crypto: ccp - Enable support for AES GCM on v5 CCPs

A version 5 device provides the primitive commands
required for AES GCM. This patch adds support for
en/decryption.

Signed-off-by: Gary R Hook <gary.hook@amd.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Gary R Hook 2017-03-15 13:21:01 -05:00 committed by Herbert Xu
parent 990672d485
commit 36cf515b9b
6 changed files with 540 additions and 0 deletions

View File

@ -12,5 +12,6 @@ ccp-crypto-objs := ccp-crypto-main.o \
ccp-crypto-aes.o \
ccp-crypto-aes-cmac.o \
ccp-crypto-aes-xts.o \
ccp-crypto-aes-galois.o \
ccp-crypto-des3.o \
ccp-crypto-sha.o

View File

@ -0,0 +1,252 @@
/*
* AMD Cryptographic Coprocessor (CCP) AES GCM crypto API support
*
* Copyright (C) 2016 Advanced Micro Devices, Inc.
*
* Author: Gary R Hook <gary.hook@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/scatterlist.h>
#include <linux/crypto.h>
#include <crypto/internal/aead.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/ctr.h>
#include <crypto/scatterwalk.h>
#include <linux/delay.h>
#include "ccp-crypto.h"
#define AES_GCM_IVSIZE 12
static int ccp_aes_gcm_complete(struct crypto_async_request *async_req, int ret)
{
return ret;
}
static int ccp_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int key_len)
{
struct ccp_ctx *ctx = crypto_aead_ctx(tfm);
switch (key_len) {
case AES_KEYSIZE_128:
ctx->u.aes.type = CCP_AES_TYPE_128;
break;
case AES_KEYSIZE_192:
ctx->u.aes.type = CCP_AES_TYPE_192;
break;
case AES_KEYSIZE_256:
ctx->u.aes.type = CCP_AES_TYPE_256;
break;
default:
crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
ctx->u.aes.mode = CCP_AES_MODE_GCM;
ctx->u.aes.key_len = key_len;
memcpy(ctx->u.aes.key, key, key_len);
sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
return 0;
}
static int ccp_aes_gcm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
return 0;
}
static int ccp_aes_gcm_crypt(struct aead_request *req, bool encrypt)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct ccp_ctx *ctx = crypto_aead_ctx(tfm);
struct ccp_aes_req_ctx *rctx = aead_request_ctx(req);
struct scatterlist *iv_sg = NULL;
unsigned int iv_len = 0;
int i;
int ret = 0;
if (!ctx->u.aes.key_len)
return -EINVAL;
if (ctx->u.aes.mode != CCP_AES_MODE_GCM)
return -EINVAL;
if (!req->iv)
return -EINVAL;
/*
* 5 parts:
* plaintext/ciphertext input
* AAD
* key
* IV
* Destination+tag buffer
*/
/* Prepare the IV: 12 bytes + an integer (counter) */
memcpy(rctx->iv, req->iv, AES_GCM_IVSIZE);
for (i = 0; i < 3; i++)
rctx->iv[i + AES_GCM_IVSIZE] = 0;
rctx->iv[AES_BLOCK_SIZE - 1] = 1;
/* Set up a scatterlist for the IV */
iv_sg = &rctx->iv_sg;
iv_len = AES_BLOCK_SIZE;
sg_init_one(iv_sg, rctx->iv, iv_len);
/* The AAD + plaintext are concatenated in the src buffer */
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
INIT_LIST_HEAD(&rctx->cmd.entry);
rctx->cmd.engine = CCP_ENGINE_AES;
rctx->cmd.u.aes.type = ctx->u.aes.type;
rctx->cmd.u.aes.mode = ctx->u.aes.mode;
rctx->cmd.u.aes.action = encrypt;
rctx->cmd.u.aes.key = &ctx->u.aes.key_sg;
rctx->cmd.u.aes.key_len = ctx->u.aes.key_len;
rctx->cmd.u.aes.iv = iv_sg;
rctx->cmd.u.aes.iv_len = iv_len;
rctx->cmd.u.aes.src = req->src;
rctx->cmd.u.aes.src_len = req->cryptlen;
rctx->cmd.u.aes.aad_len = req->assoclen;
/* The cipher text + the tag are in the dst buffer */
rctx->cmd.u.aes.dst = req->dst;
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
return ret;
}
static int ccp_aes_gcm_encrypt(struct aead_request *req)
{
return ccp_aes_gcm_crypt(req, CCP_AES_ACTION_ENCRYPT);
}
static int ccp_aes_gcm_decrypt(struct aead_request *req)
{
return ccp_aes_gcm_crypt(req, CCP_AES_ACTION_DECRYPT);
}
static int ccp_aes_gcm_cra_init(struct crypto_aead *tfm)
{
struct ccp_ctx *ctx = crypto_aead_ctx(tfm);
ctx->complete = ccp_aes_gcm_complete;
ctx->u.aes.key_len = 0;
crypto_aead_set_reqsize(tfm, sizeof(struct ccp_aes_req_ctx));
return 0;
}
static void ccp_aes_gcm_cra_exit(struct crypto_tfm *tfm)
{
}
static struct aead_alg ccp_aes_gcm_defaults = {
.setkey = ccp_aes_gcm_setkey,
.setauthsize = ccp_aes_gcm_setauthsize,
.encrypt = ccp_aes_gcm_encrypt,
.decrypt = ccp_aes_gcm_decrypt,
.init = ccp_aes_gcm_cra_init,
.ivsize = AES_GCM_IVSIZE,
.maxauthsize = AES_BLOCK_SIZE,
.base = {
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ccp_ctx),
.cra_priority = CCP_CRA_PRIORITY,
.cra_type = &crypto_ablkcipher_type,
.cra_exit = ccp_aes_gcm_cra_exit,
.cra_module = THIS_MODULE,
},
};
struct ccp_aes_aead_def {
enum ccp_aes_mode mode;
unsigned int version;
const char *name;
const char *driver_name;
unsigned int blocksize;
unsigned int ivsize;
struct aead_alg *alg_defaults;
};
static struct ccp_aes_aead_def aes_aead_algs[] = {
{
.mode = CCP_AES_MODE_GHASH,
.version = CCP_VERSION(5, 0),
.name = "gcm(aes)",
.driver_name = "gcm-aes-ccp",
.blocksize = 1,
.ivsize = AES_BLOCK_SIZE,
.alg_defaults = &ccp_aes_gcm_defaults,
},
};
static int ccp_register_aes_aead(struct list_head *head,
const struct ccp_aes_aead_def *def)
{
struct ccp_crypto_aead *ccp_aead;
struct aead_alg *alg;
int ret;
ccp_aead = kzalloc(sizeof(*ccp_aead), GFP_KERNEL);
if (!ccp_aead)
return -ENOMEM;
INIT_LIST_HEAD(&ccp_aead->entry);
ccp_aead->mode = def->mode;
/* Copy the defaults and override as necessary */
alg = &ccp_aead->alg;
*alg = *def->alg_defaults;
snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
def->driver_name);
alg->base.cra_blocksize = def->blocksize;
alg->base.cra_ablkcipher.ivsize = def->ivsize;
ret = crypto_register_aead(alg);
if (ret) {
pr_err("%s ablkcipher algorithm registration error (%d)\n",
alg->base.cra_name, ret);
kfree(ccp_aead);
return ret;
}
list_add(&ccp_aead->entry, head);
return 0;
}
int ccp_register_aes_aeads(struct list_head *head)
{
int i, ret;
unsigned int ccpversion = ccp_version();
for (i = 0; i < ARRAY_SIZE(aes_aead_algs); i++) {
if (aes_aead_algs[i].version > ccpversion)
continue;
ret = ccp_register_aes_aead(head, &aes_aead_algs[i]);
if (ret)
return ret;
}
return 0;
}

View File

@ -40,6 +40,7 @@ MODULE_PARM_DESC(des3_disable, "Disable use of 3DES - any non-zero value");
/* List heads for the supported algorithms */
static LIST_HEAD(hash_algs);
static LIST_HEAD(cipher_algs);
static LIST_HEAD(aead_algs);
/* For any tfm, requests for that tfm must be returned on the order
* received. With multiple queues available, the CCP can process more
@ -339,6 +340,10 @@ static int ccp_register_algs(void)
ret = ccp_register_aes_xts_algs(&cipher_algs);
if (ret)
return ret;
ret = ccp_register_aes_aeads(&aead_algs);
if (ret)
return ret;
}
if (!des3_disable) {
@ -360,6 +365,7 @@ static void ccp_unregister_algs(void)
{
struct ccp_crypto_ahash_alg *ahash_alg, *ahash_tmp;
struct ccp_crypto_ablkcipher_alg *ablk_alg, *ablk_tmp;
struct ccp_crypto_aead *aead_alg, *aead_tmp;
list_for_each_entry_safe(ahash_alg, ahash_tmp, &hash_algs, entry) {
crypto_unregister_ahash(&ahash_alg->alg);
@ -372,6 +378,12 @@ static void ccp_unregister_algs(void)
list_del(&ablk_alg->entry);
kfree(ablk_alg);
}
list_for_each_entry_safe(aead_alg, aead_tmp, &aead_algs, entry) {
crypto_unregister_aead(&aead_alg->alg);
list_del(&aead_alg->entry);
kfree(aead_alg);
}
}
static int ccp_crypto_init(void)

View File

@ -19,6 +19,8 @@
#include <linux/ccp.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/internal/aead.h>
#include <crypto/aead.h>
#include <crypto/ctr.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
@ -35,6 +37,14 @@ struct ccp_crypto_ablkcipher_alg {
struct crypto_alg alg;
};
struct ccp_crypto_aead {
struct list_head entry;
u32 mode;
struct aead_alg alg;
};
struct ccp_crypto_ahash_alg {
struct list_head entry;
@ -97,6 +107,9 @@ struct ccp_aes_req_ctx {
struct scatterlist iv_sg;
u8 iv[AES_BLOCK_SIZE];
struct scatterlist tag_sg;
u8 tag[AES_BLOCK_SIZE];
/* Fields used for RFC3686 requests */
u8 *rfc3686_info;
u8 rfc3686_iv[AES_BLOCK_SIZE];
@ -233,6 +246,7 @@ struct scatterlist *ccp_crypto_sg_table_add(struct sg_table *table,
int ccp_register_aes_algs(struct list_head *head);
int ccp_register_aes_cmac_algs(struct list_head *head);
int ccp_register_aes_xts_algs(struct list_head *head);
int ccp_register_aes_aeads(struct list_head *head);
int ccp_register_sha_algs(struct list_head *head);
int ccp_register_des3_algs(struct list_head *head);

View File

@ -601,6 +601,255 @@ static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
return ret;
}
static int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q,
struct ccp_cmd *cmd)
{
struct ccp_aes_engine *aes = &cmd->u.aes;
struct ccp_dm_workarea key, ctx, final_wa, tag;
struct ccp_data src, dst;
struct ccp_data aad;
struct ccp_op op;
unsigned long long *final;
unsigned int dm_offset;
unsigned int ilen;
bool in_place = true; /* Default value */
int ret;
struct scatterlist *p_inp, sg_inp[2];
struct scatterlist *p_tag, sg_tag[2];
struct scatterlist *p_outp, sg_outp[2];
struct scatterlist *p_aad;
if (!aes->iv)
return -EINVAL;
if (!((aes->key_len == AES_KEYSIZE_128) ||
(aes->key_len == AES_KEYSIZE_192) ||
(aes->key_len == AES_KEYSIZE_256)))
return -EINVAL;
if (!aes->key) /* Gotta have a key SGL */
return -EINVAL;
/* First, decompose the source buffer into AAD & PT,
* and the destination buffer into AAD, CT & tag, or
* the input into CT & tag.
* It is expected that the input and output SGs will
* be valid, even if the AAD and input lengths are 0.
*/
p_aad = aes->src;
p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
if (aes->action == CCP_AES_ACTION_ENCRYPT) {
ilen = aes->src_len;
p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
} else {
/* Input length for decryption includes tag */
ilen = aes->src_len - AES_BLOCK_SIZE;
p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
}
memset(&op, 0, sizeof(op));
op.cmd_q = cmd_q;
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
op.sb_key = cmd_q->sb_key; /* Pre-allocated */
op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
op.init = 1;
op.u.aes.type = aes->type;
/* Copy the key to the LSB */
ret = ccp_init_dm_workarea(&key, cmd_q,
CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
DMA_TO_DEVICE);
if (ret)
return ret;
dm_offset = CCP_SB_BYTES - aes->key_len;
ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_key;
}
/* Copy the context (IV) to the LSB.
* There is an assumption here that the IV is 96 bits in length, plus
* a nonce of 32 bits. If no IV is present, use a zeroed buffer.
*/
ret = ccp_init_dm_workarea(&ctx, cmd_q,
CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
DMA_BIDIRECTIONAL);
if (ret)
goto e_key;
dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_ctx;
}
op.init = 1;
if (aes->aad_len > 0) {
/* Step 1: Run a GHASH over the Additional Authenticated Data */
ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
AES_BLOCK_SIZE,
DMA_TO_DEVICE);
if (ret)
goto e_ctx;
op.u.aes.mode = CCP_AES_MODE_GHASH;
op.u.aes.action = CCP_AES_GHASHAAD;
while (aad.sg_wa.bytes_left) {
ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
ret = cmd_q->ccp->vdata->perform->aes(&op);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_aad;
}
ccp_process_data(&aad, NULL, &op);
op.init = 0;
}
}
op.u.aes.mode = CCP_AES_MODE_GCTR;
op.u.aes.action = aes->action;
if (ilen > 0) {
/* Step 2: Run a GCTR over the plaintext */
in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
AES_BLOCK_SIZE,
in_place ? DMA_BIDIRECTIONAL
: DMA_TO_DEVICE);
if (ret)
goto e_ctx;
if (in_place) {
dst = src;
} else {
ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
AES_BLOCK_SIZE, DMA_FROM_DEVICE);
if (ret)
goto e_src;
}
op.soc = 0;
op.eom = 0;
op.init = 1;
while (src.sg_wa.bytes_left) {
ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
if (!src.sg_wa.bytes_left) {
unsigned int nbytes = aes->src_len
% AES_BLOCK_SIZE;
if (nbytes) {
op.eom = 1;
op.u.aes.size = (nbytes * 8) - 1;
}
}
ret = cmd_q->ccp->vdata->perform->aes(&op);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_dst;
}
ccp_process_data(&src, &dst, &op);
op.init = 0;
}
}
/* Step 3: Update the IV portion of the context with the original IV */
ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_dst;
}
ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_dst;
}
/* Step 4: Concatenate the lengths of the AAD and source, and
* hash that 16 byte buffer.
*/
ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
DMA_BIDIRECTIONAL);
if (ret)
goto e_dst;
final = (unsigned long long *) final_wa.address;
final[0] = cpu_to_be64(aes->aad_len * 8);
final[1] = cpu_to_be64(ilen * 8);
op.u.aes.mode = CCP_AES_MODE_GHASH;
op.u.aes.action = CCP_AES_GHASHFINAL;
op.src.type = CCP_MEMTYPE_SYSTEM;
op.src.u.dma.address = final_wa.dma.address;
op.src.u.dma.length = AES_BLOCK_SIZE;
op.dst.type = CCP_MEMTYPE_SYSTEM;
op.dst.u.dma.address = final_wa.dma.address;
op.dst.u.dma.length = AES_BLOCK_SIZE;
op.eom = 1;
op.u.aes.size = 0;
ret = cmd_q->ccp->vdata->perform->aes(&op);
if (ret)
goto e_dst;
if (aes->action == CCP_AES_ACTION_ENCRYPT) {
/* Put the ciphered tag after the ciphertext. */
ccp_get_dm_area(&final_wa, 0, p_tag, 0, AES_BLOCK_SIZE);
} else {
/* Does this ciphered tag match the input? */
ret = ccp_init_dm_workarea(&tag, cmd_q, AES_BLOCK_SIZE,
DMA_BIDIRECTIONAL);
if (ret)
goto e_tag;
ccp_set_dm_area(&tag, 0, p_tag, 0, AES_BLOCK_SIZE);
ret = memcmp(tag.address, final_wa.address, AES_BLOCK_SIZE);
ccp_dm_free(&tag);
}
e_tag:
ccp_dm_free(&final_wa);
e_dst:
if (aes->src_len && !in_place)
ccp_free_data(&dst, cmd_q);
e_src:
if (aes->src_len)
ccp_free_data(&src, cmd_q);
e_aad:
if (aes->aad_len)
ccp_free_data(&aad, cmd_q);
e_ctx:
ccp_dm_free(&ctx);
e_key:
ccp_dm_free(&key);
return ret;
}
static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
{
struct ccp_aes_engine *aes = &cmd->u.aes;
@ -614,6 +863,9 @@ static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
if (aes->mode == CCP_AES_MODE_CMAC)
return ccp_run_aes_cmac_cmd(cmd_q, cmd);
if (aes->mode == CCP_AES_MODE_GCM)
return ccp_run_aes_gcm_cmd(cmd_q, cmd);
if (!((aes->key_len == AES_KEYSIZE_128) ||
(aes->key_len == AES_KEYSIZE_192) ||
(aes->key_len == AES_KEYSIZE_256)))

View File

@ -123,6 +123,10 @@ enum ccp_aes_mode {
CCP_AES_MODE_CFB,
CCP_AES_MODE_CTR,
CCP_AES_MODE_CMAC,
CCP_AES_MODE_GHASH,
CCP_AES_MODE_GCTR,
CCP_AES_MODE_GCM,
CCP_AES_MODE_GMAC,
CCP_AES_MODE__LAST,
};
@ -137,6 +141,9 @@ enum ccp_aes_action {
CCP_AES_ACTION_ENCRYPT,
CCP_AES_ACTION__LAST,
};
/* Overloaded field */
#define CCP_AES_GHASHAAD CCP_AES_ACTION_DECRYPT
#define CCP_AES_GHASHFINAL CCP_AES_ACTION_ENCRYPT
/**
* struct ccp_aes_engine - CCP AES operation
@ -181,6 +188,8 @@ struct ccp_aes_engine {
struct scatterlist *cmac_key; /* K1/K2 cmac key required for
* final cmac cmd */
u32 cmac_key_len; /* In bytes */
u32 aad_len; /* In bytes */
};
/***** XTS-AES engine *****/