mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 08:36:40 +07:00
tracing/filter: Optimize filter by folding the tree
There are many cases that a filter will contain multiple ORs or ANDs together near the leafs. Walking up and down the tree to get to the next compare can be a waste. If there are several ORs or ANDs together, fold them into a single pred and allocate an array of the conditions that they check. This will speed up the filter by linearly walking an array and can still break out if a short circuit condition is met. Cc: Tom Zanussi <tzanussi@gmail.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This commit is contained in:
parent
ec126cac23
commit
43cd414552
@ -678,6 +678,7 @@ struct event_subsystem {
|
||||
|
||||
#define FILTER_PRED_INVALID ((unsigned short)-1)
|
||||
#define FILTER_PRED_IS_RIGHT (1 << 15)
|
||||
#define FILTER_PRED_FOLD (1 << 15)
|
||||
|
||||
struct filter_pred;
|
||||
struct regex;
|
||||
@ -704,7 +705,16 @@ struct filter_pred {
|
||||
filter_pred_fn_t fn;
|
||||
u64 val;
|
||||
struct regex regex;
|
||||
char *field_name;
|
||||
/*
|
||||
* Leaf nodes use field_name, ops is used by AND and OR
|
||||
* nodes. The field_name is always freed when freeing a pred.
|
||||
* We can overload field_name for ops and have it freed
|
||||
* as well.
|
||||
*/
|
||||
union {
|
||||
char *field_name;
|
||||
unsigned short *ops;
|
||||
};
|
||||
int offset;
|
||||
int not;
|
||||
int op;
|
||||
|
@ -381,6 +381,42 @@ get_pred_parent(struct filter_pred *pred, struct filter_pred *preds,
|
||||
return pred;
|
||||
}
|
||||
|
||||
/*
|
||||
* A series of AND or ORs where found together. Instead of
|
||||
* climbing up and down the tree branches, an array of the
|
||||
* ops were made in order of checks. We can just move across
|
||||
* the array and short circuit if needed.
|
||||
*/
|
||||
static int process_ops(struct filter_pred *preds,
|
||||
struct filter_pred *op, void *rec)
|
||||
{
|
||||
struct filter_pred *pred;
|
||||
int type;
|
||||
int match;
|
||||
int i;
|
||||
|
||||
/*
|
||||
* Micro-optimization: We set type to true if op
|
||||
* is an OR and false otherwise (AND). Then we
|
||||
* just need to test if the match is equal to
|
||||
* the type, and if it is, we can short circuit the
|
||||
* rest of the checks:
|
||||
*
|
||||
* if ((match && op->op == OP_OR) ||
|
||||
* (!match && op->op == OP_AND))
|
||||
* return match;
|
||||
*/
|
||||
type = op->op == OP_OR;
|
||||
|
||||
for (i = 0; i < op->val; i++) {
|
||||
pred = &preds[op->ops[i]];
|
||||
match = pred->fn(pred, rec);
|
||||
if (!!match == type)
|
||||
return match;
|
||||
}
|
||||
return match;
|
||||
}
|
||||
|
||||
/* return 1 if event matches, 0 otherwise (discard) */
|
||||
int filter_match_preds(struct event_filter *filter, void *rec)
|
||||
{
|
||||
@ -414,11 +450,16 @@ int filter_match_preds(struct event_filter *filter, void *rec)
|
||||
case MOVE_DOWN:
|
||||
/* only AND and OR have children */
|
||||
if (pred->left != FILTER_PRED_INVALID) {
|
||||
/* keep going to leaf node */
|
||||
pred = &preds[pred->left];
|
||||
continue;
|
||||
}
|
||||
match = pred->fn(pred, rec);
|
||||
/* If ops is set, then it was folded. */
|
||||
if (!pred->ops) {
|
||||
/* keep going to down the left side */
|
||||
pred = &preds[pred->left];
|
||||
continue;
|
||||
}
|
||||
/* We can treat folded ops as a leaf node */
|
||||
match = process_ops(preds, pred, rec);
|
||||
} else
|
||||
match = pred->fn(pred, rec);
|
||||
/* If this pred is the only pred */
|
||||
if (pred == root)
|
||||
break;
|
||||
@ -659,17 +700,34 @@ static int filter_set_pred(struct event_filter *filter,
|
||||
left = __pop_pred_stack(stack);
|
||||
if (!left || !right)
|
||||
return -EINVAL;
|
||||
dest->left = left->index;
|
||||
dest->right = right->index;
|
||||
left->parent = dest->index;
|
||||
/*
|
||||
* If both children can be folded
|
||||
* and they are the same op as this op or a leaf,
|
||||
* then this op can be folded.
|
||||
*/
|
||||
if (left->index & FILTER_PRED_FOLD &&
|
||||
(left->op == dest->op ||
|
||||
left->left == FILTER_PRED_INVALID) &&
|
||||
right->index & FILTER_PRED_FOLD &&
|
||||
(right->op == dest->op ||
|
||||
right->left == FILTER_PRED_INVALID))
|
||||
dest->index |= FILTER_PRED_FOLD;
|
||||
|
||||
dest->left = left->index & ~FILTER_PRED_FOLD;
|
||||
dest->right = right->index & ~FILTER_PRED_FOLD;
|
||||
left->parent = dest->index & ~FILTER_PRED_FOLD;
|
||||
right->parent = dest->index | FILTER_PRED_IS_RIGHT;
|
||||
} else
|
||||
} else {
|
||||
/*
|
||||
* Make dest->left invalid to be used as a quick
|
||||
* way to know this is a leaf node.
|
||||
*/
|
||||
dest->left = FILTER_PRED_INVALID;
|
||||
|
||||
/* All leafs allow folding the parent ops. */
|
||||
dest->index |= FILTER_PRED_FOLD;
|
||||
}
|
||||
|
||||
return __push_pred_stack(stack, dest);
|
||||
}
|
||||
|
||||
@ -1420,6 +1478,158 @@ static int check_pred_tree(struct event_filter *filter,
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int count_leafs(struct filter_pred *preds, struct filter_pred *root)
|
||||
{
|
||||
struct filter_pred *pred;
|
||||
enum move_type move = MOVE_DOWN;
|
||||
int count = 0;
|
||||
int done = 0;
|
||||
|
||||
pred = root;
|
||||
|
||||
do {
|
||||
switch (move) {
|
||||
case MOVE_DOWN:
|
||||
if (pred->left != FILTER_PRED_INVALID) {
|
||||
pred = &preds[pred->left];
|
||||
continue;
|
||||
}
|
||||
/* A leaf at the root is just a leaf in the tree */
|
||||
if (pred == root)
|
||||
return 1;
|
||||
count++;
|
||||
pred = get_pred_parent(pred, preds,
|
||||
pred->parent, &move);
|
||||
continue;
|
||||
case MOVE_UP_FROM_LEFT:
|
||||
pred = &preds[pred->right];
|
||||
move = MOVE_DOWN;
|
||||
continue;
|
||||
case MOVE_UP_FROM_RIGHT:
|
||||
if (pred == root)
|
||||
break;
|
||||
pred = get_pred_parent(pred, preds,
|
||||
pred->parent, &move);
|
||||
continue;
|
||||
}
|
||||
done = 1;
|
||||
} while (!done);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static int fold_pred(struct filter_pred *preds, struct filter_pred *root)
|
||||
{
|
||||
struct filter_pred *pred;
|
||||
enum move_type move = MOVE_DOWN;
|
||||
int count = 0;
|
||||
int children;
|
||||
int done = 0;
|
||||
|
||||
/* No need to keep the fold flag */
|
||||
root->index &= ~FILTER_PRED_FOLD;
|
||||
|
||||
/* If the root is a leaf then do nothing */
|
||||
if (root->left == FILTER_PRED_INVALID)
|
||||
return 0;
|
||||
|
||||
/* count the children */
|
||||
children = count_leafs(preds, &preds[root->left]);
|
||||
children += count_leafs(preds, &preds[root->right]);
|
||||
|
||||
root->ops = kzalloc(sizeof(*root->ops) * children, GFP_KERNEL);
|
||||
if (!root->ops)
|
||||
return -ENOMEM;
|
||||
|
||||
root->val = children;
|
||||
|
||||
pred = root;
|
||||
do {
|
||||
switch (move) {
|
||||
case MOVE_DOWN:
|
||||
if (pred->left != FILTER_PRED_INVALID) {
|
||||
pred = &preds[pred->left];
|
||||
continue;
|
||||
}
|
||||
if (WARN_ON(count == children))
|
||||
return -EINVAL;
|
||||
pred->index &= ~FILTER_PRED_FOLD;
|
||||
root->ops[count++] = pred->index;
|
||||
pred = get_pred_parent(pred, preds,
|
||||
pred->parent, &move);
|
||||
continue;
|
||||
case MOVE_UP_FROM_LEFT:
|
||||
pred = &preds[pred->right];
|
||||
move = MOVE_DOWN;
|
||||
continue;
|
||||
case MOVE_UP_FROM_RIGHT:
|
||||
if (pred == root)
|
||||
break;
|
||||
pred = get_pred_parent(pred, preds,
|
||||
pred->parent, &move);
|
||||
continue;
|
||||
}
|
||||
done = 1;
|
||||
} while (!done);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* To optimize the processing of the ops, if we have several "ors" or
|
||||
* "ands" together, we can put them in an array and process them all
|
||||
* together speeding up the filter logic.
|
||||
*/
|
||||
static int fold_pred_tree(struct event_filter *filter,
|
||||
struct filter_pred *root)
|
||||
{
|
||||
struct filter_pred *preds;
|
||||
struct filter_pred *pred;
|
||||
enum move_type move = MOVE_DOWN;
|
||||
int done = 0;
|
||||
int err;
|
||||
|
||||
preds = filter->preds;
|
||||
if (!preds)
|
||||
return -EINVAL;
|
||||
pred = root;
|
||||
|
||||
do {
|
||||
switch (move) {
|
||||
case MOVE_DOWN:
|
||||
if (pred->index & FILTER_PRED_FOLD) {
|
||||
err = fold_pred(preds, pred);
|
||||
if (err)
|
||||
return err;
|
||||
/* Folded nodes are like leafs */
|
||||
} else if (pred->left != FILTER_PRED_INVALID) {
|
||||
pred = &preds[pred->left];
|
||||
continue;
|
||||
}
|
||||
|
||||
/* A leaf at the root is just a leaf in the tree */
|
||||
if (pred == root)
|
||||
break;
|
||||
pred = get_pred_parent(pred, preds,
|
||||
pred->parent, &move);
|
||||
continue;
|
||||
case MOVE_UP_FROM_LEFT:
|
||||
pred = &preds[pred->right];
|
||||
move = MOVE_DOWN;
|
||||
continue;
|
||||
case MOVE_UP_FROM_RIGHT:
|
||||
if (pred == root)
|
||||
break;
|
||||
pred = get_pred_parent(pred, preds,
|
||||
pred->parent, &move);
|
||||
continue;
|
||||
}
|
||||
done = 1;
|
||||
} while (!done);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int replace_preds(struct ftrace_event_call *call,
|
||||
struct event_filter *filter,
|
||||
struct filter_parse_state *ps,
|
||||
@ -1517,6 +1727,11 @@ static int replace_preds(struct ftrace_event_call *call,
|
||||
if (err)
|
||||
goto fail;
|
||||
|
||||
/* Optimize the tree */
|
||||
err = fold_pred_tree(filter, root);
|
||||
if (err)
|
||||
goto fail;
|
||||
|
||||
/* We don't set root until we know it works */
|
||||
barrier();
|
||||
filter->root = root;
|
||||
|
Loading…
Reference in New Issue
Block a user