoff
enable_daif
mov x0, sp
mov x1, #BAD_SYNC
mov x2, x25
bl bad_el0_sync
b ret_to_user
ENDPROC(el0_sync)
.align 6
el0_irq:
kernel_entry 0
@ -999,17 +749,6 @@ finish_ret_to_user:
kernel_exit 0
ENDPROC(ret_to_user)
/*
* SVC handler.
*/
.align 6
el0_svc:
gic_prio_kentry_setup tmp=x1
mov x0, sp
bl el0_svc_handler
b ret_to_user
ENDPROC(el0_svc)
.popsection // .entry.text
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0

View File

@ -920,7 +920,7 @@ void fpsimd_release_task(struct task_struct *dead_task)
* would have disabled the SVE access trap for userspace during
* ret_to_user, making an SVE access trap impossible in that case.
*/
asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
void do_sve_acc(unsigned int esr, struct pt_regs *regs)
{
/* Even if we chose not to use SVE, the hardware could still trap: */
if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
@ -947,7 +947,7 @@ asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
/*
* Trapped FP/ASIMD access.
*/
asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
{
/* TODO: implement lazy context saving/restoring */
WARN_ON(1);
@ -956,7 +956,7 @@ asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
/*
* Raise a SIGFPE for the current process.
*/
asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
{
unsigned int si_code = FPE_FLTUNK;

View File

@ -62,6 +62,19 @@ int ftrace_update_ftrace_func(ftrace_func_t func)
return ftrace_modify_code(pc, 0, new, false);
}
static struct plt_entry *get_ftrace_plt(struct module *mod, unsigned long addr)
{
#ifdef CONFIG_ARM64_MODULE_PLTS
struct plt_entry *plt = mod->arch.ftrace_trampolines;
if (addr == FTRACE_ADDR)
return &plt[FTRACE_PLT_IDX];
if (addr == FTRACE_REGS_ADDR && IS_ENABLED(CONFIG_FTRACE_WITH_REGS))
return &plt[FTRACE_REGS_PLT_IDX];
#endif
return NULL;
}
/*
* Turn on the call to ftrace_caller() in instrumented function
*/
@ -72,9 +85,11 @@ int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
long offset = (long)pc - (long)addr;
if (offset < -SZ_128M || offset >= SZ_128M) {
#ifdef CONFIG_ARM64_MODULE_PLTS
struct plt_entry trampoline, *dst;
struct module *mod;
struct plt_entry *plt;
if (!IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
return -EINVAL;
/*
* On kernels that support module PLTs, the offset between the
@ -93,49 +108,13 @@ int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
if (WARN_ON(!mod))
return -EINVAL;
/*
* There is only one ftrace trampoline per module. For now,
* this is not a problem since on arm64, all dynamic ftrace
* invocations are routed via ftrace_caller(). This will need
* to be revisited if support for multiple ftrace entry points
* is added in the future, but for now, the pr_err() below
* deals with a theoretical issue only.
*
* Note that PLTs are place relative, and plt_entries_equal()
* checks whether they point to the same target. Here, we need
* to check if the actual opcodes are in fact identical,
* regardless of the offset in memory so use memcmp() instead.
*/
dst = mod->arch.ftrace_trampoline;
trampoline = get_plt_entry(addr, dst);
if (memcmp(dst, &trampoline, sizeof(trampoline))) {
if (plt_entry_is_initialized(dst)) {
pr_err("ftrace: far branches to multiple entry points unsupported inside a single module\n");
return -EINVAL;
}
/* point the trampoline to our ftrace entry point */
module_disable_ro(mod);
*dst = trampoline;
module_enable_ro(mod, true);
/*
* Ensure updated trampoline is visible to instruction
* fetch before we patch in the branch. Although the
* architecture doesn't require an IPI in this case,
* Neoverse-N1 erratum #1542419 does require one
* if the TLB maintenance in module_enable_ro() is
* skipped due to rodata_enabled. It doesn't seem worth
* it to make it conditional given that this is
* certainly not a fast-path.
*/
flush_icache_range((unsigned long)&dst[0],
(unsigned long)&dst[1]);
plt = get_ftrace_plt(mod, addr);
if (!plt) {
pr_err("ftrace: no module PLT for %ps\n", (void *)addr);
return -EINVAL;
}
addr = (unsigned long)dst;
#else /* CONFIG_ARM64_MODULE_PLTS */
return -EINVAL;
#endif /* CONFIG_ARM64_MODULE_PLTS */
addr = (unsigned long)plt;
}
old = aarch64_insn_gen_nop();
@ -144,6 +123,55 @@ int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
return ftrace_modify_code(pc, old, new, true);
}
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
int ftrace_modify_call(struct dyn_ftrace *rec, unsigned long old_addr,
unsigned long addr)
{
unsigned long pc = rec->ip;
u32 old, new;
old = aarch64_insn_gen_branch_imm(pc, old_addr,
AARCH64_INSN_BRANCH_LINK);
new = aarch64_insn_gen_branch_imm(pc, addr, AARCH64_INSN_BRANCH_LINK);
return ftrace_modify_code(pc, old, new, true);
}
/*
* The compiler has inserted two NOPs before the regular function prologue.
* All instrumented functions follow the AAPCS, so x0-x8 and x19-x30 are live,
* and x9-x18 are free for our use.
*
* At runtime we want to be able to swing a single NOP <-> BL to enable or
* disable the ftrace call. The BL requires us to save the original LR value,
* so here we insert a <MOV X9, LR> over the first NOP so the instructions
* before the regular prologue are:
*
* | Compiled | Disabled | Enabled |
* +----------+------------+------------+
* | NOP | MOV X9, LR | MOV X9, LR |
* | NOP | NOP | BL <entry> |
*
* The LR value will be recovered by ftrace_regs_entry, and restored into LR
* before returning to the regular function prologue. When a function is not
* being traced, the MOV is not harmful given x9 is not live per the AAPCS.
*
* Note: ftrace_process_locs() has pre-adjusted rec->ip to be the address of
* the BL.
*/
int ftrace_init_nop(struct module *mod, struct dyn_ftrace *rec)
{
unsigned long pc = rec->ip - AARCH64_INSN_SIZE;
u32 old, new;
old = aarch64_insn_gen_nop();
new = aarch64_insn_gen_move_reg(AARCH64_INSN_REG_9,
AARCH64_INSN_REG_LR,
AARCH64_INSN_VARIANT_64BIT);
return ftrace_modify_code(pc, old, new, true);
}
#endif
/*
* Turn off the call to ftrace_caller() in instrumented function
*/
@ -156,9 +184,11 @@ int ftrace_make_nop(struct module *mod, struct dyn_ftrace *rec,
long offset = (long)pc - (long)addr;
if (offset < -SZ_128M || offset >= SZ_128M) {
#ifdef CONFIG_ARM64_MODULE_PLTS
u32 replaced;
if (!IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
return -EINVAL;
/*
* 'mod' is only set at module load time, but if we end up
* dealing with an out-of-range condition, we can assume it
@ -189,9 +219,6 @@ int ftrace_make_nop(struct module *mod, struct dyn_ftrace *rec,
return -EINVAL;
validate = false;
#else /* CONFIG_ARM64_MODULE_PLTS */
return -EINVAL;
#endif /* CONFIG_ARM64_MODULE_PLTS */
} else {
old = aarch64_insn_gen_branch_imm(pc, addr,
AARCH64_INSN_BRANCH_LINK);

View File

@ -1268,6 +1268,19 @@ u32 aarch64_insn_gen_logical_shifted_reg(enum aarch64_insn_register dst,
return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_6, insn, shift);
}
/*
* MOV (register) is architecturally an alias of ORR (shifted register) where
* MOV <*d>, <*m> is equivalent to ORR <*d>, <*ZR>, <*m>
*/
u32 aarch64_insn_gen_move_reg(enum aarch64_insn_register dst,
enum aarch64_insn_register src,
enum aarch64_insn_variant variant)
{
return aarch64_insn_gen_logical_shifted_reg(dst, AARCH64_INSN_REG_ZR,
src, 0, variant,
AARCH64_INSN_LOGIC_ORR);
}
u32 aarch64_insn_gen_adr(unsigned long pc, unsigned long addr,
enum aarch64_insn_register reg,
enum aarch64_insn_adr_type type)

View File

@ -19,6 +19,14 @@
#include <asm/pgtable.h>
#include <asm/sections.h>
enum kaslr_status {
KASLR_ENABLED,
KASLR_DISABLED_CMDLINE,
KASLR_DISABLED_NO_SEED,
KASLR_DISABLED_FDT_REMAP,
};
static enum kaslr_status __initdata kaslr_status;
u64 __ro_after_init module_alloc_base;
u16 __initdata memstart_offset_seed;
@ -91,15 +99,15 @@ u64 __init kaslr_early_init(u64 dt_phys)
*/
early_fixmap_init();
fdt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
if (!fdt)
if (!fdt) {
kaslr_status = KASLR_DISABLED_FDT_REMAP;
return 0;
}
/*
* Retrieve (and wipe) the seed from the FDT
*/
seed = get_kaslr_seed(fdt);
if (!seed)
return 0;
/*
* Check if 'nokaslr' appears on the command line, and
@ -107,8 +115,15 @@ u64 __init kaslr_early_init(u64 dt_phys)
*/
cmdline = kaslr_get_cmdline(fdt);
str = strstr(cmdline, "nokaslr");
if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
if (str == cmdline || (str > cmdline && *(str - 1) == ' ')) {
kaslr_status = KASLR_DISABLED_CMDLINE;
return 0;
}
if (!seed) {
kaslr_status = KASLR_DISABLED_NO_SEED;
return 0;
}
/*
* OK, so we are proceeding with KASLR enabled. Calculate a suitable
@ -170,3 +185,24 @@ u64 __init kaslr_early_init(u64 dt_phys)
return offset;
}
static int __init kaslr_init(void)
{
switch (kaslr_status) {
case KASLR_ENABLED:
pr_info("KASLR enabled\n");
break;
case KASLR_DISABLED_CMDLINE:
pr_info("KASLR disabled on command line\n");
break;
case KASLR_DISABLED_NO_SEED:
pr_warn("KASLR disabled due to lack of seed\n");
break;
case KASLR_DISABLED_FDT_REMAP:
pr_warn("KASLR disabled due to FDT remapping failure\n");
break;
}
return 0;
}
core_initcall(kaslr_init)

View File

@ -4,6 +4,7 @@
*/
#include <linux/elf.h>
#include <linux/ftrace.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sort.h>
@ -330,7 +331,7 @@ int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
tramp->sh_type = SHT_NOBITS;
tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
tramp->sh_addralign = __alignof__(struct plt_entry);
tramp->sh_size = sizeof(struct plt_entry);
tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
}
return 0;

View File

@ -9,6 +9,7 @@
#include <linux/bitops.h>
#include <linux/elf.h>
#include <linux/ftrace.h>
#include <linux/gfp.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
@ -470,22 +471,58 @@ int apply_relocate_add(Elf64_Shdr *sechdrs,
return -ENOEXEC;
}
int module_finalize(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *me)
static const Elf_Shdr *find_section(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
const char *name)
{
const Elf_Shdr *s, *se;
const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
if (strcmp(".altinstructions", secstrs + s->sh_name) == 0)
apply_alternatives_module((void *)s->sh_addr, s->sh_size);
#ifdef CONFIG_ARM64_MODULE_PLTS
if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
!strcmp(".text.ftrace_trampoline", secstrs + s->sh_name))
me->arch.ftrace_trampoline = (void *)s->sh_addr;
#endif
if (strcmp(name, secstrs + s->sh_name) == 0)
return s;
}
return NULL;
}
static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
{
*plt = get_plt_entry(addr, plt);
}
static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *mod)
{
#if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE)
const Elf_Shdr *s;
struct plt_entry *plts;
s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
if (!s)
return -ENOEXEC;
plts = (void *)s->sh_addr;
__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS))
__init_plt(&plts[FTRACE_REGS_PLT_IDX], FTRACE_REGS_ADDR);
mod->arch.ftrace_trampolines = plts;
#endif
return 0;
}
int module_finalize(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *me)
{
const Elf_Shdr *s;
s = find_section(hdr, sechdrs, ".altinstructions");
if (s)
apply_alternatives_module((void *)s->sh_addr, s->sh_size);
return module_init_ftrace_plt(hdr, sechdrs, me);
}

View File

@ -158,133 +158,74 @@ armv8pmu_events_sysfs_show(struct device *dev,
return sprintf(page, "event=0x%03llx\n", pmu_attr->id);
}
#define ARMV8_EVENT_ATTR(name, config) \
PMU_EVENT_ATTR(name, armv8_event_attr_##name, \
config, armv8pmu_events_sysfs_show)
ARMV8_EVENT_ATTR(sw_incr, ARMV8_PMUV3_PERFCTR_SW_INCR);
ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL);
ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL);
ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL);
ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE);
ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL);
ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED);
ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED);
ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED);
ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN);
ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN);
ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED);
ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED);
ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED);
ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED);
ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED);
ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED);
ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES);
ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED);
ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS);
ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE);
ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB);
ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE);
ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL);
ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB);
ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS);
ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR);
ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC);
ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED);
ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES);
/* Don't expose the chain event in /sys, since it's useless in isolation */
ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE);
ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE);
ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED);
ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED);
ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND);
ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND);
ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB);
ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB);
ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE);
ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL);
ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE);
ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL);
ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE);
ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB);
ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL);
ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL);
ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB);
ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB);
ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS);
ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE);
ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS);
ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK);
ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK);
ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD);
ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD);
ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD);
ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP);
ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED);
ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE);
ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION);
#define ARMV8_EVENT_ATTR(name, config) \
(&((struct perf_pmu_events_attr) { \
.attr = __ATTR(name, 0444, armv8pmu_events_sysfs_show, NULL), \
.id = config, \
}).attr.attr)
static struct attribute *armv8_pmuv3_event_attrs[] = {
&armv8_event_attr_sw_incr.attr.attr,
&armv8_event_attr_l1i_cache_refill.attr.attr,
&armv8_event_attr_l1i_tlb_refill.attr.attr,
&armv8_event_attr_l1d_cache_refill.attr.attr,
&armv8_event_attr_l1d_cache.attr.attr,
&armv8_event_attr_l1d_tlb_refill.attr.attr,
&armv8_event_attr_ld_retired.attr.attr,
&armv8_event_attr_st_retired.attr.attr,
&armv8_event_attr_inst_retired.attr.attr,
&armv8_event_attr_exc_taken.attr.attr,
&armv8_event_attr_exc_return.attr.attr,
&armv8_event_attr_cid_write_retired.attr.attr,
&armv8_event_attr_pc_write_retired.attr.attr,
&armv8_event_attr_br_immed_retired.attr.attr,
&armv8_event_attr_br_return_retired.attr.attr,
&armv8_event_attr_unaligned_ldst_retired.attr.attr,
&armv8_event_attr_br_mis_pred.attr.attr,
&armv8_event_attr_cpu_cycles.attr.attr,
&armv8_event_attr_br_pred.attr.attr,
&armv8_event_attr_mem_access.attr.attr,
&armv8_event_attr_l1i_cache.attr.attr,
&armv8_event_attr_l1d_cache_wb.attr.attr,
&armv8_event_attr_l2d_cache.attr.attr,
&armv8_event_attr_l2d_cache_refill.attr.attr,
&armv8_event_attr_l2d_cache_wb.attr.attr,
&armv8_event_attr_bus_access.attr.attr,
&armv8_event_attr_memory_error.attr.attr,
&armv8_event_attr_inst_spec.attr.attr,
&armv8_event_attr_ttbr_write_retired.attr.attr,
&armv8_event_attr_bus_cycles.attr.attr,
&armv8_event_attr_l1d_cache_allocate.attr.attr,
&armv8_event_attr_l2d_cache_allocate.attr.attr,
&armv8_event_attr_br_retired.attr.attr,
&armv8_event_attr_br_mis_pred_retired.attr.attr,
&armv8_event_attr_stall_frontend.attr.attr,
&armv8_event_attr_stall_backend.attr.attr,
&armv8_event_attr_l1d_tlb.attr.attr,
&armv8_event_attr_l1i_tlb.attr.attr,
&armv8_event_attr_l2i_cache.attr.attr,
&armv8_event_attr_l2i_cache_refill.attr.attr,
&armv8_event_attr_l3d_cache_allocate.attr.attr,
&armv8_event_attr_l3d_cache_refill.attr.attr,
&armv8_event_attr_l3d_cache.attr.attr,
&armv8_event_attr_l3d_cache_wb.attr.attr,
&armv8_event_attr_l2d_tlb_refill.attr.attr,
&armv8_event_attr_l2i_tlb_refill.attr.attr,
&armv8_event_attr_l2d_tlb.attr.attr,
&armv8_event_attr_l2i_tlb.attr.attr,
&armv8_event_attr_remote_access.attr.attr,
&armv8_event_attr_ll_cache.attr.attr,
&armv8_event_attr_ll_cache_miss.attr.attr,
&armv8_event_attr_dtlb_walk.attr.attr,
&armv8_event_attr_itlb_walk.attr.attr,
&armv8_event_attr_ll_cache_rd.attr.attr,
&armv8_event_attr_ll_cache_miss_rd.attr.attr,
&armv8_event_attr_remote_access_rd.attr.attr,
&armv8_event_attr_sample_pop.attr.attr,
&armv8_event_attr_sample_feed.attr.attr,
&armv8_event_attr_sample_filtrate.attr.attr,
&armv8_event_attr_sample_collision.attr.attr,
ARMV8_EVENT_ATTR(sw_incr, ARMV8_PMUV3_PERFCTR_SW_INCR),
ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL),
ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL),
ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL),
ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE),
ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL),
ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED),
ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED),
ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED),
ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN),
ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN),
ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED),
ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED),
ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED),
ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED),
ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED),
ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED),
ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES),
ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED),
ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS),
ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE),
ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB),
ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE),
ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL),
ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB),
ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS),
ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR),
ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC),
ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED),
ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES),
/* Don't expose the chain event in /sys, since it's useless in isolation */
ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE),
ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE),
ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED),
ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED),
ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND),
ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND),
ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB),
ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB),
ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE),
ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL),
ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE),
ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL),
ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE),
ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB),
ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL),
ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL),
ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB),
ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB),
ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS),
ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE),
ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS),
ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK),
ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK),
ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD),
ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD),
ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD),
ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP),
ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED),
ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE),
ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION),
NULL,
};

View File

@ -455,10 +455,6 @@ int __init arch_populate_kprobe_blacklist(void)
(unsigned long)__irqentry_text_end);
if (ret)
return ret;
ret = kprobe_add_area_blacklist((unsigned long)__exception_text_start,
(unsigned long)__exception_text_end);
if (ret)
return ret;
ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start,
(unsigned long)__idmap_text_end);
if (ret)

View File

@ -81,7 +81,8 @@ static void cpu_psci_cpu_die(unsigned int cpu)
static int cpu_psci_cpu_kill(unsigned int cpu)
{
int err, i;
int err;
unsigned long start, end;
if (!psci_ops.affinity_info)
return 0;
@ -91,16 +92,18 @@ static int cpu_psci_cpu_kill(unsigned int cpu)
* while it is dying. So, try again a few times.
*/
for (i = 0; i < 10; i++) {
start = jiffies;
end = start + msecs_to_jiffies(100);
do {
err = psci_ops.affinity_info(cpu_logical_map(cpu), 0);
if (err == PSCI_0_2_AFFINITY_LEVEL_OFF) {
pr_info("CPU%d killed.\n", cpu);
pr_info("CPU%d killed (polled %d ms)\n", cpu,
jiffies_to_msecs(jiffies - start));
return 0;
}
msleep(10);
pr_info("Retrying again to check for CPU kill\n");
}
usleep_range(100, 1000);
} while (time_before(jiffies, end));
pr_warn("CPU%d may not have shut down cleanly (AFFINITY_INFO reports %d)\n",
cpu, err);

View File

@ -2,6 +2,7 @@
// Copyright (C) 2017 Arm Ltd.
#define pr_fmt(fmt) "sdei: " fmt
#include <linux/arm-smccc.h>
#include <linux/arm_sdei.h>
#include <linux/hardirq.h>
#include <linux/irqflags.h>
@ -161,7 +162,7 @@ unsigned long sdei_arch_get_entry_point(int conduit)
return 0;
}
sdei_exit_mode = (conduit == CONDUIT_HVC) ? SDEI_EXIT_HVC : SDEI_EXIT_SMC;
sdei_exit_mode = (conduit == SMCCC_CONDUIT_HVC) ? SDEI_EXIT_HVC : SDEI_EXIT_SMC;
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
if (arm64_kernel_unmapped_at_el0()) {

View File

@ -8,6 +8,7 @@
*/
#include <linux/compat.h>
#include <linux/cpufeature.h>
#include <linux/personality.h>
#include <linux/sched.h>
#include <linux/sched/signal.h>
@ -17,6 +18,7 @@
#include <asm/cacheflush.h>
#include <asm/system_misc.h>
#include <asm/tlbflush.h>
#include <asm/unistd.h>
static long
@ -30,6 +32,15 @@ __do_compat_cache_op(unsigned long start, unsigned long end)
if (fatal_signal_pending(current))
return 0;
if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) {
/*
* The workaround requires an inner-shareable tlbi.
* We pick the reserved-ASID to minimise the impact.
*/
__tlbi(aside1is, __TLBI_VADDR(0, 0));
dsb(ish);
}
ret = __flush_cache_user_range(start, start + chunk);
if (ret)
return ret;

View File

@ -154,14 +154,14 @@ static inline void sve_user_discard(void)
sve_user_disable();
}
asmlinkage void el0_svc_handler(struct pt_regs *regs)
void el0_svc_handler(struct pt_regs *regs)
{
sve_user_discard();
el0_svc_common(regs, regs->regs[8], __NR_syscalls, sys_call_table);
}
#ifdef CONFIG_COMPAT
asmlinkage void el0_svc_compat_handler(struct pt_regs *regs)
void el0_svc_compat_handler(struct pt_regs *regs)
{
el0_svc_common(regs, regs->regs[7], __NR_compat_syscalls,
compat_sys_call_table);

View File

@ -35,6 +35,7 @@
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/insn.h>
#include <asm/kprobes.h>
#include <asm/traps.h>
#include <asm/smp.h>
#include <asm/stack_pointer.h>
@ -393,7 +394,7 @@ void arm64_notify_segfault(unsigned long addr)
force_signal_inject(SIGSEGV, code, addr);
}
asmlinkage void __exception do_undefinstr(struct pt_regs *regs)
void do_undefinstr(struct pt_regs *regs)
{
/* check for AArch32 breakpoint instructions */
if (!aarch32_break_handler(regs))
@ -405,6 +406,7 @@ asmlinkage void __exception do_undefinstr(struct pt_regs *regs)
BUG_ON(!user_mode(regs));
force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
}
NOKPROBE_SYMBOL(do_undefinstr);
#define __user_cache_maint(insn, address, res) \
if (address >= user_addr_max()) { \
@ -470,6 +472,15 @@ static void ctr_read_handler(unsigned int esr, struct pt_regs *regs)
int rt = ESR_ELx_SYS64_ISS_RT(esr);
unsigned long val = arm64_ftr_reg_user_value(&arm64_ftr_reg_ctrel0);
if (cpus_have_const_cap(ARM64_WORKAROUND_1542419)) {
/* Hide DIC so that we can trap the unnecessary maintenance...*/
val &= ~BIT(CTR_DIC_SHIFT);
/* ... and fake IminLine to reduce the number of traps. */
val &= ~CTR_IMINLINE_MASK;
val |= (PAGE_SHIFT - 2) & CTR_IMINLINE_MASK;
}
pt_regs_write_reg(regs, rt, val);
arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
@ -667,7 +678,7 @@ static const struct sys64_hook cp15_64_hooks[] = {
{},
};
asmlinkage void __exception do_cp15instr(unsigned int esr, struct pt_regs *regs)
void do_cp15instr(unsigned int esr, struct pt_regs *regs)
{
const struct sys64_hook *hook, *hook_base;
@ -705,9 +716,10 @@ asmlinkage void __exception do_cp15instr(unsigned int esr, struct pt_regs *regs)
*/
do_undefinstr(regs);
}
NOKPROBE_SYMBOL(do_cp15instr);
#endif
asmlinkage void __exception do_sysinstr(unsigned int esr, struct pt_regs *regs)
void do_sysinstr(unsigned int esr, struct pt_regs *regs)
{
const struct sys64_hook *hook;
@ -724,6 +736,7 @@ asmlinkage void __exception do_sysinstr(unsigned int esr, struct pt_regs *regs)
*/
do_undefinstr(regs);
}
NOKPROBE_SYMBOL(do_sysinstr);
static const char *esr_class_str[] = {
[0 ... ESR_ELx_EC_MAX] = "UNRECOGNIZED EC",
@ -793,7 +806,7 @@ asmlinkage void bad_mode(struct pt_regs *regs, int reason, unsigned int esr)
* bad_el0_sync handles unexpected, but potentially recoverable synchronous
* exceptions taken from EL0. Unlike bad_mode, this returns.
*/
asmlinkage void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
void bad_el0_sync(struct pt_regs *regs, int reason, unsigned int esr)
{
void __user *pc = (void __user *)instruction_pointer(regs);

View File

@ -111,9 +111,6 @@ SECTIONS
}
.text : { /* Real text segment */
_stext = .; /* Text and read-only data */
__exception_text_start = .;
*(.exception.text)
__exception_text_end = .;
IRQENTRY_TEXT
SOFTIRQENTRY_TEXT
ENTRY_TEXT

View File

@ -12,7 +12,7 @@
#include <kvm/arm_psci.h>
#include <asm/arch_gicv3.h>
#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
@ -118,6 +118,20 @@ static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
}
write_sysreg(val, cptr_el2);
if (cpus_have_const_cap(ARM64_WORKAROUND_1319367)) {
struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
isb();
/*
* At this stage, and thanks to the above isb(), S2 is
* configured and enabled. We can now restore the guest's S1
* configuration: SCTLR, and only then TCR.
*/
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
isb();
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
}
}
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
@ -159,6 +173,23 @@ static void __hyp_text __deactivate_traps_nvhe(void)
{
u64 mdcr_el2 = read_sysreg(mdcr_el2);
if (cpus_have_const_cap(ARM64_WORKAROUND_1319367)) {
u64 val;
/*
* Set the TCR and SCTLR registers in the exact opposite
* sequence as __activate_traps_nvhe (first prevent walks,
* then force the MMU on). A generous sprinkling of isb()
* ensure that things happen in this exact order.
*/
val = read_sysreg_el1(SYS_TCR);
write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
isb();
val = read_sysreg_el1(SYS_SCTLR);
write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
isb();
}
__deactivate_traps_common();
mdcr_el2 &= MDCR_EL2_HPMN_MASK;
@ -657,7 +688,7 @@ int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
*/
if (system_uses_irq_prio_masking()) {
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
dsb(sy);
pmr_sync();
}
vcpu = kern_hyp_va(vcpu);
@ -670,18 +701,23 @@ int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
__sysreg_save_state_nvhe(host_ctxt);
/*
* We must restore the 32-bit state before the sysregs, thanks
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
*
* Also, and in order to be able to deal with erratum #1319537 (A57)
* and #1319367 (A72), we must ensure that all VM-related sysreg are
* restored before we enable S2 translation.
*/
__sysreg32_restore_state(vcpu);
__sysreg_restore_state_nvhe(guest_ctxt);
__activate_vm(kern_hyp_va(vcpu->kvm));
__activate_traps(vcpu);
__hyp_vgic_restore_state(vcpu);
__timer_enable_traps(vcpu);
/*
* We must restore the 32-bit state before the sysregs, thanks
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
*/
__sysreg32_restore_state(vcpu);
__sysreg_restore_state_nvhe(guest_ctxt);
__debug_switch_to_guest(vcpu);
__set_guest_arch_workaround_state(vcpu);

View File

@ -117,12 +117,26 @@ static void __hyp_text __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
{
write_sysreg(ctxt->sys_regs[MPIDR_EL1], vmpidr_el2);
write_sysreg(ctxt->sys_regs[CSSELR_EL1], csselr_el1);
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
if (!cpus_have_const_cap(ARM64_WORKAROUND_1319367)) {
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
} else if (!ctxt->__hyp_running_vcpu) {
/*
* Must only be done for guest registers, hence the context
* test. We're coming from the host, so SCTLR.M is already
* set. Pairs with __activate_traps_nvhe().
*/
write_sysreg_el1((ctxt->sys_regs[TCR_EL1] |
TCR_EPD1_MASK | TCR_EPD0_MASK),
SYS_TCR);
isb();
}
write_sysreg(ctxt->sys_regs[ACTLR_EL1], actlr_el1);
write_sysreg_el1(ctxt->sys_regs[CPACR_EL1], SYS_CPACR);
write_sysreg_el1(ctxt->sys_regs[TTBR0_EL1], SYS_TTBR0);
write_sysreg_el1(ctxt->sys_regs[TTBR1_EL1], SYS_TTBR1);
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
write_sysreg_el1(ctxt->sys_regs[ESR_EL1], SYS_ESR);
write_sysreg_el1(ctxt->sys_regs[AFSR0_EL1], SYS_AFSR0);
write_sysreg_el1(ctxt->sys_regs[AFSR1_EL1], SYS_AFSR1);
@ -135,6 +149,23 @@ static void __hyp_text __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
write_sysreg(ctxt->sys_regs[PAR_EL1], par_el1);
write_sysreg(ctxt->sys_regs[TPIDR_EL1], tpidr_el1);
if (cpus_have_const_cap(ARM64_WORKAROUND_1319367) &&
ctxt->__hyp_running_vcpu) {
/*
* Must only be done for host registers, hence the context
* test. Pairs with __deactivate_traps_nvhe().
*/
isb();
/*
* At this stage, and thanks to the above isb(), S2 is
* deconfigured and disabled. We can now restore the host's
* S1 configuration: SCTLR, and only then TCR.
*/
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
isb();
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
}
write_sysreg(ctxt->gp_regs.sp_el1, sp_el1);
write_sysreg_el1(ctxt->gp_regs.elr_el1, SYS_ELR);
write_sysreg_el1(ctxt->gp_regs.spsr[KVM_SPSR_EL1],SYS_SPSR);

View File

@ -63,6 +63,22 @@ static void __hyp_text __tlb_switch_to_guest_vhe(struct kvm *kvm,
static void __hyp_text __tlb_switch_to_guest_nvhe(struct kvm *kvm,
struct tlb_inv_context *cxt)
{
if (cpus_have_const_cap(ARM64_WORKAROUND_1319367)) {
u64 val;
/*
* For CPUs that are affected by ARM 1319367, we need to
* avoid a host Stage-1 walk while we have the guest's
* VMID set in the VTTBR in order to invalidate TLBs.
* We're guaranteed that the S1 MMU is enabled, so we can
* simply set the EPD bits to avoid any further TLB fill.
*/
val = cxt->tcr = read_sysreg_el1(SYS_TCR);
val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
write_sysreg_el1(val, SYS_TCR);
isb();
}
__load_guest_stage2(kvm);
isb();
}
@ -100,6 +116,13 @@ static void __hyp_text __tlb_switch_to_host_nvhe(struct kvm *kvm,
struct tlb_inv_context *cxt)
{
write_sysreg(0, vttbr_el2);
if (cpus_have_const_cap(ARM64_WORKAROUND_1319367)) {
/* Ensure write of the host VMID */
isb();
/* Restore the host's TCR_EL1 */
write_sysreg_el1(cxt->tcr, SYS_TCR);
}
}
static void __hyp_text __tlb_switch_to_host(struct kvm *kvm,

View File

@ -32,7 +32,8 @@
#include <asm/daifflags.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/kasan.h>
#include <asm/kprobes.h>
#include <asm/processor.h>
#include <asm/sysreg.h>
#include <asm/system_misc.h>
#include <asm/pgtable.h>
@ -101,18 +102,6 @@ static void mem_abort_decode(unsigned int esr)
data_abort_decode(esr);
}
static inline bool is_ttbr0_addr(unsigned long addr)
{
/* entry assembly clears tags for TTBR0 addrs */
return addr < TASK_SIZE;
}
static inline bool is_ttbr1_addr(unsigned long addr)
{
/* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
return arch_kasan_reset_tag(addr) >= PAGE_OFFSET;
}
static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
{
/* Either init_pg_dir or swapper_pg_dir */
@ -318,6 +307,8 @@ static void __do_kernel_fault(unsigned long addr, unsigned int esr,
if (is_el1_permission_fault(addr, esr, regs)) {
if (esr & ESR_ELx_WNR)
msg = "write to read-only memory";
else if (is_el1_instruction_abort(esr))
msg = "execute from non-executable memory";
else
msg = "read from unreadable memory";
} else if (addr < PAGE_SIZE) {
@ -736,8 +727,7 @@ static const struct fault_info fault_info[] = {
{ do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
};
asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
struct pt_regs *regs)
void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
const struct fault_info *inf = esr_to_fault_info(esr);
@ -753,43 +743,21 @@ asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
arm64_notify_die(inf->name, regs,
inf->sig, inf->code, (void __user *)addr, esr);
}
NOKPROBE_SYMBOL(do_mem_abort);
asmlinkage void __exception do_el0_irq_bp_hardening(void)
void do_el0_irq_bp_hardening(void)
{
/* PC has already been checked in entry.S */
arm64_apply_bp_hardening();
}
NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
/*
* We've taken an instruction abort from userspace and not yet
* re-enabled IRQs. If the address is a kernel address, apply
* BP hardening prior to enabling IRQs and pre-emption.
*/
if (!is_ttbr0_addr(addr))
arm64_apply_bp_hardening();
local_daif_restore(DAIF_PROCCTX);
do_mem_abort(addr, esr, regs);
}
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
unsigned int esr,
struct pt_regs *regs)
{
if (user_mode(regs)) {
if (!is_ttbr0_addr(instruction_pointer(regs)))
arm64_apply_bp_hardening();
local_daif_restore(DAIF_PROCCTX);
}
arm64_notify_die("SP/PC alignment exception", regs,
SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
}
NOKPROBE_SYMBOL(do_sp_pc_abort);
int __init early_brk64(unsigned long addr, unsigned int esr,
struct pt_regs *regs);
@ -872,8 +840,7 @@ NOKPROBE_SYMBOL(debug_exception_exit);
#ifdef CONFIG_ARM64_ERRATUM_1463225
DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
static int __exception
cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
if (user_mode(regs))
return 0;
@ -892,16 +859,15 @@ cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
return 1;
}
#else
static int __exception
cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
return 0;
}
#endif /* CONFIG_ARM64_ERRATUM_1463225 */
NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
asmlinkage void __exception do_debug_exception(unsigned long addr_if_watchpoint,
unsigned int esr,
struct pt_regs *regs)
void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
struct pt_regs *regs)
{
const struct fault_info *inf = esr_to_debug_fault_info(esr);
unsigned long pc = instruction_pointer(regs);

View File

@ -20,6 +20,7 @@
#include <linux/sort.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/dma-direct.h>
#include <linux/dma-mapping.h>
#include <linux/dma-contiguous.h>
#include <linux/efi.h>
@ -41,6 +42,8 @@
#include <asm/tlb.h>
#include <asm/alternative.h>
#define ARM64_ZONE_DMA_BITS 30
/*
* We need to be able to catch inadvertent references to memstart_addr
* that occur (potentially in generic code) before arm64_memblock_init()
@ -56,7 +59,14 @@ EXPORT_SYMBOL(physvirt_offset);
struct page *vmemmap __ro_after_init;
EXPORT_SYMBOL(vmemmap);
/*
* We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of
* memory as some devices, namely the Raspberry Pi 4, have peripherals with
* this limited view of the memory. ZONE_DMA32 will cover the rest of the 32
* bit addressable memory area.
*/
phys_addr_t arm64_dma_phys_limit __ro_after_init;
static phys_addr_t arm64_dma32_phys_limit __ro_after_init;
#ifdef CONFIG_KEXEC_CORE
/*
@ -81,7 +91,7 @@ static void __init reserve_crashkernel(void)
if (crash_base == 0) {
/* Current arm64 boot protocol requires 2MB alignment */
crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit,
crash_size, SZ_2M);
if (crash_base == 0) {
pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
@ -169,15 +179,16 @@ static void __init reserve_elfcorehdr(void)
{
}
#endif /* CONFIG_CRASH_DUMP */
/*
* Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
* currently assumes that for memory starting above 4G, 32-bit devices will
* use a DMA offset.
* Return the maximum physical address for a zone with a given address size
* limit. It currently assumes that for memory starting above 4G, 32-bit
* devices will use a DMA offset.
*/
static phys_addr_t __init max_zone_dma_phys(void)
static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
{
phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
return min(offset + (1ULL << 32), memblock_end_of_DRAM());
phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits);
return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM());
}
#ifdef CONFIG_NUMA
@ -186,8 +197,11 @@ static void __init zone_sizes_init(unsigned long min, unsigned long max)
{
unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
#ifdef CONFIG_ZONE_DMA
max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
#endif
#ifdef CONFIG_ZONE_DMA32
max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit);
#endif
max_zone_pfns[ZONE_NORMAL] = max;
@ -200,16 +214,21 @@ static void __init zone_sizes_init(unsigned long min, unsigned long max)
{
struct memblock_region *reg;
unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
unsigned long max_dma = min;
unsigned long max_dma32 = min;
unsigned long __maybe_unused max_dma = min;
memset(zone_size, 0, sizeof(zone_size));
/* 4GB maximum for 32-bit only capable devices */
#ifdef CONFIG_ZONE_DMA32
#ifdef CONFIG_ZONE_DMA
max_dma = PFN_DOWN(arm64_dma_phys_limit);
zone_size[ZONE_DMA32] = max_dma - min;
zone_size[ZONE_DMA] = max_dma - min;
max_dma32 = max_dma;
#endif
zone_size[ZONE_NORMAL] = max - max_dma;
#ifdef CONFIG_ZONE_DMA32
max_dma32 = PFN_DOWN(arm64_dma32_phys_limit);
zone_size[ZONE_DMA32] = max_dma32 - max_dma;
#endif
zone_size[ZONE_NORMAL] = max - max_dma32;
memcpy(zhole_size, zone_size, sizeof(zhole_size));
@ -219,16 +238,22 @@ static void __init zone_sizes_init(unsigned long min, unsigned long max)
if (start >= max)
continue;
#ifdef CONFIG_ZONE_DMA32
#ifdef CONFIG_ZONE_DMA
if (start < max_dma) {
unsigned long dma_end = min(end, max_dma);
zhole_size[ZONE_DMA32] -= dma_end - start;
unsigned long dma_end = min_not_zero(end, max_dma);
zhole_size[ZONE_DMA] -= dma_end - start;
}
#endif
if (end > max_dma) {
#ifdef CONFIG_ZONE_DMA32
if (start < max_dma32) {
unsigned long dma32_end = min(end, max_dma32);
unsigned long dma32_start = max(start, max_dma);
zhole_size[ZONE_DMA32] -= dma32_end - dma32_start;
}
#endif
if (end > max_dma32) {
unsigned long normal_end = min(end, max);
unsigned long normal_start = max(start, max_dma);
unsigned long normal_start = max(start, max_dma32);
zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
}
}
@ -418,11 +443,15 @@ void __init arm64_memblock_init(void)
early_init_fdt_scan_reserved_mem();
/* 4GB maximum for 32-bit only capable devices */
if (IS_ENABLED(CONFIG_ZONE_DMA)) {
zone_dma_bits = ARM64_ZONE_DMA_BITS;
arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS);
}
if (IS_ENABLED(CONFIG_ZONE_DMA32))
arm64_dma_phys_limit = max_zone_dma_phys();
arm64_dma32_phys_limit = max_zone_phys(32);
else
arm64_dma_phys_limit = PHYS_MASK + 1;
arm64_dma32_phys_limit = PHYS_MASK + 1;
reserve_crashkernel();
@ -430,7 +459,7 @@ void __init arm64_memblock_init(void)
high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
dma_contiguous_reserve(arm64_dma_phys_limit);
dma_contiguous_reserve(arm64_dma32_phys_limit);
}
void __init bootmem_init(void)
@ -534,7 +563,7 @@ static void __init free_unused_memmap(void)
void __init mem_init(void)
{
if (swiotlb_force == SWIOTLB_FORCE ||
max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit))
swiotlb_init(1);
else
swiotlb_force = SWIOTLB_NO_FORCE;
@ -571,7 +600,7 @@ void free_initmem(void)
{
free_reserved_area(lm_alias(__init_begin),
lm_alias(__init_end),
0, "unused kernel");
POISON_FREE_INITMEM, "unused kernel");
/*
* Unmap the __init region but leave the VM area in place. This
* prevents the region from being reused for kernel modules, which
@ -580,18 +609,6 @@ void free_initmem(void)
unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
}
#ifdef CONFIG_BLK_DEV_INITRD
void __init free_initrd_mem(unsigned long start, unsigned long end)
{
unsigned long aligned_start, aligned_end;
aligned_start = __virt_to_phys(start) & PAGE_MASK;
aligned_end = PAGE_ALIGN(__virt_to_phys(end));
memblock_free(aligned_start, aligned_end - aligned_start);
free_reserved_area((void *)start, (void *)end, 0, "initrd");
}
#endif
/*
* Dump out memory limit information on panic.
*/

View File

@ -338,7 +338,7 @@ static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
phys_addr_t (*pgtable_alloc)(int),
int flags)
{
unsigned long addr, length, end, next;
unsigned long addr, end, next;
pgd_t *pgdp = pgd_offset_raw(pgdir, virt);
/*
@ -350,9 +350,8 @@ static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
phys &= PAGE_MASK;
addr = virt & PAGE_MASK;
length = PAGE_ALIGN(size + (virt & ~PAGE_MASK));
end = PAGE_ALIGN(virt + size);
end = addr + length;
do {
next = pgd_addr_end(addr, end);
alloc_init_pud(pgdp, addr, next, phys, prot, pgtable_alloc,

View File

@ -60,7 +60,6 @@ KBUILD_CFLAGS += -DCC_USING_PATCHABLE_FUNCTION_ENTRY=1 \
-DFTRACE_PATCHABLE_FUNCTION_SIZE=$(NOP_COUNT)
CC_FLAGS_FTRACE := -fpatchable-function-entry=$(NOP_COUNT),$(shell echo $$(($(NOP_COUNT)-1)))
KBUILD_LDS_MODULE += $(srctree)/arch/parisc/kernel/module.lds
endif
OBJCOPY_FLAGS =-O binary -R .note -R .comment -S

View File

@ -43,6 +43,7 @@
#include <linux/elf.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/ftrace.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/bug.h>
@ -862,7 +863,7 @@ int module_finalize(const Elf_Ehdr *hdr,
const char *strtab = NULL;
const Elf_Shdr *s;
char *secstrings;
int err, symindex = -1;
int symindex = -1;
Elf_Sym *newptr, *oldptr;
Elf_Shdr *symhdr = NULL;
#ifdef DEBUG
@ -946,11 +947,13 @@ int module_finalize(const Elf_Ehdr *hdr,
/* patch .altinstructions */
apply_alternatives(aseg, aseg + s->sh_size, me->name);
#ifdef CONFIG_DYNAMIC_FTRACE
/* For 32 bit kernels we're compiling modules with
* -ffunction-sections so we must relocate the addresses in the
*__mcount_loc section.
* ftrace callsite section.
*/
if (symindex != -1 && !strcmp(secname, "__mcount_loc")) {
if (symindex != -1 && !strcmp(secname, FTRACE_CALLSITE_SECTION)) {
int err;
if (s->sh_type == SHT_REL)
err = apply_relocate((Elf_Shdr *)sechdrs,
strtab, symindex,
@ -962,6 +965,7 @@ int module_finalize(const Elf_Ehdr *hdr,
if (err)
return err;
}
#endif
}
return 0;
}

View File

@ -1,7 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0 */
SECTIONS {
__mcount_loc : {
*(__patchable_function_entries)
}
}

View File

@ -329,13 +329,4 @@ struct vm_area_struct;
#endif /* __ASSEMBLY__ */
#include <asm/slice.h>
/*
* Allow 30-bit DMA for very limited Broadcom wifi chips on many powerbooks.
*/
#ifdef CONFIG_PPC32
#define ARCH_ZONE_DMA_BITS 30
#else
#define ARCH_ZONE_DMA_BITS 31
#endif
#endif /* _ASM_POWERPC_PAGE_H */

View File

@ -31,6 +31,7 @@
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/memremap.h>
#include <linux/dma-direct.h>
#include <asm/pgalloc.h>
#include <asm/prom.h>
@ -201,10 +202,10 @@ static int __init mark_nonram_nosave(void)
* everything else. GFP_DMA32 page allocations automatically fall back to
* ZONE_DMA.
*
* By using 31-bit unconditionally, we can exploit ARCH_ZONE_DMA_BITS to
* inform the generic DMA mapping code. 32-bit only devices (if not handled
* by an IOMMU anyway) will take a first dip into ZONE_NORMAL and get
* otherwise served by ZONE_DMA.
* By using 31-bit unconditionally, we can exploit zone_dma_bits to inform the
* generic DMA mapping code. 32-bit only devices (if not handled by an IOMMU
* anyway) will take a first dip into ZONE_NORMAL and get otherwise served by
* ZONE_DMA.
*/
static unsigned long max_zone_pfns[MAX_NR_ZONES];
@ -237,9 +238,18 @@ void __init paging_init(void)
printk(KERN_DEBUG "Memory hole size: %ldMB\n",
(long int)((top_of_ram - total_ram) >> 20));
/*
* Allow 30-bit DMA for very limited Broadcom wifi chips on many
* powerbooks.
*/
if (IS_ENABLED(CONFIG_PPC32))
zone_dma_bits = 30;
else
zone_dma_bits = 31;
#ifdef CONFIG_ZONE_DMA
max_zone_pfns[ZONE_DMA] = min(max_low_pfn,
1UL << (ARCH_ZONE_DMA_BITS - PAGE_SHIFT));
1UL << (zone_dma_bits - PAGE_SHIFT));
#endif
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
#ifdef CONFIG_HIGHMEM

View File

@ -177,8 +177,6 @@ static inline int devmem_is_allowed(unsigned long pfn)
#define VM_DATA_DEFAULT_FLAGS (VM_READ | VM_WRITE | \
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
#define ARCH_ZONE_DMA_BITS 31
#include <asm-generic/memory_model.h>
#include <asm-generic/getorder.h>

View File

@ -118,6 +118,7 @@ void __init paging_init(void)
sparse_memory_present_with_active_regions(MAX_NUMNODES);
sparse_init();
zone_dma_bits = 31;
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = PFN_DOWN(MAX_DMA_ADDRESS);
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;

View File

@ -1463,6 +1463,12 @@ static inline bool arch_has_pfn_modify_check(void)
return boot_cpu_has_bug(X86_BUG_L1TF);
}
#define arch_faults_on_old_pte arch_faults_on_old_pte
static inline bool arch_faults_on_old_pte(void)
{
return false;
}
#include <asm-generic/pgtable.h>
#endif /* __ASSEMBLY__ */

View File

@ -967,29 +967,29 @@ static int sdei_get_conduit(struct platform_device *pdev)
if (np) {
if (of_property_read_string(np, "method", &method)) {
pr_warn("missing \"method\" property\n");
return CONDUIT_INVALID;
return SMCCC_CONDUIT_NONE;
}
if (!strcmp("hvc", method)) {
sdei_firmware_call = &sdei_smccc_hvc;
return CONDUIT_HVC;
return SMCCC_CONDUIT_HVC;
} else if (!strcmp("smc", method)) {
sdei_firmware_call = &sdei_smccc_smc;
return CONDUIT_SMC;
return SMCCC_CONDUIT_SMC;
}
pr_warn("invalid \"method\" property: %s\n", method);
} else if (IS_ENABLED(CONFIG_ACPI) && !acpi_disabled) {
if (acpi_psci_use_hvc()) {
sdei_firmware_call = &sdei_smccc_hvc;
return CONDUIT_HVC;
return SMCCC_CONDUIT_HVC;
} else {
sdei_firmware_call = &sdei_smccc_smc;
return CONDUIT_SMC;
return SMCCC_CONDUIT_SMC;
}
}
return CONDUIT_INVALID;
return SMCCC_CONDUIT_NONE;
}
static int sdei_probe(struct platform_device *pdev)

View File

@ -53,10 +53,18 @@ bool psci_tos_resident_on(int cpu)
}
struct psci_operations psci_ops = {
.conduit = PSCI_CONDUIT_NONE,
.conduit = SMCCC_CONDUIT_NONE,
.smccc_version = SMCCC_VERSION_1_0,
};
enum arm_smccc_conduit arm_smccc_1_1_get_conduit(void)
{
if (psci_ops.smccc_version < SMCCC_VERSION_1_1)
return SMCCC_CONDUIT_NONE;
return psci_ops.conduit;
}
typedef unsigned long (psci_fn)(unsigned long, unsigned long,
unsigned long, unsigned long);
static psci_fn *invoke_psci_fn;
@ -212,13 +220,13 @@ static unsigned long psci_migrate_info_up_cpu(void)
0, 0, 0);
}
static void set_conduit(enum psci_conduit conduit)
static void set_conduit(enum arm_smccc_conduit conduit)
{
switch (conduit) {
case PSCI_CONDUIT_HVC:
case SMCCC_CONDUIT_HVC:
invoke_psci_fn = __invoke_psci_fn_hvc;
break;
case PSCI_CONDUIT_SMC:
case SMCCC_CONDUIT_SMC:
invoke_psci_fn = __invoke_psci_fn_smc;
break;
default:
@ -240,9 +248,9 @@ static int get_set_conduit_method(struct device_node *np)
}
if (!strcmp("hvc", method)) {
set_conduit(PSCI_CONDUIT_HVC);
set_conduit(SMCCC_CONDUIT_HVC);
} else if (!strcmp("smc", method)) {
set_conduit(PSCI_CONDUIT_SMC);
set_conduit(SMCCC_CONDUIT_SMC);
} else {
pr_warn("invalid \"method\" property: %s\n", method);
return -EINVAL;
@ -583,9 +591,9 @@ int __init psci_acpi_init(void)
pr_info("probing for conduit method from ACPI.\n");
if (acpi_psci_use_hvc())
set_conduit(PSCI_CONDUIT_HVC);
set_conduit(SMCCC_CONDUIT_HVC);
else
set_conduit(PSCI_CONDUIT_SMC);
set_conduit(SMCCC_CONDUIT_SMC);
return psci_probe();
}

View File

@ -87,6 +87,15 @@ static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
*/
static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
/*
* Global static key controlling whether an update to PMR allowing more
* interrupts requires to be propagated to the redistributor (DSB SY).
* And this needs to be exported for modules to be able to enable
* interrupts...
*/
DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
EXPORT_SYMBOL(gic_pmr_sync);
/* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
static refcount_t *ppi_nmi_refs;
@ -1502,6 +1511,17 @@ static void gic_enable_nmi_support(void)
for (i = 0; i < gic_data.ppi_nr; i++)
refcount_set(&ppi_nmi_refs[i], 0);
/*
* Linux itself doesn't use 1:N distribution, so has no need to
* set PMHE. The only reason to have it set is if EL3 requires it
* (and we can't change it).
*/
if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
static_branch_enable(&gic_pmr_sync);
pr_info("%s ICC_PMR_EL1 synchronisation\n",
static_branch_unlikely(&gic_pmr_sync) ? "Forcing" : "Relaxing");
static_branch_enable(&supports_pseudo_nmis);
if (static_branch_likely(&supports_deactivate_key))

View File

@ -1642,7 +1642,6 @@ static struct cci_pmu *cci_pmu_alloc(struct device *dev)
static int cci_pmu_probe(struct platform_device *pdev)
{
struct resource *res;
struct cci_pmu *cci_pmu;
int i, ret, irq;
@ -1650,8 +1649,7 @@ static int cci_pmu_probe(struct platform_device *pdev)
if (IS_ERR(cci_pmu))
return PTR_ERR(cci_pmu);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
cci_pmu->base = devm_ioremap_resource(&pdev->dev, res);
cci_pmu->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(cci_pmu->base))
return -ENOMEM;

View File

@ -1477,8 +1477,7 @@ static int arm_ccn_probe(struct platform_device *pdev)
ccn->dev = &pdev->dev;
platform_set_drvdata(pdev, ccn);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ccn->base = devm_ioremap_resource(ccn->dev, res);
ccn->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ccn->base))
return PTR_ERR(ccn->base);
@ -1537,6 +1536,7 @@ static int arm_ccn_remove(struct platform_device *pdev)
static const struct of_device_id arm_ccn_match[] = {
{ .compatible = "arm,ccn-502", },
{ .compatible = "arm,ccn-504", },
{ .compatible = "arm,ccn-512", },
{},
};
MODULE_DEVICE_TABLE(of, arm_ccn_match);

View File

@ -727,7 +727,7 @@ static void smmu_pmu_get_acpi_options(struct smmu_pmu *smmu_pmu)
static int smmu_pmu_probe(struct platform_device *pdev)
{
struct smmu_pmu *smmu_pmu;
struct resource *res_0, *res_1;
struct resource *res_0;
u32 cfgr, reg_size;
u64 ceid_64[2];
int irq, err;
@ -764,8 +764,7 @@ static int smmu_pmu_probe(struct platform_device *pdev)
/* Determine if page 1 is present */
if (cfgr & SMMU_PMCG_CFGR_RELOC_CTRS) {
res_1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
smmu_pmu->reloc_base = devm_ioremap_resource(dev, res_1);
smmu_pmu->reloc_base = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(smmu_pmu->reloc_base))
return PTR_ERR(smmu_pmu->reloc_base);
} else {

View File

@ -45,7 +45,8 @@
static DEFINE_IDA(ddr_ida);
/* DDR Perf hardware feature */
#define DDR_CAP_AXI_ID_FILTER 0x1 /* support AXI ID filter */
#define DDR_CAP_AXI_ID_FILTER 0x1 /* support AXI ID filter */
#define DDR_CAP_AXI_ID_FILTER_ENHANCED 0x3 /* support enhanced AXI ID filter */
struct fsl_ddr_devtype_data {
unsigned int quirks; /* quirks needed for different DDR Perf core */
@ -57,9 +58,14 @@ static const struct fsl_ddr_devtype_data imx8m_devtype_data = {
.quirks = DDR_CAP_AXI_ID_FILTER,
};
static const struct fsl_ddr_devtype_data imx8mp_devtype_data = {
.quirks = DDR_CAP_AXI_ID_FILTER_ENHANCED,
};
static const struct of_device_id imx_ddr_pmu_dt_ids[] = {
{ .compatible = "fsl,imx8-ddr-pmu", .data = &imx8_devtype_data},
{ .compatible = "fsl,imx8m-ddr-pmu", .data = &imx8m_devtype_data},
{ .compatible = "fsl,imx8mp-ddr-pmu", .data = &imx8mp_devtype_data},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx_ddr_pmu_dt_ids);
@ -78,6 +84,61 @@ struct ddr_pmu {
int id;
};
enum ddr_perf_filter_capabilities {
PERF_CAP_AXI_ID_FILTER = 0,
PERF_CAP_AXI_ID_FILTER_ENHANCED,
PERF_CAP_AXI_ID_FEAT_MAX,
};
static u32 ddr_perf_filter_cap_get(struct ddr_pmu *pmu, int cap)
{
u32 quirks = pmu->devtype_data->quirks;
switch (cap) {
case PERF_CAP_AXI_ID_FILTER:
return !!(quirks & DDR_CAP_AXI_ID_FILTER);
case PERF_CAP_AXI_ID_FILTER_ENHANCED:
quirks &= DDR_CAP_AXI_ID_FILTER_ENHANCED;
return quirks == DDR_CAP_AXI_ID_FILTER_ENHANCED;
default:
WARN(1, "unknown filter cap %d\n", cap);
}
return 0;
}
static ssize_t ddr_perf_filter_cap_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ddr_pmu *pmu = dev_get_drvdata(dev);
struct dev_ext_attribute *ea =
container_of(attr, struct dev_ext_attribute, attr);
int cap = (long)ea->var;
return snprintf(buf, PAGE_SIZE, "%u\n",
ddr_perf_filter_cap_get(pmu, cap));
}
#define PERF_EXT_ATTR_ENTRY(_name, _func, _var) \
(&((struct dev_ext_attribute) { \
__ATTR(_name, 0444, _func, NULL), (void *)_var \
}).attr.attr)
#define PERF_FILTER_EXT_ATTR_ENTRY(_name, _var) \
PERF_EXT_ATTR_ENTRY(_name, ddr_perf_filter_cap_show, _var)
static struct attribute *ddr_perf_filter_cap_attr[] = {
PERF_FILTER_EXT_ATTR_ENTRY(filter, PERF_CAP_AXI_ID_FILTER),
PERF_FILTER_EXT_ATTR_ENTRY(enhanced_filter, PERF_CAP_AXI_ID_FILTER_ENHANCED),
NULL,
};
static struct attribute_group ddr_perf_filter_cap_attr_group = {
.name = "caps",
.attrs = ddr_perf_filter_cap_attr,
};
static ssize_t ddr_perf_cpumask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
@ -175,9 +236,40 @@ static const struct attribute_group *attr_groups[] = {
&ddr_perf_events_attr_group,
&ddr_perf_format_attr_group,
&ddr_perf_cpumask_attr_group,
&ddr_perf_filter_cap_attr_group,
NULL,
};
static bool ddr_perf_is_filtered(struct perf_event *event)
{
return event->attr.config == 0x41 || event->attr.config == 0x42;
}
static u32 ddr_perf_filter_val(struct perf_event *event)
{
return event->attr.config1;
}
static bool ddr_perf_filters_compatible(struct perf_event *a,
struct perf_event *b)
{
if (!ddr_perf_is_filtered(a))
return true;
if (!ddr_perf_is_filtered(b))
return true;
return ddr_perf_filter_val(a) == ddr_perf_filter_val(b);
}
static bool ddr_perf_is_enhanced_filtered(struct perf_event *event)
{
unsigned int filt;
struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
filt = pmu->devtype_data->quirks & DDR_CAP_AXI_ID_FILTER_ENHANCED;
return (filt == DDR_CAP_AXI_ID_FILTER_ENHANCED) &&
ddr_perf_is_filtered(event);
}
static u32 ddr_perf_alloc_counter(struct ddr_pmu *pmu, int event)
{
int i;
@ -209,27 +301,17 @@ static void ddr_perf_free_counter(struct ddr_pmu *pmu, int counter)
static u32 ddr_perf_read_counter(struct ddr_pmu *pmu, int counter)
{
return readl_relaxed(pmu->base + COUNTER_READ + counter * 4);
}
struct perf_event *event = pmu->events[counter];
void __iomem *base = pmu->base;
static bool ddr_perf_is_filtered(struct perf_event *event)
{
return event->attr.config == 0x41 || event->attr.config == 0x42;
}
static u32 ddr_perf_filter_val(struct perf_event *event)
{
return event->attr.config1;
}
static bool ddr_perf_filters_compatible(struct perf_event *a,
struct perf_event *b)
{
if (!ddr_perf_is_filtered(a))
return true;
if (!ddr_perf_is_filtered(b))
return true;
return ddr_perf_filter_val(a) == ddr_perf_filter_val(b);
/*
* return bytes instead of bursts from ddr transaction for
* axid-read and axid-write event if PMU core supports enhanced
* filter.
*/
base += ddr_perf_is_enhanced_filtered(event) ? COUNTER_DPCR1 :
COUNTER_READ;
return readl_relaxed(base + counter * 4);
}
static int ddr_perf_event_init(struct perf_event *event)

View File

@ -243,8 +243,6 @@ MODULE_DEVICE_TABLE(acpi, hisi_ddrc_pmu_acpi_match);
static int hisi_ddrc_pmu_init_data(struct platform_device *pdev,
struct hisi_pmu *ddrc_pmu)
{
struct resource *res;
/*
* Use the SCCL_ID and DDRC channel ID to identify the
* DDRC PMU, while SCCL_ID is in MPIDR[aff2].
@ -263,8 +261,7 @@ static int hisi_ddrc_pmu_init_data(struct platform_device *pdev,
/* DDRC PMUs only share the same SCCL */
ddrc_pmu->ccl_id = -1;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ddrc_pmu->base = devm_ioremap_resource(&pdev->dev, res);
ddrc_pmu->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ddrc_pmu->base)) {
dev_err(&pdev->dev, "ioremap failed for ddrc_pmu resource\n");
return PTR_ERR(ddrc_pmu->base);

View File

@ -234,7 +234,6 @@ static int hisi_hha_pmu_init_data(struct platform_device *pdev,
struct hisi_pmu *hha_pmu)
{
unsigned long long id;
struct resource *res;
acpi_status status;
status = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
@ -256,8 +255,7 @@ static int hisi_hha_pmu_init_data(struct platform_device *pdev,
/* HHA PMUs only share the same SCCL */
hha_pmu->ccl_id = -1;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
hha_pmu->base = devm_ioremap_resource(&pdev->dev, res);
hha_pmu->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(hha_pmu->base)) {
dev_err(&pdev->dev, "ioremap failed for hha_pmu resource\n");
return PTR_ERR(hha_pmu->base);

View File

@ -233,7 +233,6 @@ static int hisi_l3c_pmu_init_data(struct platform_device *pdev,
struct hisi_pmu *l3c_pmu)
{
unsigned long long id;
struct resource *res;
acpi_status status;
status = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
@ -259,8 +258,7 @@ static int hisi_l3c_pmu_init_data(struct platform_device *pdev,
return -EINVAL;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
l3c_pmu->base = devm_ioremap_resource(&pdev->dev, res);
l3c_pmu->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(l3c_pmu->base)) {
dev_err(&pdev->dev, "ioremap failed for l3c_pmu resource\n");
return PTR_ERR(l3c_pmu->base);

View File

@ -15,6 +15,7 @@
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <asm/cputype.h>
#include <asm/local64.h>
#include "hisi_uncore_pmu.h"
@ -338,8 +339,10 @@ void hisi_uncore_pmu_disable(struct pmu *pmu)
/*
* Read Super CPU cluster and CPU cluster ID from MPIDR_EL1.
* If multi-threading is supported, CCL_ID is the low 3-bits in MPIDR[Aff2]
* and SCCL_ID is the upper 5-bits of Aff2 field; if not, SCCL_ID
* If multi-threading is supported, On Huawei Kunpeng 920 SoC whose cpu
* core is tsv110, CCL_ID is the low 3-bits in MPIDR[Aff2] and SCCL_ID
* is the upper 5-bits of Aff2 field; while for other cpu types, SCCL_ID
* is in MPIDR[Aff3] and CCL_ID is in MPIDR[Aff2], if not, SCCL_ID
* is in MPIDR[Aff2] and CCL_ID is in MPIDR[Aff1].
*/
static void hisi_read_sccl_and_ccl_id(int *sccl_id, int *ccl_id)
@ -347,12 +350,19 @@ static void hisi_read_sccl_and_ccl_id(int *sccl_id, int *ccl_id)
u64 mpidr = read_cpuid_mpidr();
if (mpidr & MPIDR_MT_BITMASK) {
int aff2 = MPIDR_AFFINITY_LEVEL(mpidr, 2);
if (read_cpuid_part_number() == HISI_CPU_PART_TSV110) {
int aff2 = MPIDR_AFFINITY_LEVEL(mpidr, 2);
if (sccl_id)
*sccl_id = aff2 >> 3;
if (ccl_id)
*ccl_id = aff2 & 0x7;
if (sccl_id)
*sccl_id = aff2 >> 3;
if (ccl_id)
*ccl_id = aff2 & 0x7;
} else {
if (sccl_id)
*sccl_id = MPIDR_AFFINITY_LEVEL(mpidr, 3);
if (ccl_id)
*ccl_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
}
} else {
if (sccl_id)
*sccl_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);

View File

@ -16,23 +16,36 @@
* they need to be sampled before overflow(i.e, at every 2 seconds).
*/
#define TX2_PMU_MAX_COUNTERS 4
#define TX2_PMU_DMC_L3C_MAX_COUNTERS 4
#define TX2_PMU_CCPI2_MAX_COUNTERS 8
#define TX2_PMU_MAX_COUNTERS TX2_PMU_CCPI2_MAX_COUNTERS
#define TX2_PMU_DMC_CHANNELS 8
#define TX2_PMU_L3_TILES 16
#define TX2_PMU_HRTIMER_INTERVAL (2 * NSEC_PER_SEC)
#define GET_EVENTID(ev) ((ev->hw.config) & 0x1f)
#define GET_COUNTERID(ev) ((ev->hw.idx) & 0x3)
#define GET_EVENTID(ev, mask) ((ev->hw.config) & mask)
#define GET_COUNTERID(ev, mask) ((ev->hw.idx) & mask)
/* 1 byte per counter(4 counters).
* Event id is encoded in bits [5:1] of a byte,
*/
#define DMC_EVENT_CFG(idx, val) ((val) << (((idx) * 8) + 1))
/* bits[3:0] to select counters, are indexed from 8 to 15. */
#define CCPI2_COUNTER_OFFSET 8
#define L3C_COUNTER_CTL 0xA8
#define L3C_COUNTER_DATA 0xAC
#define DMC_COUNTER_CTL 0x234
#define DMC_COUNTER_DATA 0x240
#define CCPI2_PERF_CTL 0x108
#define CCPI2_COUNTER_CTL 0x10C
#define CCPI2_COUNTER_SEL 0x12c
#define CCPI2_COUNTER_DATA_L 0x130
#define CCPI2_COUNTER_DATA_H 0x134
/* L3C event IDs */
#define L3_EVENT_READ_REQ 0xD
#define L3_EVENT_WRITEBACK_REQ 0xE
@ -51,15 +64,28 @@
#define DMC_EVENT_READ_TXNS 0xF
#define DMC_EVENT_MAX 0x10
#define CCPI2_EVENT_REQ_PKT_SENT 0x3D
#define CCPI2_EVENT_SNOOP_PKT_SENT 0x65
#define CCPI2_EVENT_DATA_PKT_SENT 0x105
#define CCPI2_EVENT_GIC_PKT_SENT 0x12D
#define CCPI2_EVENT_MAX 0x200
#define CCPI2_PERF_CTL_ENABLE BIT(0)
#define CCPI2_PERF_CTL_START BIT(1)
#define CCPI2_PERF_CTL_RESET BIT(4)
#define CCPI2_EVENT_LEVEL_RISING_EDGE BIT(10)
#define CCPI2_EVENT_TYPE_EDGE_SENSITIVE BIT(11)
enum tx2_uncore_type {
PMU_TYPE_L3C,
PMU_TYPE_DMC,
PMU_TYPE_CCPI2,
PMU_TYPE_INVALID,
};
/*
* pmu on each socket has 2 uncore devices(dmc and l3c),
* each device has 4 counters.
* Each socket has 3 uncore devices associated with a PMU. The DMC and
* L3C have 4 32-bit counters and the CCPI2 has 8 64-bit counters.
*/
struct tx2_uncore_pmu {
struct hlist_node hpnode;
@ -69,8 +95,10 @@ struct tx2_uncore_pmu {
int node;
int cpu;
u32 max_counters;
u32 counters_mask;
u32 prorate_factor;
u32 max_events;
u32 events_mask;
u64 hrtimer_interval;
void __iomem *base;
DECLARE_BITMAP(active_counters, TX2_PMU_MAX_COUNTERS);
@ -79,6 +107,7 @@ struct tx2_uncore_pmu {
struct hrtimer hrtimer;
const struct attribute_group **attr_groups;
enum tx2_uncore_type type;
enum hrtimer_restart (*hrtimer_callback)(struct hrtimer *cb);
void (*init_cntr_base)(struct perf_event *event,
struct tx2_uncore_pmu *tx2_pmu);
void (*stop_event)(struct perf_event *event);
@ -92,7 +121,21 @@ static inline struct tx2_uncore_pmu *pmu_to_tx2_pmu(struct pmu *pmu)
return container_of(pmu, struct tx2_uncore_pmu, pmu);
}
PMU_FORMAT_ATTR(event, "config:0-4");
#define TX2_PMU_FORMAT_ATTR(_var, _name, _format) \
static ssize_t \
__tx2_pmu_##_var##_show(struct device *dev, \
struct device_attribute *attr, \
char *page) \
{ \
BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
return sprintf(page, _format "\n"); \
} \
\
static struct device_attribute format_attr_##_var = \
__ATTR(_name, 0444, __tx2_pmu_##_var##_show, NULL)
TX2_PMU_FORMAT_ATTR(event, event, "config:0-4");
TX2_PMU_FORMAT_ATTR(event_ccpi2, event, "config:0-9");
static struct attribute *l3c_pmu_format_attrs[] = {
&format_attr_event.attr,
@ -104,6 +147,11 @@ static struct attribute *dmc_pmu_format_attrs[] = {
NULL,
};
static struct attribute *ccpi2_pmu_format_attrs[] = {
&format_attr_event_ccpi2.attr,
NULL,
};
static const struct attribute_group l3c_pmu_format_attr_group = {
.name = "format",
.attrs = l3c_pmu_format_attrs,
@ -114,6 +162,11 @@ static const struct attribute_group dmc_pmu_format_attr_group = {
.attrs = dmc_pmu_format_attrs,
};
static const struct attribute_group ccpi2_pmu_format_attr_group = {
.name = "format",
.attrs = ccpi2_pmu_format_attrs,
};
/*
* sysfs event attributes
*/
@ -164,6 +217,19 @@ static struct attribute *dmc_pmu_events_attrs[] = {
NULL,
};
TX2_EVENT_ATTR(req_pktsent, CCPI2_EVENT_REQ_PKT_SENT);
TX2_EVENT_ATTR(snoop_pktsent, CCPI2_EVENT_SNOOP_PKT_SENT);
TX2_EVENT_ATTR(data_pktsent, CCPI2_EVENT_DATA_PKT_SENT);
TX2_EVENT_ATTR(gic_pktsent, CCPI2_EVENT_GIC_PKT_SENT);
static struct attribute *ccpi2_pmu_events_attrs[] = {
&tx2_pmu_event_attr_req_pktsent.attr.attr,
&tx2_pmu_event_attr_snoop_pktsent.attr.attr,
&tx2_pmu_event_attr_data_pktsent.attr.attr,
&tx2_pmu_event_attr_gic_pktsent.attr.attr,
NULL,
};
static const struct attribute_group l3c_pmu_events_attr_group = {
.name = "events",
.attrs = l3c_pmu_events_attrs,
@ -174,6 +240,11 @@ static const struct attribute_group dmc_pmu_events_attr_group = {
.attrs = dmc_pmu_events_attrs,
};
static const struct attribute_group ccpi2_pmu_events_attr_group = {
.name = "events",
.attrs = ccpi2_pmu_events_attrs,
};
/*
* sysfs cpumask attributes
*/
@ -213,6 +284,13 @@ static const struct attribute_group *dmc_pmu_attr_groups[] = {
NULL
};
static const struct attribute_group *ccpi2_pmu_attr_groups[] = {
&ccpi2_pmu_format_attr_group,
&pmu_cpumask_attr_group,
&ccpi2_pmu_events_attr_group,
NULL
};
static inline u32 reg_readl(unsigned long addr)
{
return readl((void __iomem *)addr);
@ -245,33 +323,58 @@ static void init_cntr_base_l3c(struct perf_event *event,
struct tx2_uncore_pmu *tx2_pmu)
{
struct hw_perf_event *hwc = &event->hw;
u32 cmask;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
cmask = tx2_pmu->counters_mask;
/* counter ctrl/data reg offset at 8 */
hwc->config_base = (unsigned long)tx2_pmu->base
+ L3C_COUNTER_CTL + (8 * GET_COUNTERID(event));
+ L3C_COUNTER_CTL + (8 * GET_COUNTERID(event, cmask));
hwc->event_base = (unsigned long)tx2_pmu->base
+ L3C_COUNTER_DATA + (8 * GET_COUNTERID(event));
+ L3C_COUNTER_DATA + (8 * GET_COUNTERID(event, cmask));
}
static void init_cntr_base_dmc(struct perf_event *event,
struct tx2_uncore_pmu *tx2_pmu)
{
struct hw_perf_event *hwc = &event->hw;
u32 cmask;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
cmask = tx2_pmu->counters_mask;
hwc->config_base = (unsigned long)tx2_pmu->base
+ DMC_COUNTER_CTL;
/* counter data reg offset at 0xc */
hwc->event_base = (unsigned long)tx2_pmu->base
+ DMC_COUNTER_DATA + (0xc * GET_COUNTERID(event));
+ DMC_COUNTER_DATA + (0xc * GET_COUNTERID(event, cmask));
}
static void init_cntr_base_ccpi2(struct perf_event *event,
struct tx2_uncore_pmu *tx2_pmu)
{
struct hw_perf_event *hwc = &event->hw;
u32 cmask;
cmask = tx2_pmu->counters_mask;
hwc->config_base = (unsigned long)tx2_pmu->base
+ CCPI2_COUNTER_CTL + (4 * GET_COUNTERID(event, cmask));
hwc->event_base = (unsigned long)tx2_pmu->base;
}
static void uncore_start_event_l3c(struct perf_event *event, int flags)
{
u32 val;
u32 val, emask;
struct hw_perf_event *hwc = &event->hw;
struct tx2_uncore_pmu *tx2_pmu;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
emask = tx2_pmu->events_mask;
/* event id encoded in bits [07:03] */
val = GET_EVENTID(event) << 3;
val = GET_EVENTID(event, emask) << 3;
reg_writel(val, hwc->config_base);
local64_set(&hwc->prev_count, 0);
reg_writel(0, hwc->event_base);
@ -284,10 +387,17 @@ static inline void uncore_stop_event_l3c(struct perf_event *event)
static void uncore_start_event_dmc(struct perf_event *event, int flags)
{
u32 val;
u32 val, cmask, emask;
struct hw_perf_event *hwc = &event->hw;
int idx = GET_COUNTERID(event);
int event_id = GET_EVENTID(event);
struct tx2_uncore_pmu *tx2_pmu;
int idx, event_id;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
cmask = tx2_pmu->counters_mask;
emask = tx2_pmu->events_mask;
idx = GET_COUNTERID(event, cmask);
event_id = GET_EVENTID(event, emask);
/* enable and start counters.
* 8 bits for each counter, bits[05:01] of a counter to set event type.
@ -302,9 +412,14 @@ static void uncore_start_event_dmc(struct perf_event *event, int flags)
static void uncore_stop_event_dmc(struct perf_event *event)
{
u32 val;
u32 val, cmask;
struct hw_perf_event *hwc = &event->hw;
int idx = GET_COUNTERID(event);
struct tx2_uncore_pmu *tx2_pmu;
int idx;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
cmask = tx2_pmu->counters_mask;
idx = GET_COUNTERID(event, cmask);
/* clear event type(bits[05:01]) to stop counter */
val = reg_readl(hwc->config_base);
@ -312,27 +427,72 @@ static void uncore_stop_event_dmc(struct perf_event *event)
reg_writel(val, hwc->config_base);
}
static void uncore_start_event_ccpi2(struct perf_event *event, int flags)
{
u32 emask;
struct hw_perf_event *hwc = &event->hw;
struct tx2_uncore_pmu *tx2_pmu;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
emask = tx2_pmu->events_mask;
/* Bit [09:00] to set event id.
* Bits [10], set level to rising edge.
* Bits [11], set type to edge sensitive.
*/
reg_writel((CCPI2_EVENT_TYPE_EDGE_SENSITIVE |
CCPI2_EVENT_LEVEL_RISING_EDGE |
GET_EVENTID(event, emask)), hwc->config_base);
/* reset[4], enable[0] and start[1] counters */
reg_writel(CCPI2_PERF_CTL_RESET |
CCPI2_PERF_CTL_START |
CCPI2_PERF_CTL_ENABLE,
hwc->event_base + CCPI2_PERF_CTL);
local64_set(&event->hw.prev_count, 0ULL);
}
static void uncore_stop_event_ccpi2(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
/* disable and stop counter */
reg_writel(0, hwc->event_base + CCPI2_PERF_CTL);
}
static void tx2_uncore_event_update(struct perf_event *event)
{
s64 prev, delta, new = 0;
u64 prev, delta, new = 0;
struct hw_perf_event *hwc = &event->hw;
struct tx2_uncore_pmu *tx2_pmu;
enum tx2_uncore_type type;
u32 prorate_factor;
u32 cmask, emask;
tx2_pmu = pmu_to_tx2_pmu(event->pmu);
type = tx2_pmu->type;
cmask = tx2_pmu->counters_mask;
emask = tx2_pmu->events_mask;
prorate_factor = tx2_pmu->prorate_factor;
new = reg_readl(hwc->event_base);
prev = local64_xchg(&hwc->prev_count, new);
/* handles rollover of 32 bit counter */
delta = (u32)(((1UL << 32) - prev) + new);
if (type == PMU_TYPE_CCPI2) {
reg_writel(CCPI2_COUNTER_OFFSET +
GET_COUNTERID(event, cmask),
hwc->event_base + CCPI2_COUNTER_SEL);
new = reg_readl(hwc->event_base + CCPI2_COUNTER_DATA_H);
new = (new << 32) +
reg_readl(hwc->event_base + CCPI2_COUNTER_DATA_L);
prev = local64_xchg(&hwc->prev_count, new);
delta = new - prev;
} else {
new = reg_readl(hwc->event_base);
prev = local64_xchg(&hwc->prev_count, new);
/* handles rollover of 32 bit counter */
delta = (u32)(((1UL << 32) - prev) + new);
}
/* DMC event data_transfers granularity is 16 Bytes, convert it to 64 */
if (type == PMU_TYPE_DMC &&
GET_EVENTID(event) == DMC_EVENT_DATA_TRANSFERS)
GET_EVENTID(event, emask) == DMC_EVENT_DATA_TRANSFERS)
delta = delta/4;
/* L3C and DMC has 16 and 8 interleave channels respectively.
@ -351,6 +511,7 @@ static enum tx2_uncore_type get_tx2_pmu_type(struct acpi_device *adev)
} devices[] = {
{"CAV901D", PMU_TYPE_L3C},
{"CAV901F", PMU_TYPE_DMC},
{"CAV901E", PMU_TYPE_CCPI2},
{"", PMU_TYPE_INVALID}
};
@ -380,7 +541,8 @@ static bool tx2_uncore_validate_event(struct pmu *pmu,
* Make sure the group of events can be scheduled at once
* on the PMU.
*/
static bool tx2_uncore_validate_event_group(struct perf_event *event)
static bool tx2_uncore_validate_event_group(struct perf_event *event,
int max_counters)
{
struct perf_event *sibling, *leader = event->group_leader;
int counters = 0;
@ -403,7 +565,7 @@ static bool tx2_uncore_validate_event_group(struct perf_event *event)
* If the group requires more counters than the HW has,
* it cannot ever be scheduled.
*/
return counters <= TX2_PMU_MAX_COUNTERS;
return counters <= max_counters;
}
@ -439,7 +601,7 @@ static int tx2_uncore_event_init(struct perf_event *event)
hwc->config = event->attr.config;
/* Validate the group */
if (!tx2_uncore_validate_event_group(event))
if (!tx2_uncore_validate_event_group(event, tx2_pmu->max_counters))
return -EINVAL;
return 0;
@ -456,6 +618,10 @@ static void tx2_uncore_event_start(struct perf_event *event, int flags)
tx2_pmu->start_event(event, flags);
perf_event_update_userpage(event);
/* No hrtimer needed for CCPI2, 64-bit counters */
if (!tx2_pmu->hrtimer_callback)
return;
/* Start timer for first event */
if (bitmap_weight(tx2_pmu->active_counters,
tx2_pmu->max_counters) == 1) {
@ -510,15 +676,23 @@ static void tx2_uncore_event_del(struct perf_event *event, int flags)
{
struct tx2_uncore_pmu *tx2_pmu = pmu_to_tx2_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
u32 cmask;
cmask = tx2_pmu->counters_mask;
tx2_uncore_event_stop(event, PERF_EF_UPDATE);
/* clear the assigned counter */
free_counter(tx2_pmu, GET_COUNTERID(event));
free_counter(tx2_pmu, GET_COUNTERID(event, cmask));
perf_event_update_userpage(event);
tx2_pmu->events[hwc->idx] = NULL;
hwc->idx = -1;
if (!tx2_pmu->hrtimer_callback)
return;
if (bitmap_empty(tx2_pmu->active_counters, tx2_pmu->max_counters))
hrtimer_cancel(&tx2_pmu->hrtimer);
}
static void tx2_uncore_event_read(struct perf_event *event)
@ -580,8 +754,12 @@ static int tx2_uncore_pmu_add_dev(struct tx2_uncore_pmu *tx2_pmu)
cpu_online_mask);
tx2_pmu->cpu = cpu;
hrtimer_init(&tx2_pmu->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
tx2_pmu->hrtimer.function = tx2_hrtimer_callback;
if (tx2_pmu->hrtimer_callback) {
hrtimer_init(&tx2_pmu->hrtimer,
CLOCK_MONOTONIC, HRTIMER_MODE_REL);
tx2_pmu->hrtimer.function = tx2_pmu->hrtimer_callback;
}
ret = tx2_uncore_pmu_register(tx2_pmu);
if (ret) {
@ -653,10 +831,13 @@ static struct tx2_uncore_pmu *tx2_uncore_pmu_init_dev(struct device *dev,
switch (tx2_pmu->type) {
case PMU_TYPE_L3C:
tx2_pmu->max_counters = TX2_PMU_MAX_COUNTERS;
tx2_pmu->max_counters = TX2_PMU_DMC_L3C_MAX_COUNTERS;
tx2_pmu->counters_mask = 0x3;
tx2_pmu->prorate_factor = TX2_PMU_L3_TILES;
tx2_pmu->max_events = L3_EVENT_MAX;
tx2_pmu->events_mask = 0x1f;
tx2_pmu->hrtimer_interval = TX2_PMU_HRTIMER_INTERVAL;
tx2_pmu->hrtimer_callback = tx2_hrtimer_callback;
tx2_pmu->attr_groups = l3c_pmu_attr_groups;
tx2_pmu->name = devm_kasprintf(dev, GFP_KERNEL,
"uncore_l3c_%d", tx2_pmu->node);
@ -665,10 +846,13 @@ static struct tx2_uncore_pmu *tx2_uncore_pmu_init_dev(struct device *dev,
tx2_pmu->stop_event = uncore_stop_event_l3c;
break;
case PMU_TYPE_DMC:
tx2_pmu->max_counters = TX2_PMU_MAX_COUNTERS;
tx2_pmu->max_counters = TX2_PMU_DMC_L3C_MAX_COUNTERS;
tx2_pmu->counters_mask = 0x3;
tx2_pmu->prorate_factor = TX2_PMU_DMC_CHANNELS;
tx2_pmu->max_events = DMC_EVENT_MAX;
tx2_pmu->events_mask = 0x1f;
tx2_pmu->hrtimer_interval = TX2_PMU_HRTIMER_INTERVAL;
tx2_pmu->hrtimer_callback = tx2_hrtimer_callback;
tx2_pmu->attr_groups = dmc_pmu_attr_groups;
tx2_pmu->name = devm_kasprintf(dev, GFP_KERNEL,
"uncore_dmc_%d", tx2_pmu->node);
@ -676,6 +860,21 @@ static struct tx2_uncore_pmu *tx2_uncore_pmu_init_dev(struct device *dev,
tx2_pmu->start_event = uncore_start_event_dmc;
tx2_pmu->stop_event = uncore_stop_event_dmc;
break;
case PMU_TYPE_CCPI2:
/* CCPI2 has 8 counters */
tx2_pmu->max_counters = TX2_PMU_CCPI2_MAX_COUNTERS;
tx2_pmu->counters_mask = 0x7;
tx2_pmu->prorate_factor = 1;
tx2_pmu->max_events = CCPI2_EVENT_MAX;
tx2_pmu->events_mask = 0x1ff;
tx2_pmu->attr_groups = ccpi2_pmu_attr_groups;
tx2_pmu->name = devm_kasprintf(dev, GFP_KERNEL,
"uncore_ccpi2_%d", tx2_pmu->node);
tx2_pmu->init_cntr_base = init_cntr_base_ccpi2;
tx2_pmu->start_event = uncore_start_event_ccpi2;
tx2_pmu->stop_event = uncore_stop_event_ccpi2;
tx2_pmu->hrtimer_callback = NULL;
break;
case PMU_TYPE_INVALID:
devm_kfree(dev, tx2_pmu);
return NULL;
@ -744,7 +943,9 @@ static int tx2_uncore_pmu_offline_cpu(unsigned int cpu,
if (cpu != tx2_pmu->cpu)
return 0;
hrtimer_cancel(&tx2_pmu->hrtimer);
if (tx2_pmu->hrtimer_callback)
hrtimer_cancel(&tx2_pmu->hrtimer);
cpumask_copy(&cpu_online_mask_temp, cpu_online_mask);
cpumask_clear_cpu(cpu, &cpu_online_mask_temp);
new_cpu = cpumask_any_and(

View File

@ -1282,25 +1282,21 @@ static int acpi_pmu_probe_active_mcb_mcu_l3c(struct xgene_pmu *xgene_pmu,
struct platform_device *pdev)
{
void __iomem *csw_csr, *mcba_csr, *mcbb_csr;
struct resource *res;
unsigned int reg;
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
csw_csr = devm_ioremap_resource(&pdev->dev, res);
csw_csr = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(csw_csr)) {
dev_err(&pdev->dev, "ioremap failed for CSW CSR resource\n");
return PTR_ERR(csw_csr);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
mcba_csr = devm_ioremap_resource(&pdev->dev, res);
mcba_csr = devm_platform_ioremap_resource(pdev, 2);
if (IS_ERR(mcba_csr)) {
dev_err(&pdev->dev, "ioremap failed for MCBA CSR resource\n");
return PTR_ERR(mcba_csr);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
mcbb_csr = devm_ioremap_resource(&pdev->dev, res);
mcbb_csr = devm_platform_ioremap_resource(pdev, 3);
if (IS_ERR(mcbb_csr)) {
dev_err(&pdev->dev, "ioremap failed for MCBB CSR resource\n");
return PTR_ERR(mcbb_csr);
@ -1332,13 +1328,11 @@ static int acpi_pmu_v3_probe_active_mcb_mcu_l3c(struct xgene_pmu *xgene_pmu,
struct platform_device *pdev)
{
void __iomem *csw_csr;
struct resource *res;
unsigned int reg;
u32 mcb0routing;
u32 mcb1routing;
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
csw_csr = devm_ioremap_resource(&pdev->dev, res);
csw_csr = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(csw_csr)) {
dev_err(&pdev->dev, "ioremap failed for CSW CSR resource\n");
return PTR_ERR(csw_csr);

View File

@ -110,17 +110,17 @@
#endif
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
#ifdef CC_USING_PATCHABLE_FUNCTION_ENTRY
#define MCOUNT_REC() . = ALIGN(8); \
__start_mcount_loc = .; \
KEEP(*(__patchable_function_entries)) \
__stop_mcount_loc = .;
#else
/*
* The ftrace call sites are logged to a section whose name depends on the
* compiler option used. A given kernel image will only use one, AKA
* FTRACE_CALLSITE_SECTION. We capture all of them here to avoid header
* dependencies for FTRACE_CALLSITE_SECTION's definition.
*/
#define MCOUNT_REC() . = ALIGN(8); \
__start_mcount_loc = .; \
KEEP(*(__mcount_loc)) \
KEEP(*(__patchable_function_entries)) \
__stop_mcount_loc = .;
#endif
#else
#define MCOUNT_REC()
#endif

View File

@ -80,6 +80,22 @@
#include <linux/linkage.h>
#include <linux/types.h>
enum arm_smccc_conduit {
SMCCC_CONDUIT_NONE,
SMCCC_CONDUIT_SMC,
SMCCC_CONDUIT_HVC,
};
/**
* arm_smccc_1_1_get_conduit()
*
* Returns the conduit to be used for SMCCCv1.1 or later.
*
* When SMCCCv1.1 is not present, returns SMCCC_CONDUIT_NONE.
*/
enum arm_smccc_conduit arm_smccc_1_1_get_conduit(void);
/**
* struct arm_smccc_res - Result from SMC/HVC call
* @a0-a3 result values from registers 0 to 3

View File

@ -5,12 +5,6 @@
#include <uapi/linux/arm_sdei.h>
enum sdei_conduit_types {
CONDUIT_INVALID = 0,
CONDUIT_SMC,
CONDUIT_HVC,
};
#include <acpi/ghes.h>
#ifdef CONFIG_ARM_SDE_INTERFACE

View File

@ -5,6 +5,8 @@
#include <linux/dma-mapping.h>
#include <linux/mem_encrypt.h>
extern unsigned int zone_dma_bits;
#ifdef CONFIG_ARCH_HAS_PHYS_TO_DMA
#include <asm/dma-direct.h>
#else

View File

@ -499,7 +499,7 @@ static inline int ftrace_disable_ftrace_graph_caller(void) { return 0; }
/**
* ftrace_make_nop - convert code into nop
* @mod: module structure if called by module load initialization
* @rec: the mcount call site record
* @rec: the call site record (e.g. mcount/fentry)
* @addr: the address that the call site should be calling
*
* This is a very sensitive operation and great care needs
@ -520,9 +520,38 @@ static inline int ftrace_disable_ftrace_graph_caller(void) { return 0; }
extern int ftrace_make_nop(struct module *mod,
struct dyn_ftrace *rec, unsigned long addr);
/**
* ftrace_init_nop - initialize a nop call site
* @mod: module structure if called by module load initialization
* @rec: the call site record (e.g. mcount/fentry)
*
* This is a very sensitive operation and great care needs
* to be taken by the arch. The operation should carefully
* read the location, check to see if what is read is indeed
* what we expect it to be, and then on success of the compare,
* it should write to the location.
*
* The code segment at @rec->ip should contain the contents created by
* the compiler
*
* Return must be:
* 0 on success
* -EFAULT on error reading the location
* -EINVAL on a failed compare of the contents
* -EPERM on error writing to the location
* Any other value will be considered a failure.
*/
#ifndef ftrace_init_nop
static inline int ftrace_init_nop(struct module *mod, struct dyn_ftrace *rec)
{
return ftrace_make_nop(mod, rec, MCOUNT_ADDR);
}
#endif
/**
* ftrace_make_call - convert a nop call site into a call to addr
* @rec: the mcount call site record
* @rec: the call site record (e.g. mcount/fentry)
* @addr: the address that the call site should call
*
* This is a very sensitive operation and great care needs
@ -545,7 +574,7 @@ extern int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr);
#ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
/**
* ftrace_modify_call - convert from one addr to another (no nop)
* @rec: the mcount call site record
* @rec: the call site record (e.g. mcount/fentry)
* @old_addr: the address expected to be currently called to
* @addr: the address to change to
*
@ -709,6 +738,11 @@ static inline unsigned long get_lock_parent_ip(void)
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
extern void ftrace_init(void);
#ifdef CC_USING_PATCHABLE_FUNCTION_ENTRY
#define FTRACE_CALLSITE_SECTION "__patchable_function_entries"
#else
#define FTRACE_CALLSITE_SECTION "__mcount_loc"
#endif
#else
static inline void ftrace_init(void) { }
#endif

View File

@ -487,6 +487,8 @@
#define ICC_CTLR_EL1_EOImode_MASK (1 << ICC_CTLR_EL1_EOImode_SHIFT)
#define ICC_CTLR_EL1_CBPR_SHIFT 0
#define ICC_CTLR_EL1_CBPR_MASK (1 << ICC_CTLR_EL1_CBPR_SHIFT)
#define ICC_CTLR_EL1_PMHE_SHIFT 6
#define ICC_CTLR_EL1_PMHE_MASK (1 << ICC_CTLR_EL1_PMHE_SHIFT)
#define ICC_CTLR_EL1_PRI_BITS_SHIFT 8
#define ICC_CTLR_EL1_PRI_BITS_MASK (0x7 << ICC_CTLR_EL1_PRI_BITS_SHIFT)
#define ICC_CTLR_EL1_ID_BITS_SHIFT 11

View File

@ -359,33 +359,40 @@ struct per_cpu_nodestat {
#endif /* !__GENERATING_BOUNDS.H */
enum zone_type {
#ifdef CONFIG_ZONE_DMA
/*
* ZONE_DMA is used when there are devices that are not able
* to do DMA to all of addressable memory (ZONE_NORMAL). Then we
* carve out the portion of memory that is needed for these devices.
* The range is arch specific.
* ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
* to DMA to all of the addressable memory (ZONE_NORMAL).
* On architectures where this area covers the whole 32 bit address
* space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
* DMA addressing constraints. This distinction is important as a 32bit
* DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
* platforms may need both zones as they support peripherals with
* different DMA addressing limitations.
*
* Some examples
* Some examples:
*
* Architecture Limit
* ---------------------------
* parisc, ia64, sparc <4G
* s390, powerpc <2G
* arm Various
* alpha Unlimited or 0-16MB.
* - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
* rest of the lower 4G.
*
* i386, x86_64 and multiple other arches
* <16M.
* - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
* the specific device.
*
* - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
* lower 4G.
*
* - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
* depending on the specific device.
*
* - s390 uses ZONE_DMA fixed to the lower 2G.
*
* - ia64 and riscv only use ZONE_DMA32.
*
* - parisc uses neither.
*/
#ifdef CONFIG_ZONE_DMA
ZONE_DMA,
#endif
#ifdef CONFIG_ZONE_DMA32
/*
* x86_64 needs two ZONE_DMAs because it supports devices that are
* only able to do DMA to the lower 16M but also 32 bit devices that
* can only do DMA areas below 4G.
*/
ZONE_DMA32,
#endif
/*

View File

@ -7,6 +7,7 @@
#ifndef __LINUX_PSCI_H
#define __LINUX_PSCI_H
#include <linux/arm-smccc.h>
#include <linux/init.h>
#include <linux/types.h>
@ -18,12 +19,6 @@ bool psci_tos_resident_on(int cpu);
int psci_cpu_suspend_enter(u32 state);
bool psci_power_state_is_valid(u32 state);
enum psci_conduit {
PSCI_CONDUIT_NONE,
PSCI_CONDUIT_SMC,
PSCI_CONDUIT_HVC,
};
enum smccc_version {
SMCCC_VERSION_1_0,
SMCCC_VERSION_1_1,
@ -38,7 +33,7 @@ struct psci_operations {
int (*affinity_info)(unsigned long target_affinity,
unsigned long lowest_affinity_level);
int (*migrate_info_type)(void);
enum psci_conduit conduit;
enum arm_smccc_conduit conduit;
enum smccc_version smccc_version;
};

View File

@ -10,6 +10,7 @@
#include <linux/syscalls.h>
#include <linux/utime.h>
#include <linux/file.h>
#include <linux/memblock.h>
static ssize_t __init xwrite(int fd, const char *p, size_t count)
{
@ -529,6 +530,13 @@ extern unsigned long __initramfs_size;
void __weak free_initrd_mem(unsigned long start, unsigned long end)
{
#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
unsigned long aligned_start = ALIGN_DOWN(start, PAGE_SIZE);
unsigned long aligned_end = ALIGN(end, PAGE_SIZE);
memblock_free(__pa(aligned_start), aligned_end - aligned_start);
#endif
free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
"initrd");
}

View File

@ -16,12 +16,11 @@
#include <linux/swiotlb.h>
/*
* Most architectures use ZONE_DMA for the first 16 Megabytes, but
* some use it for entirely different regions:
* Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
* it for entirely different regions. In that case the arch code needs to
* override the variable below for dma-direct to work properly.
*/
#ifndef ARCH_ZONE_DMA_BITS
#define ARCH_ZONE_DMA_BITS 24
#endif
unsigned int zone_dma_bits __ro_after_init = 24;
static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
{
@ -69,7 +68,7 @@ static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
* Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
* zones.
*/
if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
if (*phys_mask <= DMA_BIT_MASK(zone_dma_bits))
return GFP_DMA;
if (*phys_mask <= DMA_BIT_MASK(32))
return GFP_DMA32;
@ -395,7 +394,7 @@ int dma_direct_supported(struct device *dev, u64 mask)
u64 min_mask;
if (IS_ENABLED(CONFIG_ZONE_DMA))
min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
min_mask = DMA_BIT_MASK(zone_dma_bits);
else
min_mask = DMA_BIT_MASK(32);

View File

@ -3222,7 +3222,7 @@ static int find_module_sections(struct module *mod, struct load_info *info)
#endif
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
/* sechdrs[0].sh_size is always zero */
mod->ftrace_callsites = section_objs(info, "__mcount_loc",
mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
sizeof(*mod->ftrace_callsites),
&mod->num_ftrace_callsites);
#endif

View File

@ -2494,14 +2494,14 @@ struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
}
static int
ftrace_code_disable(struct module *mod, struct dyn_ftrace *rec)
ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
{
int ret;
if (unlikely(ftrace_disabled))
return 0;
ret = ftrace_make_nop(mod, rec, MCOUNT_ADDR);
ret = ftrace_init_nop(mod, rec);
if (ret) {
ftrace_bug_type = FTRACE_BUG_INIT;
ftrace_bug(ret, rec);
@ -2943,7 +2943,7 @@ static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
* to the NOP instructions.
*/
if (!__is_defined(CC_USING_NOP_MCOUNT) &&
!ftrace_code_disable(mod, p))
!ftrace_nop_initialize(mod, p))
break;
update_cnt++;

View File

@ -118,6 +118,18 @@ int randomize_va_space __read_mostly =
2;
#endif
#ifndef arch_faults_on_old_pte
static inline bool arch_faults_on_old_pte(void)
{
/*
* Those arches which don't have hw access flag feature need to
* implement their own helper. By default, "true" means pagefault
* will be hit on old pte.
*/
return true;
}
#endif
static int __init disable_randmaps(char *s)
{
randomize_va_space = 0;
@ -2145,32 +2157,82 @@ static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
return same;
}
static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
static inline bool cow_user_page(struct page *dst, struct page *src,
struct vm_fault *vmf)
{
bool ret;
void *kaddr;
void __user *uaddr;
bool force_mkyoung;
struct vm_area_struct *vma = vmf->vma;
struct mm_struct *mm = vma->vm_mm;
unsigned long addr = vmf->address;
debug_dma_assert_idle(src);
if (likely(src)) {
copy_user_highpage(dst, src, addr, vma);
return true;
}
/*
* If the source page was a PFN mapping, we don't have
* a "struct page" for it. We do a best-effort copy by
* just copying from the original user address. If that
* fails, we just zero-fill it. Live with it.
*/
if (unlikely(!src)) {
void *kaddr = kmap_atomic(dst);
void __user *uaddr = (void __user *)(va & PAGE_MASK);
kaddr = kmap_atomic(dst);
uaddr = (void __user *)(addr & PAGE_MASK);
/*
* On architectures with software "accessed" bits, we would
* take a double page fault, so mark it accessed here.
*/
force_mkyoung = arch_faults_on_old_pte() && !pte_young(vmf->orig_pte);
if (force_mkyoung) {
pte_t entry;
vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
/*
* Other thread has already handled the fault
* and we don't need to do anything. If it's
* not the case, the fault will be triggered
* again on the same address.
*/
ret = false;
goto pte_unlock;
}
entry = pte_mkyoung(vmf->orig_pte);
if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
update_mmu_cache(vma, addr, vmf->pte);
}
/*
* This really shouldn't fail, because the page is there
* in the page tables. But it might just be unreadable,
* in which case we just give up and fill the result with
* zeroes.
*/
if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
/*
* This really shouldn't fail, because the page is there
* in the page tables. But it might just be unreadable,
* in which case we just give up and fill the result with
* zeroes.
* Give a warn in case there can be some obscure
* use-case
*/
if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
clear_page(kaddr);
kunmap_atomic(kaddr);
flush_dcache_page(dst);
} else
copy_user_highpage(dst, src, va, vma);
WARN_ON_ONCE(1);
clear_page(kaddr);
}
ret = true;
pte_unlock:
if (force_mkyoung)
pte_unmap_unlock(vmf->pte, vmf->ptl);
kunmap_atomic(kaddr);
flush_dcache_page(dst);
return ret;
}
static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
@ -2327,7 +2389,19 @@ static vm_fault_t wp_page_copy(struct vm_fault *vmf)
vmf->address);
if (!new_page)
goto oom;
cow_user_page(new_page, old_page, vmf->address, vma);
if (!cow_user_page(new_page, old_page, vmf)) {
/*
* COW failed, if the fault was solved by other,
* it's fine. If not, userspace would re-fault on
* the same address and we will handle the fault
* from the second attempt.
*/
put_page(new_page);
if (old_page)
put_page(old_page);
return 0;
}
}
if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))

View File

@ -1,5 +1,6 @@
# SPDX-License-Identifier: GPL-2.0
TARGETS = android
TARGETS += arm64
TARGETS += bpf
TARGETS += breakpoints
TARGETS += capabilities

View File

@ -1,12 +1,66 @@
# SPDX-License-Identifier: GPL-2.0
# ARCH can be overridden by the user for cross compiling
# When ARCH not overridden for crosscompiling, lookup machine
ARCH ?= $(shell uname -m 2>/dev/null || echo not)
ifneq (,$(filter $(ARCH),aarch64 arm64))
CFLAGS += -I../../../../usr/include/
TEST_GEN_PROGS := tags_test
TEST_PROGS := run_tags_test.sh
ARM64_SUBTARGETS ?= tags signal
else
ARM64_SUBTARGETS :=
endif
include ../lib.mk
CFLAGS := -Wall -O2 -g
# A proper top_srcdir is needed by KSFT(lib.mk)
top_srcdir = $(realpath ../../../../)
# Additional include paths needed by kselftest.h and local headers
CFLAGS += -I$(top_srcdir)/tools/testing/selftests/
# Guessing where the Kernel headers could have been installed
# depending on ENV config
ifeq ($(KBUILD_OUTPUT),)
khdr_dir = $(top_srcdir)/usr/include
else
# the KSFT preferred location when KBUILD_OUTPUT is set
khdr_dir = $(KBUILD_OUTPUT)/kselftest/usr/include
endif
CFLAGS += -I$(khdr_dir)
export CFLAGS
export top_srcdir
all:
@for DIR in $(ARM64_SUBTARGETS); do \
BUILD_TARGET=$(OUTPUT)/$$DIR; \
mkdir -p $$BUILD_TARGET; \
make OUTPUT=$$BUILD_TARGET -C $$DIR $@; \
done
install: all
@for DIR in $(ARM64_SUBTARGETS); do \
BUILD_TARGET=$(OUTPUT)/$$DIR; \
make OUTPUT=$$BUILD_TARGET -C $$DIR $@; \
done
run_tests: all
@for DIR in $(ARM64_SUBTARGETS); do \
BUILD_TARGET=$(OUTPUT)/$$DIR; \
make OUTPUT=$$BUILD_TARGET -C $$DIR $@; \
done
# Avoid any output on non arm64 on emit_tests
emit_tests: all
@for DIR in $(ARM64_SUBTARGETS); do \
BUILD_TARGET=$(OUTPUT)/$$DIR; \
make OUTPUT=$$BUILD_TARGET -C $$DIR $@; \
done
clean:
@for DIR in $(ARM64_SUBTARGETS); do \
BUILD_TARGET=$(OUTPUT)/$$DIR; \
make OUTPUT=$$BUILD_TARGET -C $$DIR $@; \
done
.PHONY: all clean install run_tests emit_tests

View File

@ -0,0 +1,25 @@
KSelfTest ARM64
===============
- These tests are arm64 specific and so not built or run but just skipped
completely when env-variable ARCH is found to be different than 'arm64'
and `uname -m` reports other than 'aarch64'.
- Holding true the above, ARM64 KSFT tests can be run within the KSelfTest
framework using standard Linux top-level-makefile targets:
$ make TARGETS=arm64 kselftest-clean
$ make TARGETS=arm64 kselftest
or
$ make -C tools/testing/selftests TARGETS=arm64 \
INSTALL_PATH=<your-installation-path> install
or, alternatively, only specific arm64/ subtargets can be picked:
$ make -C tools/testing/selftests TARGETS=arm64 ARM64_SUBTARGETS="tags signal" \
INSTALL_PATH=<your-installation-path> install
Further details on building and running KFST can be found in:
Documentation/dev-tools/kselftest.rst

View File

@ -0,0 +1,3 @@
mangle_*
fake_sigreturn_*
!*.[ch]

View File

@ -0,0 +1,32 @@
# SPDX-License-Identifier: GPL-2.0
# Copyright (C) 2019 ARM Limited
# Additional include paths needed by kselftest.h and local headers
CFLAGS += -D_GNU_SOURCE -std=gnu99 -I.
SRCS := $(filter-out testcases/testcases.c,$(wildcard testcases/*.c))
PROGS := $(patsubst %.c,%,$(SRCS))
# Generated binaries to be installed by top KSFT script
TEST_GEN_PROGS := $(notdir $(PROGS))
# Get Kernel headers installed and use them.
KSFT_KHDR_INSTALL := 1
# Including KSFT lib.mk here will also mangle the TEST_GEN_PROGS list
# to account for any OUTPUT target-dirs optionally provided by
# the toplevel makefile
include ../../lib.mk
$(TEST_GEN_PROGS): $(PROGS)
cp $(PROGS) $(OUTPUT)/
clean:
$(CLEAN)
rm -f $(PROGS)
# Common test-unit targets to build common-layout test-cases executables
# Needs secondary expansion to properly include the testcase c-file in pre-reqs
.SECONDEXPANSION:
$(PROGS): test_signals.c test_signals_utils.c testcases/testcases.c signals.S $$@.c test_signals.h test_signals_utils.h testcases/testcases.h
$(CC) $(CFLAGS) $^ -o $@

View File

@ -0,0 +1,59 @@
KSelfTest arm64/signal/
=======================
Signals Tests
+++++++++++++
- Tests are built around a common main compilation unit: such shared main
enforces a standard sequence of operations needed to perform a single
signal-test (setup/trigger/run/result/cleanup)
- The above mentioned ops are configurable on a test-by-test basis: each test
is described (and configured) using the descriptor signals.h::struct tdescr
- Each signal testcase is compiled into its own executable: a separate
executable is used for each test since many tests complete successfully
by receiving some kind of fatal signal from the Kernel, so it's safer
to run each test unit in its own standalone process, so as to start each
test from a clean slate.
- New tests can be simply defined in testcases/ dir providing a proper struct
tdescr overriding all the defaults we wish to change (as of now providing a
custom run method is mandatory though)
- Signals' test-cases hereafter defined belong currently to two
principal families:
- 'mangle_' tests: a real signal (SIGUSR1) is raised and used as a trigger
and then the test case code modifies the signal frame from inside the
signal handler itself.
- 'fake_sigreturn_' tests: a brand new custom artificial sigframe structure
is placed on the stack and a sigreturn syscall is called to simulate a
real signal return. This kind of tests does not use a trigger usually and
they are just fired using some simple included assembly trampoline code.
- Most of these tests are successfully passing if the process gets killed by
some fatal signal: usually SIGSEGV or SIGBUS. Since while writing this
kind of tests it is extremely easy in fact to end-up injecting other
unrelated SEGV bugs in the testcases, it becomes extremely tricky to
be really sure that the tests are really addressing what they are meant
to address and they are not instead falling apart due to unplanned bugs
in the test code.
In order to alleviate the misery of the life of such test-developer, a few
helpers are provided:
- a couple of ASSERT_BAD/GOOD_CONTEXT() macros to easily parse a ucontext_t
and verify if it is indeed GOOD or BAD (depending on what we were
expecting), using the same logic/perspective as in the arm64 Kernel signals
routines.
- a sanity mechanism to be used in 'fake_sigreturn_'-alike tests: enabled by
default it takes care to verify that the test-execution had at least
successfully progressed up to the stage of triggering the fake sigreturn
call.
In both cases test results are expected in terms of:
- some fatal signal sent by the Kernel to the test process
or
- analyzing some final regs state

View File

@ -0,0 +1,64 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (C) 2019 ARM Limited */
#include <asm/unistd.h>
.section .rodata, "a"
call_fmt:
.asciz "Calling sigreturn with fake sigframe sized:%zd at SP @%08lX\n"
.text
.globl fake_sigreturn
/* fake_sigreturn x0:&sigframe, x1:sigframe_size, x2:misalign_bytes */
fake_sigreturn:
stp x29, x30, [sp, #-16]!
mov x29, sp
mov x20, x0
mov x21, x1
mov x22, x2
/* create space on the stack for fake sigframe 16 bytes-aligned */
add x0, x21, x22
add x0, x0, #15
bic x0, x0, #15 /* round_up(sigframe_size + misalign_bytes, 16) */
sub sp, sp, x0
add x23, sp, x22 /* new sigframe base with misaligment if any */
ldr x0, =call_fmt
mov x1, x21
mov x2, x23
bl printf
/* memcpy the provided content, while still keeping SP aligned */
mov x0, x23
mov x1, x20
mov x2, x21
bl memcpy
/*
* Here saving a last minute SP to current->token acts as a marker:
* if we got here, we are successfully faking a sigreturn; in other
* words we are sure no bad fatal signal has been raised till now
* for unrelated reasons, so we should consider the possibly observed
* fatal signal like SEGV coming from Kernel restore_sigframe() and
* triggered as expected from our test-case.
* For simplicity this assumes that current field 'token' is laid out
* as first in struct tdescr
*/
ldr x0, current
str x23, [x0]
/* finally move SP to misaligned address...if any requested */
mov sp, x23
mov x8, #__NR_rt_sigreturn
svc #0
/*
* Above sigreturn should not return...looping here leads to a timeout
* and ensure proper and clean test failure, instead of jumping around
* on a potentially corrupted stack.
*/
b .

View File

@ -0,0 +1,29 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 ARM Limited
*
* Generic test wrapper for arm64 signal tests.
*
* Each test provides its own tde struct tdescr descriptor to link with
* this wrapper. Framework provides common helpers.
*/
#include <kselftest.h>
#include "test_signals.h"
#include "test_signals_utils.h"
struct tdescr *current;
int main(int argc, char *argv[])
{
current = &tde;
ksft_print_msg("%s :: %s\n", current->name, current->descr);
if (test_setup(current) && test_init(current)) {
test_run(current);
test_cleanup(current);
}
test_result(current);
return current->result;
}

Some files were not shown because too many files have changed in this diff Show More